Co-Designing Raft + Thread-Per-Core Model
for the Kafka-API

https://github.com/vectorizedio/redpanda

background

e developer, founder & CEO of Vectorized, hacking on
Redpanda, a modern streaming platform for mission
critical workloads.

e previously, principal engineer at Akamai; co-founder &
CTO of concord.io, a high performance stream
processing engine built in C++ and acquired by Akamai

= in 2016

alex gallego
@emaxerrno

agenda

observation 1. hardware is fundamentally different than it was a decade ago
observation 2. new bottleneck is CPU. everything is asynchronous
conclusion: need a new way to build software

practical impl: we implemented redpanda - a new storage engine - from scratch
with the principles that we'll cover here & achieve 10-100x better tail latencies; src
code on

e sometimes you get to reinvent the wheel when the road changes

o hardware is fundamentally different
m 1000x faster disks
m 100x cheaper disks
m 20x taler machines (225 vCPU on GCP)
m 100x higher throughput NICs (100Gbps is common)

observation 1:

evolution of streaming

B4

96 core VMs - 20x more cores

SSD $200/TB - 1000x faster, 10x cheaper

ﬁ PU LSAR 100Gbps NICs - 100x more throughput
83 katka
Rabbit VIO SSD: $2500/TB
typical instance 4 cores
performance
improvement
2007 2011 2020
open source solution take advantage of cheap disaggregate compute modern hardware +

disk and storage cloud native

observation 2:

everything is async; cpu the new bottleneck

at 3GHz
(3 billion instructions per second)

1 DMA page write -> 20-140us
1 blocking page write

-> 20-140us (x 3 Million)
-> 60-420M clock cycles wasted

western digital nvme ssd
1.2GB/s writes

NIC

Writes incoming bytees directly to user-space.
Reads from user-space directly to NIC buffers

RPS, NIC
multi queue

t‘ ‘ ‘ MEMORY

System reserved

thread per core

]
eerenor e e architecture
10 Subsytem 10 Subsytem 10 Subsytem
Disk / Network Disk / Network Disk / Network
Co-routines / Co-routines / Co-routines /
Green Threads Green Threads Green Threads
s
®
Non blocking Non blocking Non blocking R N - .
&
TN e explicit scheduling everywhere
o ©
g5 &
TPC/IP TPC /1P TPC /1P s IO g p
(custom or epoll) (custom or epoll) (custom or epoll) § O ro u S

Allocators / Mem Allocators / Mem Allocators / Mem O X-core groups (Smp)
o memory throttling
schecer e ONLY supports async interfaces
el | Reieendl | Ry o requires library re-writes for
threading model to work
l | well

SMP (Structured message passing) via N * 2 queues - 1 per Icore pair

[Vectorized c021Redpunda Alighi esorved

new way to build software:

async-only
cooperative scheduling framework

future<>

e viral primitive (like actors, Orleans, Akka, Pony, etc) - mix, map-reduce, filter,
chain, fail, complete, generate, fulfill, sleep, expire futures, etc

e fundamentally about program structure. w/ concurrent structure, parallelism
is a free variable

e one pinned thread per core - must express parallelism and concurrency
explicitly

e no locks on the hotpath - network of SPSC queues

technique 1:

no virtual memory

buddy allocator e preallocate 100% of mem; split across

N-cores for thread-local allocation/access

memory global/N cores...

e create pools by dividing the memory one

memory core local (usually around 2GB+) Iayer above/2 and Creating a hew pOO|
e large allocations (above 64KB are not
memory/2 memory/2
pooled)
Pool 0 - large object pool; i i
Pools of 64KB T akae s e buddy allocator pools for all object sizes
below 64KB
Pools of 16K8 e full free-lists are recycled
pooe | e difficult to use this technique in practice,

and requires developer
retraining/accounting for every single byte

present in the system at all times
o forces developer to pay additional attention
to all hash-maps, allocations, pooling, etc

technique 2:

iobuf - TPC buffer management

Ref-count
deleter

Hardware
Logical iobuf

Core 0

Daisy-chaining on
non-home-core
deleter SPSC lock-free

Core 0

Core...

CoreN

Total savings: 263.8 KB
99.92% savings

Thread-unsafe control P4

deleter/reclaim

Record 1 Record 2

Ref-count deleter

128 KB

Our cost: 32 bytes
- Chunk: begin, end
- Linked-list: begin, end

Record 3 Record 4

Ref-count deleter Ref-count deleter

2KB 64 KB

Record 5 Record 6

Ref-count deleter

70KB

Batch size: 265 KB

src: https://vectorized.io/blog/tpc-buffers/

[5] Vectorized 2021 Redpanda. Allrights reserved

technique 3:

out of order dma writes

Concurrent dispatch (4-future fibers)

Page-aligned buf_3

Page-aligned buf_2

Page-aligned buf_1 Page-aligned buf_4

128 KB

128 KB

Log Segment

(namespace, topic, partition) -file

/var/redpanda/finding/nemo/0/0.wal

Suspend co-routine & wait to fdatasync
() after 4—fibers finish [5] Vectorized 2021 Redpanda. All fights reserved.

technique 4:

no page cache - embed domain knowledge

e the linux kernel page cache introduces
non-determinism in the 10 path

e page cache uses global lock per no translation necessary
file-object stats for file write latency influence

o Thisis a very smart thing to do for generic application level eager backpressure
scheduling of IO - DMA is hard to get right

e page cache is never a bad choice, but not
always a good choice.
o Always a good middle ground
o Introduces generic read-ahead semantics
(for our workload specific project)

e hard to understand failure semantics
(specific to version) leads to hard to track
correctness bugs (see pgsql buq)

thread-local object cache instead
format ready to go onto the wire instead

length: varint
attributes: int8

bit 0~7: unused
timestampDelta: varlong
offsetDelta: varint
keyLength: varint
key: byte[]
valuelen: varint
value: bytel[]
Headers => [Header]

S W NOOWU A WN P

[y

https://www.youtube.com/watch?v=1VWIGBQLtxo

technique 5:

adaptive fallocation

Current write

\)

4KB 4KB 4KB

At 4KB writes.

Size metadata is updated every 8192 ops.

)

Current fallocation
size 32MB strides.

[5] Vectorized 2021 Redpanda. Allrights reserved.

reduce metadata
contention

use fdatasync vs
fsync

20% latency
improvement
ahead-of-time
metadata update

technique 6:

raft read-ahead op dispatching

e artificially debounce writes by 4ms
e scan the ops & drop flushes
e if any op required a flush, do it at

Raft read-ahead append-entries transform

Eolanhan R R
the end e T 8T Ta T T I
o higher buffer utilization
. . . ; Flush Writ Flush Writ Flush Writ
o higher hardware utilization Physica = = = = = e
o lower latency e rroveman
. . . N2 ull serialization points less
o skips full disk-level barriers (fdatasync) °
Physical Flush FSII':::' ':I:Is: Write Write Write

technique 7:

request pipelining per partition

e parallelism model == number of
cores/pthreads in the system

e read full request metadata and assign
subrequest to physical core

e for all non-overlapping cores, execute in
parallel

e for all overlapping cores per *partition*
pipeline (enqueue writes in order)

Kafka Clients

l

Kafka Handler

Partition Router

l

4

Raft

l

Storage

[0 outgang - Cors 1

MQ - Outgoing - Core 2

FREEE MQ - Outgoing - Core 1

RPC

l

Kafka Handler

Partition Router

l

Raft <

l

Storage

MQ - Outgoing - Core 2

Core - 0 Message Queves - SMP

Core -0

: K} Poll + Exec always '"z

Core - 1 Message Queues - SMP

Core -1

RPC

l

Kafka Handler

Partition Router

l

Raft

!

Storage

il MQ - Outgoing - Core 0

MQ - Outgoing - Core1 |
Poll + Exec always

Core - 2 Message Queves - SMP

Core-2

Broker

[5] Vectorized <2071 Redpanca Allighis resers

technique 8:

core-local metadata piggybacking

(...pandabacking?)

'\ copy-on-read cache :

1
' x-shard metadata for low ——
. latency access :

Kafka Handler

’ Metadata
e Cache
L Partition
o Router

e maintain core-local metadata cache of

o bytes written per partition (for future
readers)

o latencies from the remote core (could be
highly contended and we need TCP
backpressure)

o per TCP-connection read-ahead pointers
on disk for O(1) access/assignment

Metadata
Cache

Partition
Router

core-0 core-1 core-2

Computer 1

technique 9:

2phase+trigger cross-core write-request splitting

First Stage
o on the src core, dispatch write on
destination core & return when data is
sequenced inside raft/disk which
establishes order (but not acknowledged)
Second Stage
o Once sequenced on destination core
o Background x-core message to the src
core that signals the src core it can go
ahead and send the next produce now
o Effect
m cross-core pipelining
m 10x improvement for contended
resources
o Waiting on acks/flushes etc can happen
while the next request is sequenced

time

Kafka RPC Read

Kafka RPC Read e
Request 3

Kafka RPC Finish
Request 1

Kafka RPC Finish
Request 2

core-0

Phase 1; request 1

\

Trigger; request 1

-

Phase 2; request2 | _

X-core post / replicate
Sequence writes

Ask src core to read

X-core post / replicate
Sequence writes

next

Phase 2; request 1 Finish Write 1

core-1

check out the code for yourself!

e https://github.com/vectorizedio/redpanda

e ask questions from the maintainers at https://vectorized.io/slack
e say hi on twitter https://twitter.com/vectorizedio

500k Redpanda fsync - Kafka no page cache and fsync
End-to-end Latency - Average: lower is better
500k msg/sec 1KB, linger.ms=1, ack=all, fsync after every batch

End-to-End Latency Percentiles: lower is better 24 -

3000 b
28001
26001 -
2400 -
2200f---1
2000 - -
1800 -~
1600} -
1400 }---
1200
1000 f - -
800!

600 f---1 "

400} 4o
200 j

Latency (ms)

Latency (ms)

0 400 800 1200 1600 2000 2400 2800 3200
’OSI-OQQDQD-OQO p99~900 p99.999 Time (secon ds)

" W Kafka M Redpanda
Percentile
W Kafka W Redpanda src: https://vectorized.io/blog/fast-and-safe/

https://github.com/vectorizedio/redpanda
https://vectorized.io/slack
https://twitter.com/vectorizedio

