
Data Processing with Scio

Neville Li | SmartData 2020

who am I?

● Spotify NYC since 2011

● Music Recommendations

● Data Infrastructure

● Prev. Yahoo! Search

spotify / data

● Audio streaming service

● 144M+ Subscribers

● 320M+ Monthly Active Users

● 60M+ Songs

● 1.9M+ Podcast Titles

● 4B+ Playlists

● 92 Markets

Привет!

spotify / data

● Discover Weekly

● Release Radar

● Daily Mixes

● Yearly Wrapped

● Fan Insights

● ...

spotify / scala

● Scala for Data Engineering

● Scala Center advisory board member

● Open-source :)

○ https://github.com/spotify/scio

○ https://github.com/spotify/featran

○ https://github.com/spotify/ratatool

○ https://github.com/spotify/magnolify

○ ...

https://github.com/spotify
https://github.com/spotify
https://github.com/ratatool
https://github.com/magnolify

scalability

● Volume of data

● Number of datasets

● Number of data engineers / data scientists

challenges

● Orchestration

● Discovery

● Lineage

● Access Control

● Privacy

● Observability

● Quality

● Storage

● Productivity

● 💰💰💰

Data at Spotify

● On-premise → Amazon EMR → On-premise

● ~2,500 nodes

● 100PB+ disk, 100TB+ RAM

● 60TB+ log ingestion / day

● 20K+ jobs / day

spotify / hadoop

data processing / past

● Luigi, Python Map/Reduce, ~2011

● Scalding, Spark, ~2013

● Storm - real time

● Hive - ad hoc analysis

Moving to
Google Cloud

Hive → BigQuery

● Full row scans → columnar storage

● Map/Reduce jobs → optimized execution

● Batch → interactive

● Apache Beam integration

Dremel Paper, 2010

more serverless

● Kafka → Pubsub

● Cassandra → Bigtable

● Hadoop, Scalding, Storm → Scio + Beam + Dataflow

● Bare metal → GKE

data processing / present

● Scio

● Apache Beam

● Cloud Dataflow

● BigQuery

● Bigtable, TensorFlow, Spanner, ...

MapReduce

BigTable DremelColossus

FlumeMegastoreSpanner

PubSub

Millwheel
Apache
Beam

Google Cloud
Dataflow

data processing / beam
slides by Frances Perry & Tyler Akidau, April 2016

Apache Beam

● Unified Batch and Streaming

● SDKs - Java, Python, Go

● Runners

○ Google Cloud Dataflow

○ Apache Flink

○ Apache Spark

Beam Model: Fn Runners

Apache
Flink

Apache
Spark

Beam Model: Pipeline Construction

Other
LanguagesBeam Java

Beam
Python

Execution Execution

Cloud
Dataflow

Execution

the beam model

● What results are calculated?

● Where in event time are results calculated?

● When in processing time are results materialized?

● How do refinements of results relate?

Customizing What Where When How

3
Streaming

4
Streaming

 + Accumulation

1
Classic
Batch

2
Windowed

Batch

beam + dataflow

● Hosted, fully managed, no ops

● Autoscale, dynamic work re-balance

● Shuffle service

● GCP ecosystem integration

○ BigQuery, Bigtable, Datastore, Pubsub, Spanner

beam + scala

● High level DSL

● Familiarity with Scalding, Spark or Flink

● Functional programming natural fit for data

● Numerical libraries - Breeze, Algebird

● Macros for code generation

Scio
Ecclesiastical Latin IPA: /ˈʃi.o/, [ˈʃiː.o], [ˈʃi.i̯o]

Verb: I can, know, understand, have knowledge.

data processing / scio

● A Scala API for data processing

● For Apache Beam (Java SDK)

● Unified batch and streaming

● Runs on Dataflow, Spark, Flink, ...

● Open Source (Apache v2.0)

word count / scio

val sc = ScioContext()
sc.textFile("shakespeare.txt")
 .flatMap { _
 .split("[^a-zA-Z']+")
 .filter(_.nonEmpty)
 }
 .countByValue
 .saveAsTextFile("wordcount.txt")
sc.run()

page rank / scio
def pageRank(in: SCollection[(String, String)]) = {
 val links = in.groupByKey()
 var ranks = links.mapValues(_ => 1.0)
 for (i <- 1 to 10) {
 val contribs = links.join(ranks).values
 .flatMap { case (urls, rank) =>
 urls.map((_, rank / urls.size))
 }
 ranks = contribs.sumByKey.mapValues((1 - 0.85) + 0.85 * _)
 }
 ranks
}

bigquery + scio
Macro generated types, schemas & converters

@BigQuery.fromQuery(
 "SELECT id, name FROM [users] WHERE ...")
class User // look mom no code!
sc.typedBigQuery[User]().map(u => (u.id, u.name))

@BigQuery.toTable
case class Score(id: String, score: Double)
data
 .map(kv => Score(kv._1, kv._2))
 .saveAsTypedBigQuery("table")

scio + extras

● Interactive REPL

● DAG and source visualization

● Compile time coder derivation

● Join optimizations - hash, skewed, sparse

● TensorFlow, Protobuf, Elasticsearch, Parquet, etc.

scio + bigdiffy

● Pairwise field-level statistical diff for datasets

● Diff 2 SCollection[T] given keyFn: T => String

● T: Avro, BigQuery TableRow, Protobuf, case classes

● Leaf field Δ - numeric, string (Levenshtein), vector (cosine)

● Δ statistics - min, max, μ, σ, etc.

● Non-deterministic fields - ignore or treat as unordered (list => set)

github.com/spotify/ratatool/tree/master/ratatool-diffy

scio + bigdiffy

● Diff stats

○ Global: # of SAME, DIFF, MISSING LHS/RHS

○ Key: key → SAME, DIFF, MISSING LHS/RHS

○ Field: field → min, max, μ, σ, etc.

● Use cases

○ Validate pipeline migration, e.g. Python Luigi →Scio

○ ML data quality check

scio + featran

● Type safe feature transformer for machine learning

● Column-wise aggregation and transformation

● Single shuffle for arbitrary # of features

● In memory, Scio, Scalding, Flink & Spark backends

● Scala collection, array, Breeze, TensorFlow & NumPy output format

github.com/spotify/featran

scio + featran

case class Account(age: Int, income: Double, balance: Double, profession: Option[String])

val spec = FeatureSpec.of[Account]

 .required(_.age.toDouble)(Bucketizer("age", Array(0.0, 21.0, 40.0, 65.0)))

 .required(_.income)(StandardScaling("income"))

 .required(_.balance)(QuantileDiscretizer("balance", 10))

 .optional(_.profession)(OneHotEncoder("profession"))

val f = spec.extract(accounts)

f.featureNames // human readable names

f.featureValues[DenseVector[Double]] // output format

f.featureSettings // settings can be reloaded, i.e. in service

spotify / scio

● 450+ users

(Data engineers, data scientists, backend engineers)

● 4000+ unique production jobs

(Dec 2020)

● Storage: Avro, Protobuf, BigQuery, Bigtable, ...

● Batch and streaming

spotify / scio

● 1000+ pipeline repos
● Internal "monorepo" of libraries

○ Encryption
○ Monitoring
○ Data quality
○ Capacity planning

● sbt plugin for common settings & tasks
● scala-steward for auto-bumping

deep dive / serialization

● One of the most expensive parts of a data pipeline

● Elements in memory → disk → network during groups, joins, etc.

● Every PCollection<T> requires a Coder<T>:

public abstract void encode(T value, OutputStream outStream);

public abstract T decode(InputStream inStream);

serialization / scio < 0.7.0

● Serialization was done using Java Kryo library

○ +Chill (Scala extension)

● Reflection based, class name overhead

● Used in Spark, Storm, Scalding, etc.

● Lack of compile time types

● Can't leverage runner optimization/check based on coder properties

○ Determinism (GBK)

○ Consistent with equals (performance)

○ Size estimation

serialization / scio >= 0.7.0

● Kryo to typesafe coders

● Kryo - runtime reflection, speed & size penalty

● New coder - compile time derivation with Magnolia

● Runner type hinting - Is T encoding deterministic? consistent with equals?

● Fallback to Kryo

serialization / scio 0.6 → 0.7

0.6

def map[U: Coder]

 (f: T => U): SCollection[U]

Safer, simpler, compile time, deterministic

def map[U: ClassTag]

 (f: T => U): SCollection[U]

Unsafe, Kryo based, runtime reflection

0.7
(mostly)
automated migration
using scalafix

deep dive / smb

● Sort Merge Bucket join

● Bucket data by key bytes

● Sort bucket elements by key bytes

● Store 1 file per bucket

● Downstream join = merge sort of matching bucket files

● No shuffle

smb / bucketing

id

B (number of buckets) = 3

8
7
6
0
3
1
7
2
6
1
4
3
3
4
5

id
0
3
3
3
6
6

id
1
1
4
4
7
7

id
2
5
8

0,6,6 3,6

4,7 1

2 2,5,8

id

L

6
4
0
2
7
6

L
Merge join

R
id

8
3
1
6
2
5

R

smb / joining

deep dive / smb

● Shuffle once, join everywhere → amortized cost

● scio-smb since Scio >= 0.8.0

● Better compression, storage saving

● Some planning required

○ Core datasets

○ Key semantic & encoding

○ Bucket settings

deep dive / wrapped 2019

● 2018 Wrapped - one massive job crunching yearly data

a. Largest shuffle in GCP Dataflow history!

● 2019 Wrapped - many small jobs sharing intermediate data in database

a. Bigtable range scans with Scio AsyncDoFn & Bigtable client directly

b. Parallelize computation as much possible

■ i.e. computations for each year can run independently of each other

■ 5x as much data processed, -25% total cost

● 2020 Wrapped - even more speed up with SMB, stay tuned :)

deep dive / wrapped 2019

deep dive / wrapped 2019
source: https://labs.spotify.com/2020/02/18/wrapping-up-the-decade-a-data-story

https://labs.spotify.com/2020/02/18/wrapping-up-the-decade-a-data-story/

● How Spotify ran the largest Google Dataflow job ever
for Wrapped 2019

● Spotify Unwrapped: How we brought you a decade of data

https://techcrunch.com/2020/02/18/how-spotify-ran-the-largest-google-dataflow-job-ever-for-wrapped-2019/
https://labs.spotify.com/2020/02/18/wrapping-up-the-decade-a-data-story/

deep dive / wrapped 2019

https://labs.spotify.com/2020/02/18/wrapping-up-the-decade-a-data-story/

● Optimizations
● Better support for different runners
● Streaming

○ Stateful DoFn
○ Refreshing side inputs

● Scala 3

next steps / scio

● Optimizations
● Better support for different runners
● Streaming

○ Stateful DoFn
○ Refreshing side inputs

● Scala 3

next steps / scio

Questions?

Neville Li
@sinisa_lyh

github.com/spotify/scio
spotify.github.io/scio

slackin.spotify.com

spotifyjobs.com

