—

s Java” Records for thedntrigued

—

éat. Rustam I\/Iehmandarov &

A‘ T IPoi

16.04.2021

-NC-SA 4.0

© 2021 Piotr Przybyt. Licensed under CC BY-

https://jpoint.ru/en/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://pixabay.com/users/tiburi-2851152/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=1595847
https://pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=1595847

$ whoaml

itk Piotr Przybyt
i NéTp Mwbibbin
WO piotrprz
B2 Remote Freelance Software Gardener

%

5 SOFTWARE GAVIEN . dev
B8 Trainer

https://softwaregarden.dev/en

L
L AN =
[;--'
=
-
i

3

$ env EXPERT=Rustam

i Rustam Mehmandarov
¥ rmehmandarov
B8 Passionate computer scientist. Java Champion and Google
Developers Expert (GDE) for Cloud. Public speaker.

$ who are you

CAVEAT
AVDITORES!

A KA. Safe harbour statement: don't assume anything based
on this presentation. Verify on your own. Errare humanum est.

Records

standard feature

introduced in | |}

JEP-395

https://openjdk.java.net/jeps/395

Record

new kind of type declaration

record is a restricted form of class
extends java. lang.Record

"transparent carriers for immutable data”

record Complex(imaginary) {}

https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/lang/Record.html

Records have

* 3name

e record components (= 0)

e whichbecome private final fields

e generated accessors

e generated full canonical constructor

e generated equals, hashCode, toString

e body {}

Records can

(re-)define constructors: compact canonical, full
canonical, custom

have own implementations of generated methods
(which should obey the invariants/rules)

have extra methods

have static fields & methods

implement interfaces

be generic

Records can't

extend classes or be extended

have setters’

nave any "extra" instance fields

nave "less visible" canonical constructors
declare native methods

assign components in compact constructors

Records

e are not Java Beans
e are POJOs with accessors (without getters)

e think "named tuples"!

e sometimes require overriding equals () and
hashCode()!

Nesting records

e nesting records just like static classes
e |ocal records are very handy for streams, reduce
and collectors as intermediate result type

| ocal declarations

As a by-product, 1nterfaces and enums can be
declared as local too (apart from records).

Reflection of records

e new method Class.1sRecord()
e new method Class.getRecordComponents()

https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/lang/Class.html#isRecord()
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/lang/Class.html#getRecordComponents()

Annotations

Annotations from components get "propagated” where
their@Target (ElementType. .. .)permits to.

Serialization of records

e re-construction of objects using constructor
e |ibraries and frameworks need to adapt...?

copy ()

Records don't have any copy () orwith() method.

record Pair <FIRST, SECOND>(FIRST first, SECOND second) {}
pair Pair<>("first", '"second");

copy Pair<>(pair.first(), pair.second());

That's why it's important for accessors, equals () and hashCode () to obey contracts!

Using records with other features

e already support PM with 1nstanceof
e and sealed hierarchies
e inthe future will support PM with deconstruction

Vlore on records

softwaregarden.dev/en/tags/records

https://softwaregarden.dev/en/tags/records/

© ® How was it?

|
http://bit.ly/JRFTI-JPoint-poll

http://bit.ly/JRFTI-JPoint-poll

Java™ Records for theslmntrigued

“BoMbLLIOEe Chacu6o!
a‘https://SoftwareGarden.elev
http:/bitly/JRETI-)Point

hittp://bit.ly/JRETI-JPoint-code

https://softwaregarden.dev/
http://bit.ly/JRFTI-JPoint
http://bit.ly/JRFTI-JPoint-code

http://bit.ly/JRFTI-JPoint

http://bit.ly/JRFTI-JPoint
https://twitter.com/piotrprz

