
Co-Designing Raft + Thread-Per-Core Model
for the Kafka-API

https://github.com/vectorizedio/redpanda

background

● developer, founder & CEO of Vectorized, hacking on
Redpanda, a modern streaming platform for mission
critical workloads.

● previously, principal engineer at Akamai; co-founder &
CTO of concord.io, a high performance stream
processing engine built in C++ and acquired by Akamai
in 2016

alex gallego
@emaxerrno

agenda

observation 1. hardware is fundamentally different than it was a decade ago

observation 2. new bottleneck is CPU. everything is asynchronous

conclusion: need a new way to build software

practical impl: we implemented redpanda - a new storage engine - from scratch
with the principles that we'll cover here & achieve 10-100x better tail latencies; src
code on

● sometimes you get to reinvent the wheel when the road changes

○ hardware is fundamentally different
■ 1000x faster disks
■ 100x cheaper disks
■ 20x taler machines (225 vCPU on GCP)
■ 100x higher throughput NICs (100Gbps is common)

performance
improvement

2007 2011 2020

SSD: $2500/TB

typical instance 4 cores

SSD $200/TB - 1000x faster, 10x cheaper

96 core VMs - 20x more cores

100Gbps NICs - 100x more throughput

open source solution take advantage of cheap
disk

disaggregate compute
and storage

modern hardware +
cloud native

evolution of streaming
observation 1:

western digital nvme ssd
1.2GB/s writes

at 3GHz
(3 billion instructions per second)

1 DMA page write -> 20-140us

1 blocking page write
-> 20-140us (x 3 Million)

 -> 60-420M clock cycles wasted

everything is async; cpu the new bottleneck
observation 2:

thread per core
architecture

● explicit scheduling everywhere
○ IO groups
○ x-core groups (smp)
○ memory throttling

● ONLY supports async interfaces
○ requires library re-writes for

threading model to work
well

future<>

● viral primitive (like actors, Orleans, Akka, Pony, etc) - mix, map-reduce, filter,
chain, fail, complete, generate, fulfill, sleep, expire futures, etc

● fundamentally about program structure. w/ concurrent structure, parallelism
is a free variable

● one pinned thread per core - must express parallelism and concurrency
explicitly

● no locks on the hotpath - network of SPSC queues

async-only
cooperative scheduling framework

new way to build software:

no virtual memory

buddy allocator ● preallocate 100% of mem; split across
N-cores for thread-local allocation/access

● create pools by dividing the memory one
layer above/2 and creating a new pool

● large allocations (above 64KB are not
pooled)

● buddy allocator pools for all object sizes
below 64KB

● full free-lists are recycled
● difficult to use this technique in practice,

and requires developer
retraining/accounting for every single byte
present in the system at all times

○ forces developer to pay additional attention
to all hash-maps, allocations, pooling, etc

Pools
of 8KB

Pools of 16KB

Pools of 64KB Pool 0 - large object pool;
above 64KB+1

memory/2memory/2

...

memory core local (usually around 2GB+)

memory global/N cores…

technique 1:

iobuf - TPC buffer management

src: https://vectorized.io/blog/tpc-buffers/

technique 2:

out of order dma writes
technique 3:

no page cache - embed domain knowledge

● the linux kernel page cache introduces
non-determinism in the IO path

● page cache uses global lock per
file-object

○ This is a very smart thing to do for generic
scheduling of IO - DMA is hard to get right

● page cache is never a bad choice, but not
always a good choice.

○ Always a good middle ground
○ Introduces generic read-ahead semantics

(for our workload specific project)
● hard to understand failure semantics

(specific to version) leads to hard to track
correctness bugs (see pgsql bug)

● thread-local object cache instead
● format ready to go onto the wire instead
● no translation necessary
● stats for file write latency influence

application level eager backpressure

technique 4:

https://www.youtube.com/watch?v=1VWIGBQLtxo

adaptive fallocation

● reduce metadata
contention

● use fdatasync vs
fsync

● 20% latency
improvement

● ahead-of-time
metadata update

technique 5:

raft read-ahead op dispatching

● artificially debounce writes by 4ms
● scan the ops & drop flushes
● if any op required a flush, do it at

the end
○ higher buffer utilization
○ higher hardware utilization
○ lower latency
○ skips full disk-level barriers (fdatasync)

technique 6:

request pipelining per partition

● parallelism model == number of
cores/pthreads in the system

● read full request metadata and assign
subrequest to physical core

● for all non-overlapping cores, execute in
parallel

● for all overlapping cores per *partition*
pipeline (enqueue writes in order)

technique 7:

core-local metadata piggybacking
(...pandabacking?)

● maintain core-local metadata cache of
○ bytes written per partition (for future

readers)
○ latencies from the remote core (could be

highly contended and we need TCP
backpressure)

○ per TCP-connection read-ahead pointers
on disk for O(1) access/assignment

copy-on-read cache
x-shard metadata for low
latency access

technique 8:

2phase+trigger cross-core write-request splitting

● First Stage
○ on the src core, dispatch write on

destination core & return when data is
sequenced inside raft/disk which
establishes order (but not acknowledged)

● Second Stage
○ Once sequenced on destination core
○ Background x-core message to the src

core that signals the src core it can go
ahead and send the next produce now

○ Effect
■ cross-core pipelining
■ 10x improvement for contended

resources
○ Waiting on acks/flushes etc can happen

while the next request is sequenced

technique 9:

check out the code for yourself!

● https://github.com/vectorizedio/redpanda
● ask questions from the maintainers at https://vectorized.io/slack
● say hi on twitter https://twitter.com/vectorizedio

src: https://vectorized.io/blog/fast-and-safe/

https://github.com/vectorizedio/redpanda
https://vectorized.io/slack
https://twitter.com/vectorizedio

