
Oak:
a Scalable Off-Heap Allocated
Key-Value Map

Hagar Meir, Dmitry Basin, Edward Bortnikov, Anastasia Braginsky, Yonatan Gottesman, Idit
Keidar, Eran Meir, Gali Sheffi, Yoav Zuriel

Yahoo Research

 Concurrent In-memory Off-heap Key-Value Map for Big Data:

● Written in Java, but causes no JVM Garbage Collection (GC) activity

○ more performance

○ less memory

OAK (Off-heap Allocated Keys)

2

☞ Preamble
 Motivation
Background

Contribution
Data Organization

Open
Source
Library

https://github.com/yahoo/Oak

https://github.com/yahoo/Oak

Big Data goes Off-Heap

3

Preamble
☞ Motivation

Background
Contribution

Data Organization

How can you use 128GB RAM?

4

Preamble
☞ Motivation

Background
Contribution

Data Organization

1 thread,
Throughput

Push data
(1KB quantas)

till
OutOfMemory

Java’s
ConcurrentSkipListMap

(CSLM)
 G1 GC

only 60GB of data, out
of 128GB RAM

Where had the resources been gone?

1. Internal GC structures requires memory

2. Object headers (needed for memory management) require memory

3. GC algorithms takes CPU cycles

BUT…

Life is easier with managed memory language!

5

Preamble
☞ Motivation

Background
Contribution

Data Organization

Background

6

Quickly about Off-Heap Memory

Java Process Address Space

other
memory

area

Heap Memory Off-Heap Memory other
memory

area

Managed by JVM GC Not managed by JVM GC

DirectByteBuffer bytes
DirectByteBuffer
 object

7

Preamble
Motivation

☞ Background
Contribution

Data Organization
ZeroCopy API

Off-Heap Memory Pros and Challenges

8

+ No JVM GC costs

+ No object headers

+ Quicker access

- How to reuse memory?

- Need to (de)serialize

- How to access it concurrently?

Preamble
Motivation

☞ Background
Contribution

Data Organization
ZeroCopy API

Keys & Values Off-Heap

Rethinking ordered map data
structure and algorithm, to
minimize on-heap and maximize
off-heap usage

Fast 2-way Scans

Rethinking how an ordered
map can be traversed
backward, without complicating
concurrency or using additional
memory

New Zero-Copy API

Rethinking ordered map API, to
minimize deserialization and give
user direct memory access

New concurrent algorithm

Rethinking the internal
concurrency of a map to suit new
challenges, with Formal Proof!

Off-Heap

Zero-Copy2-way Scan

Concurrency

Lean in
memory

Fast
perfor-
mance

Scales
better

Real
world
deploy

⤴

⤵
⤵

⤴
Open

source
library
⤵

Motivation
Background

☞ Contribution
Data Organization

ZeroCopy API
Concurrency

9

OAK

How can you use 128GB RAM?

10

Preamble
☞ Motivation

Background
Contribution

Data Organization

Java’s
ConcurrentSkipListMap

(CSLM)

Oak

Push data till
OutOfMemory

How much time is spent in GC?

11

1 thread,
total 11GB
insertion
time

24.26% 11.67%

0.66%

Preamble
☞ Motivation

Background
Contribution

Data Organization

Data
Organization

12

Big Data Map Design Approach

● As less metadata as possible.

13

On
He
ap

Off-Heap Memory

Contribution
☞ Data Organization

ZeroCopy API
Concurrency

Big Data Map Design Approach

● As less metadata as possible.

● Java objects and their headers are not efficient for holding data. Better primitives array

14

int ✓✗ ✗

Contribution
☞ Data Organization

ZeroCopy API
Concurrency

Big Data Map Design Approach

● Maintenance in batches:

○ preallocate off-heap

○ manage on-heap in chunks of memory

● Big values: write and copy on demand only

● Let the user access the raw data, but be on guard

● For Big Data traverses avoid ephemeral objects if possible, but mind NUMA architecture

15

● As less metadata as possible.

● Java objects and their headers are not efficient. Better primitives array

Contribution
☞ Data Organization

ZeroCopy API
Concurrency

Oak’s Data Organization

Chunk A Chunk C

Ephemeral
On-Heap
Off-Heap

16

Contribution
☞ Data Organization

ZeroCopy API
Concurrency

Chunk B
entries:

Chunks are contiguous, ordered key
ranges

Keys are variable size, unique & immutable
Ordered array

Binary search
applied

Off-Heap Memory

Oak’s Data Organization

Block: Key ”E” Value “G”Key “F”

Index key→ chunk

Chunk A Chunk C

Block: Key ”A” Value “B”Key “C” Value “D”

OakWBufferOakRBuffer OakRBuffer
Ephemeral
On-Heap
Off-Heap

17

H H

H

Contribution
☞ Data Organization

ZeroCopy API
Concurrency

synch+delete

Chunk B
entries:

Time for your
questions!

18

New API

19

Zero-Copy API: OakMap<K,V>

ZeroCopyConcurrentNavigableMap (Legacy) ConcurrentNavigableMap

OakRBuffer get(K) V get(K)

20

Contribution
Data Organization
☞ ZeroCopy API

Concurrency

Return either
ready object or

its copy
Thread 1 Thread 2

Return
reference to

shared
memory

Zero-Copy API: OakMap<K,V>

ZeroCopyConcurrentNavigableMap (Legacy) ConcurrentNavigableMap

OakRBuffer get(K) V get(K)

Set⟨OakRBuffer⟩ keySet() / keyStreamSet() Set⟨K⟩ keySet()

21

Contribution
Data Organization
☞ ZeroCopy API

Concurrency

Return either
ready object or

its copy
Thread 1 Thread 2

Return
reference to

shared
memory

boolean putIfAbsentComputeIfPresent(K, V, CreateFunction(OakWBuffer), ComputeFunction(OakWBuffer))

Concurrency

22

Oak Concurrency

23

Index key→ chunk

Chunk
A

Chunk
C

Chunk B
entries:

Off-Heap Memory

Block: Key ”E” Value “G”HEADER

Block: Key ”A” Value “B”Key “C” Value “D”

OakRBuffer OakWBuffer

Data
Structure
Internal:
Lock-Free

User Level
External:
Pluggable,
example
lock-based

ZeroCopy API
☞ Concurrency
Backward Scans

Working with Oǃ-Heap

Separation of concerns!

Oak Concurrency

24

Index key→ chunk

Chunk
A

Chunk
C

Chunk B
entries:

1. Look for key (wait-free)

Put, PutIfAbsent

Off-Heap Memory

Arena: Key ”E” Value “G”HEADER

Arena: Key ”A” Value “B”Key “C” Value “D”

ZeroCopy API
☞ Concurrency
Backward Scans

Evaluation

Oak Concurrency

25

Index key→ chunk

Chunk
A

Chunk
C

Chunk B
entries:

1. Look for key (wait-free)

Put, PutIfAbsent

Off-Heap Memory

Arena: Key ”E” Value “G”HEADER

Arena: Key ”A” Value “B”Key “C” Value “D”

2. Get entry + key (new or
existing!)

ZeroCopy API
☞ Concurrency
Backward Scans

Evaluation

Oak Concurrency

26

Index key→ chunk

Chunk
A

Chunk
C

Chunk B
entries:

1. Look for key (wait-free)

Put, PutIfAbsent

Off-Heap Memory

Arena: Key ”E” Value “G”HEADER

Arena: Key ”A” Value “B”Key “C” Value “D”

2. Get entry + key (new or
existing!)

3. Link, if entry is new
(lock-free)
Eliminate concurrent entries
of the same key

ZeroCopy API
☞ Concurrency
Backward Scans

Evaluation

Oak Concurrency

27

Index key→ chunk

Chunk
A

Chunk
C

Chunk B
entries:

1. Look for key (wait-free)

Put, PutIfAbsent

Off-Heap Memory

Arena: Key ”E” Value “G”HEADER

Arena: Key ”A” Value “B”Key “C” Value “D”

2. Get entry + key (new or
existing!)

3. Link, if entry is new
(lock-free)
Eliminate concurrent entries
of the same key4. Write value (serialize)

ZeroCopy API
☞ Concurrency
Backward Scans

Evaluation

Oak Concurrency

28

Index key→ chunk

Chunk
A

Chunk
C

Chunk B
entries:

1. Look for key (wait-free)

Put, PutIfAbsent

Off-Heap Memory

Arena: Key ”E” Value “G”HEADER

Arena: Key ”A” Value “B”Key “C” Value “D”

2. Get entry + key (new or
existing!)

3. Link, if entry is new
(lock-free)
Eliminate concurrent entries
of the same key4. Write value (serialize)

5. Attach value to entry
(Linearization Point)

ZeroCopy API
☞ Concurrency
Backward Scans

Evaluation

Oak Concurrency

29

Index key→ chunk

Chunk
A

Chunk
C

Chunk B
entries:

1. Look for key (wait-free)

Put, PutIfAbsent

Off-Heap Memory

Arena: Key ”E” Value “G”HEADER

Arena: Key ”A” Value “B”Key “C” Value “D”

2. Get entry + key (new or
existing!)

3. Link, if entry is new
(lock-free)
Eliminate concurrent entries
of the same key4. Write value (serialize)

5. Attach value to entry
(Linearization Point)

6. If unsuccessful attach
→ Restart

ZeroCopy API
☞ Concurrency
Backward Scans

Evaluation

Backward Scans

30

● For analytics requiring to present the results in the decreasing order

Scans (Backward)

10 20 30 40 50 60

ZeroCopy API
Concurrency

☞ Backward Scans
Working with Oǃ-Heap

Evaluation

Scans (Backward from 63)

10 20 30 40 50 60 66 63 68 54 52 41

60

63

50

52

54

40

41

⏬ ⏬⏬ ⏬⏬⏬

ZeroCopy API
Concurrency

☞ Backward Scans
Working with Oǃ-Heap

Evaluation

Working with
off-heap

33

34

Off-heap Usage Commons

Cost

frequent allocation and
deallocation of
DirectByteBuffers requires 3
times more memory compared
to ad-hoc management

Creation

ByteBuffer block =
 ByteBuffer.allocateDirect

(this.capacity);

JVM GC Management

when block object is
released by JVM GC, the OS
memory is also released

Off-heap memory is usually used for

● immutable data
● allocated once and released by the end of the program

Backward Scans
☞ Working with Oǃ-Heap

Evaluation
Druid Integration

Off-heap Usage Ad-hoc

35

● Extra Tip:
● don’t use ByteBuffer#duplicate() and ByteBuffer#slice(),
● do use only absolute access on the main big ByteBuffer - block (recall we do not want many ephemeral objects

floating around)

 Block

 ByteBuffer block =

 ByteBuffer.allocateDirect(~256MB);

Block Pool

 blocks are allocated for
OakMap instance lifetime, then
reused via pool for other
OakMaps

Slice

small part of big block defined by
reference:

<BlockID, offset(in block), length>

Backward Scans
☞ Working with Oǃ-Heap

Evaluation
Druid Integration

Off-heap Reuse Possibilities

36

● Sometimes off-heap memory is never reused

● Otherwise...

● If there is no concurrency, add deleted slices to

the free-list and use it for new allocations

○ either look for suitable slice size, or merge

nearby slices to get bigger allocation

possibilities

○ no concurrency -- easy life! :)

Block Slice
1

Slice
2Slice 3 Slice

4

allocated

List of free slices
ordered by size

Slice 5

allocated

Backward Scans
☞ Working with Oǃ-Heap

Evaluation
Druid Integration

Off-heap Concurrent Reuse

37

● Finally, for concurrency you may use locks

○ each slice protected by a lock for access/delete

○ memory used for locks isn’t reused (!)

○ slice is deleted under lock, thus all belated

threads see deleted slice and release the lock

○ off-heap based locks (are explained next)

● OR wait for our next paper and Oak release :)

Block Slice
1

Slice
2Slice 3 Slice

4

allocated

List of free slices
ordered by size

Slice 5

allocated

🔓 🔓🔓 🔓🔓

Backward Scans
☞ Working with Oǃ-Heap

Evaluation
Druid Integration

38

Off-heap Modifications

38

JDK1103
String[] sa = ...
VarHandle avh =
MethodHandles.arrayElementVarHandle(String[].class);
boolean r = avh.compareAndSet(sa, 10, "expected", "new");

CAS02
unsafe.compareAndSwapLong
(null, buff.address() + buff.position(), expectedValue, newValue);

WRITES01 DirectBuffer buff = ByteBuffer.allocateDirect(capacity);
// use ByteBuffer absolute put instructions
buff.putInt/Long(int index, int/long value);

Backward Scans
☞ Working with Oǃ-Heap

Evaluation
Druid Integration

Time for your
questions!

39

Evaluation
Machine

○ AWS instance m5d.16xlarge

○ utilizing 32 cores (with hyper-threading disabled)

○ on two NUMA nodes

Experiment Parameters

○ Keys size 100B

○ Value size 1KB

○ Limit to 32GB (Inserting 12GB raw data)

40

Concurrency
☞ Evaluation

Druid (real-world)
Conclusions

Scaling with Parallelism (11M KV-pairs)

41

Put Get

Scaling with Parallelism (11M KV-pairs)

42

Ascending scan , 10K pairs/scan Descending scan, 10K pairs/scan

Keys & Values Off-Heap

Rethinking ordered map data
structure and algorithm, to
minimize on-heap and maximize
off-heap usage

Fast 2-way Scans

Rethinking how an ordered map
can be traversed backward,
without complicating concurrency
or using additional memory

New Zero-Copy API

Rethinking ordered map API, to
minimize deserialization and give
user direct memory access

New concurrent algorithm

Rethinking the internal
concurrency of a map to suit new
challenges, with Formal Proof!

Off-Heap

Zero-Copy2-way Scan

Concurrency

Lean in
memory

Fast
perfor-
mance

Scales
better

Real
world
deploy

⤴

⤵
⤵

⤴
Open

source
library
⤵

Motivation
Background

☞ Contribution
Data Organization

ZeroCopy API
Concurrency

43

OAK ✓

✓

Oak in
Apache

Druid
 Re-implement Druid’s centerpiece

Incremental Index (I2) component around Oak

 OakIncrementalIndex

 Decreasing memory consumption

 Faster Ingestions

a popular open-source real-time analytics database

44

Experimental Setup

● We compare (1) OakMap-based IncrementalIndex (OakI2) with the legacy Druid
implemented CSLM-based index

○ (2) both the keys and the values are (on-heap) Java objects (the default)

○ (3) the keys are Java objects whereas the values are stored in (individual)
off-heap ByteBuffers.

● The hardware testbed is
○ 12-core (24-hyperthread) Intel server (E5-2620 v2 @ 2.10GHz)
○ with 46GB of RAM and SSD storage
○ Runtime OS is RedHat 6 with Java 8 (build 1.8.0_241-b07).

45

46

I2-Oak
I2 implementation on top of OakMap

Configurable at system level (the legacy I2 is still a default).
Minor refactoring of the Druid code (I2 API abstraction).
Implemented as core part of Druid but could be an extension to reduce friction.

Details
Druid I2 schema mapped to OakMap keys and values.
Leverages the ZC API for queries and in-place aggregation.

Project Status
Code complete. Component- and system-level benchmarks.
Community: Git issue, PR.

47

Druid Ingestion - Scaling with Data Size

48

Ingesting 1M to 7M tuples

Tuple size 1.25KB

30GB available RAM

Druid Ingestion - Scaling with RAM

49

Ingesting 7M tuples

Tuple size 1.25KB

RAM scaling 25GB to 32GB

Druid Ingestion - RAM overhead

50

Keys & Values Off-Heap

Rethinking ordered map data
structure and algorithm, to
minimize on-heap and maximize
off-heap usage

Fast 2-way Scans

Rethinking how an ordered map
can be traversed backward,
without complicating concurrency
or using additional memory

New Zero-Copy API

Rethinking ordered map API, to
minimize deserialization and give
user direct memory access

New concurrent algorithm

Rethinking the internal
concurrency of a map to suit new
challenges, with Formal Proof!

Motivation
Background

☞ Contribution
Data Organization

ZeroCopy API
Concurrency

51

OAK

Off-Heap

Zero-Copy2-way Scan

Concurrency

Lean in
memory

Fast
perfor-
mance

Scales
better

Real
world
deploy

⤴

⤵
⤵

⤴
Open

source
library
⤵

✓

✓

✓
✓

✓

How to use OakMap?
What for Oak?

52

Go to https://github.com/yahoo/Oak

53

1. Clone or fork it for yourself
2. User needs to create Serializer for Keys and for Values

○ serialize()
○ deserialize()
○ calculateSize()

3. User needs to create Keys Comparator
○ For primitives like Integer/String there are Serializer & Comparator available

4. Create an OakMapBuilder
○ OakMapBuilder<K,V> builder = ... \\ create a builder
○ OakMap<K,V> oak = builder.build();

5. Decide about ZeroCopy API
6. Use it! :)
7. A problem? Contact anastas@verizonmedia.com

Oak usages

54

1. If you are using Java’s ConcurrentSkipListMap for more than 2-4GB

2. If you are using Java and experience GC related issues or it takes too much memory

3. More than that OakHash its on its way!

4. If you are unsure, but want to check, contact anastas@verizonmedia.com

5. If you think that Oak might be useful, but see some problems, contact anastas@verizonmedia.com

6. Bottom line: contact anastas@verizonmedia.com

Oak: a concurrent ordered KV-map with...

1. First off-heap managed memory data structure
○ off-heap data vs on-heap metadata
○ managed programming experience

2. Novel Zero-Copy API
○ minimize deserialization

3. Novel Concurrent Algorithm
○ conditional and unconditional update-in-place
○ fast 2-ways scans

4. Fast && Lean compared to CSLM
○ 2.5% metadata
○ up to x2 faster than CSLM

5. Real world application
○ Druid

6. Open Source Library: https://github.com/yahoo/Oak

55

Questions?

Concurrency
Evaluation

Druid (real-world)
☞ Conclusions

anastas@verizonmedia.com

Off-Heap

Zero-Copy2-way Scan

Concurrency

Lean in
memory

Fast
perfor-
mance

Scales
better

Real
world
deploy⤴⤵

⤵

⤴

Open
source
library

⤵

https://github.com/yahoo/Oak

56

Thank you!

