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What is Machine Learning?





ML Task in math form (shortly)



ML Task in math form (by Vorontsov)

X - objects, Y - answers, f: X → Y is      target function

training sample

known answers

Find decision function 



Model example [Linear Regression]



Model example [Linear Regression]

Loss 
Function



Model example [Decision Tree]



Distributed ML



Classification

Regression

Clustering

Neural Networks

Multiclass and multilabel 
algorithms

scikit-learn

Preprocessing

NLP

Dimensionality reduction

Pipelines 

Imputation of missing 
values

Model selection and 
evaluation

Model persistence

Ensemble methods

Tuning the 
hyper-parameters



Take scikit-learn and distribute it!!!
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Take scikit-learn and distribute it!!!



Main issues of standard implementation
● It designed by scientists and described in papers

● Pseudo-code from papers copied and adopted in Python libs

● Typically, it’s implemented with one global while cycle

● Usually, it uses simple data structures like multi-dimensional arrays

● These data structures are located in shared memory on one computer

● A lot of algorithms has O(n^3) calculation complexity and higher

● As a result all these algorithms could be used for 10^2-10^5 

observations effectively



Distributed Pipeline



ML Pipeline

Raw Data



ML Pipeline

Raw Data
Preprocessing Vectors



ML Pipeline

Raw Data
Preprocessing Vectors Training Model



ML Pipeline

Raw Data
Preprocessing Vectors Training Model

Hyper 
parameter 
Tuning



ML Pipeline

Raw Data
Preprocessing Vectors Training Model

Hyper 
parameter 
Tuning
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What can be distributed in typical ML Pipeline
● Data primitives (datasets, RDD, dataframes and etc)

● Preprocessing

● Training

● Cross-Validation and another techniques of hyper-parameter tuning

● Prediction (if you need massive prediction, for example)

● Ensembles (like training trees in Random Forest)



What can be distributed in typical ML Pipeline
Step Apache Spark Apache Ignite

Dataset distributed distributed

Preprocessing distributed distributed

Training distributed distributed

Prediction distributed distributed

Evaluation distributed distributed (since 2.8)

Hyper-parameter tuning parallel parallel (since 2.8)

Online Learning distributed in 3 algorithms distributed

Ensembles for RF* distributed/parallel



Distributed Data Structures



What can be distributed in typical ML Pipeline
● Horizontal fragmentation wherein subsets of instances are stored at 

different sites (distributed by rows)

● Vertical fragmentation wherein subsets of attributes of instances are 

stored at different sites (distributed by columns)

● Cell fragmentation - mixed approach of two above (distributed by row 

and column ranges)

● Improvement  with data collocation based on some hypothesis 

(geographic factor, for example)



The main problem with classic ML algorithm

They are designed to learn from a unique data set 



Popular Matrix Representations



How to multiply distributed matrices?



How to multiply distributed matrices?
● Rows * columns (deliver columns to rows in shuffle phase)

● Block * block (Cannon's algorithm)

● SUMMA: Scalable Universal Matrix Multiplication Algorithm

● Dimension Independent Matrix Square using MapReduce (DIMSUM) 

(Spark PR)

● OverSketch: Approximate Matrix Multiplication for the Cloud

● Polar Coded Distributed Matrix Multiplication

http://www.netlib.org/lapack/lawnspdf/lawn96.pdf
http://stanford.edu/~rezab/papers/dimsum.pdf
https://github.com/apache/spark/pull/1778
https://people.eecs.berkeley.edu/~vipul_gupta/oversketch.pdf
https://arxiv.org/pdf/1901.06811.pdf


Block multiplication vs 2.5D LU Decomposition



Block multiplication vs 2.5D LU Decomposition



Popular Matrix Representations



Reasons to avoid distributed algebra
1. A lot of different Matrix/Vector format

2. Bad performance results for SGD-based algorithms

3. A lot of data are shuffled with Sparse Block Distributed Matrices

4. Extension to algorithms that are not based on Linear Algebra

5. Slow but direct extension of Vector/Matrix distributed operations 

6. Illusion that a lot of algorithms could be easily adopted (like DBScan)



Partition-based dataset

Partition Data Dataset Context Dataset Data

Upstream Cache Context Cache On-Heap

Learning Env

On-Heap

Durable Stateless Durable Recoverable

Dataset dataset = … // Partition based dataset, internal API

dataset.compute((env, ctx, data) -> map(...), (r1, r2) -> reduce(...))

double[][] x = …
double[] y = ...

double[][] x = …
double[] y = ...

Partition Based Dataset StructuresSource Data



Preprocessors



Normalize vector v to L2 norm



Distributed Vector Normalization

1. Define the p (vector norm)

2. Run normalization of each vector on each partition in Map 

phase



Standard Scaling



Distributed Standard Scaling

1. Collect Standard Scaling statistics (mean, variance)

○ one Map-Reduce step to collect

2. Scale each row using statistics (or produced model)

○ one Map step to transform



One-Hot Encoding



Distributed Encoding

1. Collect Encoding statistics (Categories frequencies)

○ one Map-Reduce step to collect

2. Transform each row using statistics (or produced model)

○ one Map step to transform

○ NOTE: it adds k-1 new columns for each categorial 

feature, where k is amount of categories



ML Algorithms



Classification algorithms
● Logistic Regression

● SVM

● KNN

● ANN

● Decision trees

● Random Forest



Regression algorithms
● KNN Regression

● Linear Regression 

● Decision tree regression

● Random forest regression

● Gradient-boosted tree 

regression



Distributed approaches to design ML algorithm
1. Data-Parallelism: The data is partitioned and distributed onto the 

different workers. Each worker typically updates all parameters based 

on its share of the data

2. Model-Parallelism: Each worker has access to the entire dataset but 

only updates a subset of the parameters at a time

3. Combination of two above



The iterative-convergent nature of ML programs
1. Find or prepare something 

locally

2. Repeat it a few times 

(locIterations++)

3. Reduce results

4. Make next step 

(globalIterations++)

5. Check convergence



Shortly, Distributed ML Training can be 
implemented as an ...

Iterative MapReduce algorithm in-memory or on disk



Distributed approaches to design ML algorithm
1. Data-Parallelism: The data is partitioned and distributed onto the 

different workers. Each worker typically updates all parameters based 

on its share of the data

2. Model-Parallelism: Each worker has access to the entire dataset but 

only updates a subset of the parameters at a time

3. Combination of two above



Potential acceleration points in Iterative MR
1. Reduce the amount of global iterations

2. Reduce the time of one global iteration

3. Reduce the size of shuffled data pushed through network



ML algorithms that are easy to scale
1. Linear Regression via SGD

2. Linear Regression via LSQR

3. K-Means

4. Linear SVM

5. KNN

6. Logistic Regression



They are not designed for distributed world
1. PCA (matrix calculations)

2. DBSCAN

3. Topic Modeling (text analysis)



Linear Regression via LSQR



The iterative-convergent nature of ML programs
1. Find or prepare something 

locally

2. Repeat it a few times 

(locIterations++)

3. Reduce results

4. Make next step 

(globalIterations++)

5. Check convergence



Linear Regression with MR approach

Golub-Kahan-Lanczos Bidiagonalization Procedure
core of LSQR linear regression trainer

A,
feature matrix

u,label vector

v, result



Linear Regression with MR approach

A,
feature matrix

u,label vector

v, result

Part 1

Part 2

Part 3

Part 4

Golub-Kahan-Lanczos Bidiagonalization Procedure
core of LSQR linear regression trainer
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Clustering (K-Means)



K-Means in 6 steps



Distributed K-Means (First version)

1. Fix k

2. Initialize k centers

3. Clusterize points locally on each partition (local K-Means)

4. Push to reducer { centroid, amount of points, cluster 

diameter }

5. Join on reducer clusters



Distributed K-Means (Second version)

1. Fix k  & Initialize k cluster centers

2. Spread them among cluster nodes

3. Calculates distances locally on every node

4. Form stat for every cluster center on every node

5. Merge stats on Reducer

6. Recalculate k cluster centers and repeat 3-7 before 

convergence



SGD



Linear Regression Model



Target function for Linear Regression



Loss Function



Distributed Gradient



SGD Pseudocode
def SGD(X, Y, Loss, GradLoss, W0, s):

W = W0
lastLoss = Double.Inf

    for i = 0 .. maxIterations:
W = W - s * GradLoss(W, X, Y)
currentLoss = Loss(Model(W), X, Y)
if abs(currentLoss - lastLoss) > eps:

lastLoss = currentLoss
else:

break
return Model(W)



What can be distributed?
def SGD(X, Y, Loss, GradLoss, W0, s):

W = W0
lastLoss = Double.Inf

    for i = 0 .. maxIterations:
W = W - s * GradLoss(W, X, Y)
currentLoss = Loss(Model(W), X, Y)
if abs(currentLoss - lastLoss) > eps:

lastLoss = currentLoss
else:

break
return Model(W)



MapReduce approach

Calculate local 
improvements

Aggregate local 
improvements

We have 
a model

Update 
model

Ma
p

Reduce



MapReduce approach

Calculate local 
improvements

Aggregate local 
improvements

We have 
a model

Update 
model

Ma
p

Reduce



Naive Apache Ignite implementation
try (Dataset<EmptyContext, SimpleLabeledDatasetData> dataset = datasetBuilder.build(
   LearningEnvironmentBuilder.defaultBuilder(),new EmptyContextBuilder<>(),
   new SimpleLabeledDatasetDataBuilder<>(vectorizer)
)) {
   int datasetSize = sizeOf(dataset);
   double error = computeMSE(model, dataset);
   int i = 0;
   while(error > minError && i < maxIterations) {
   Vector grad = dataset.compute(
       data -> computeLocalGrad(model, data), // map phase
       (left, right) -> left.plus(right)  // reduce phase
   );
   grad = grad.times(2.0).divide(datasetSize); // normalize part of grad
   Vector newWeights = model.weights().minus(grad.times(gradStep)); // add anti-gradient
   model.setWeights(newWeights);
   error = computeMSE(model, dataset);
   i++;
   }
}



Distributed Gradient



SVM



Linear SVM: it’s easy!



Linear SVM: it’s easy!



Distributed Soft-margin Linear SVM



Distributed Soft-margin Linear SVM



Kernel Trick



Kernel Trick



The main problem with SVM

No distributed SVM with any kernel except linear



KNN



kNN (k-nearest neighbor)



Distributed kNN (First version)

1. Compute the cross product between the data we wish to 

classify and our training data

2. Ship the data evenly across all of our machines

3. Compute the distance between each pair of points locally

4. Reduce for each data point we wish to classify that data 

point and the K smallest distances, which we then use to 

predict



Distributed kNN (Second version)

1. Spread the data on N machines

2. For each predicted point find k nearest neighbour on each 

node (k * N totally)

3. Collect k * N candidates to Reducer and re-select the k 

closest neighbours



The main problem with kNN

No real training phase



Approximate Nearest Neighbours

1. Spread the train data for N machines

2. Find limited set of candidates S representing all train data 

with procedure A

3. Spread the test data for M machines with S candidates

4. Classify locally by local kNN based on S candidates



Model Evaluation



Pipeline API

Test-Train Split

Parameter Grid

Binary Evaluator

Binary Classification Metrics

Tuning Hyperparameters

Model Evaluation with K-fold cross validation



Distributed Binary Classification Metrics

1. Accuracy is easy

2. Precision & Recall

3. Balanced Accuracy

4. ROC AUC ???? a lot of calculations

5. Iterate among pairs <GroundThruth, Prediction> locally 

and increment counters locally, after that merge them (MR 

approach)



K-fold Cross-Validation

● It could generate K tasks for training and evaluation to run 

in parallel

● Results could be merged on one node or in distributed 

data primitive



Hyper-parameter tuning



Ensembles in distributed mode



Empirical rule ##

The computational cost of training several classifiers 

on subsets of data is lower than training one 

classifier on the whole data set



Ensemble as a Mean 
value of predictions

Majority-based Ensemble

Ensemble as a weighted 
sum of predictions

Machine Learning Ensemble Model Averaging



Random Forest



Distributed Random Forest



Distributed Random Forest on Histograms



Bagging



Boosting



Stacking



How to contribute?



> 200 contributors totally

8 contributors to ML module

VK Group

Blog posts

Ignite Documentation

ML Documentation

Apache Ignite Community

https://vk.com/apacheignite
https://ignite.apache.org/blogs.html
https://apacheignite.readme.io/docs
https://apacheignite.readme.io/docs/machine-learning


NLP (TF-IDF, Word2Vec)

More integration with TF

Clustering: LDA, Bisecting K-Means

Naive Bayes and Statistical package

Dimensionality reduction

… a lot of tasks for beginners:)

Roadmap for Ignite 3.0



Assume, n the sample size and p the number of features

The complexity of ML algorithms

Algorithm Training complexity Prediction complexity

Naive Bayes O(n*p) O(p)

kNN O(1) O(n*p)

ANN O(n*p) + KMeans Complexity O(p)

Decision Tree O(n^2*p) O(p)

Random Forest O(n^2*p*amount of trees) O(p*amount of trees)

SVM O(n^2*p + n^3) O(amount of sup.vec * p)

Multi - SVM O(O(SVM) * amount of classes) O(O(SVM) * amount of classes * 
O(sort(classes)))



Papers and links
1. A survey of methods for distributed machine learning

2. Strategies and Principles of Distributed Machine Learning on Big Data

3. Distributed k-means algorithm

4. MapReduce Algorithms for k-means Clustering

5. An Extended Compression Format for the Optimization of Sparse 

Matrix-Vector Multiplication

6. Communication-Efficient Distributed Dual Coordinate Ascent

7. Distributed K-Nearest Neighbors

https://link.springer.com/article/10.1007/s13748-012-0035-5
https://arxiv.org/pdf/1512.09295.pdf
https://arxiv.org/pdf/1312.4176.pdf
https://stanford.edu/~rezab/classes/cme323/S16/projects_reports/bodoia.pdf
https://www.computer.org/csdl/journal/td/2013/10/ttd2013101930/13rRUwvT9gg
https://www.computer.org/csdl/journal/td/2013/10/ttd2013101930/13rRUwvT9gg
https://arxiv.org/pdf/1409.1458.pdf
https://stanford.edu/~rezab/classes/cme323/S16/projects_reports/neeb_kurrus.pdf


E-mail : zaleslaw.sin@gmail.com

Twitter : @zaleslaw @BigDataRussia

vk.com/big_data_russia Big Data Russia

+ Telegram @bigdatarussia

vk.com/java_jvm Java & JVM langs

+ Telegram @javajvmlangs

Follow me


