
Not all ML algorithms go to
distributed heaven

Alexey Zinoviev, Java/BigData Trainer,
Apache Ignite Committer

E-mail : zaleslaw.sin@gmail.com

Twitter : @zaleslaw @BigDataRussia

vk.com/big_data_russia Big Data Russia

+ Telegram @bigdatarussia

vk.com/java_jvm Java & JVM langs

+ Telegram @javajvmlangs

Follow me

What is Machine Learning?

ML Task in math form (shortly)

ML Task in math form (by Vorontsov)

X - objects, Y - answers, f: X → Y is target function

training sample

known answers

Find decision function

Model example [Linear Regression]

Model example [Linear Regression]

Loss
Function

Model example [Decision Tree]

Distributed ML

Classification

Regression

Clustering

Neural Networks

Multiclass and multilabel
algorithms

scikit-learn

Preprocessing

NLP

Dimensionality reduction

Pipelines

Imputation of missing
values

Model selection and
evaluation

Model persistence

Ensemble methods

Tuning the
hyper-parameters

Take scikit-learn and distribute it!!!

Take scikit-learn and distribute it!!!

Take scikit-learn and distribute it!!!

Main issues of standard implementation
● It designed by scientists and described in papers

● Pseudo-code from papers copied and adopted in Python libs

● Typically, it’s implemented with one global while cycle

● Usually, it uses simple data structures like multi-dimensional arrays

● These data structures are located in shared memory on one computer

● A lot of algorithms has O(n^3) calculation complexity and higher

● As a result all these algorithms could be used for 10^2-10^5

observations effectively

Distributed Pipeline

ML Pipeline

Raw Data

ML Pipeline

Raw Data
Preprocessing Vectors

ML Pipeline

Raw Data
Preprocessing Vectors Training Model

ML Pipeline

Raw Data
Preprocessing Vectors Training Model

Hyper
parameter
Tuning

ML Pipeline

Raw Data
Preprocessing Vectors Training Model

Hyper
parameter
Tuning

D
e
p
l
o
y

Evaluation

What can be distributed in typical ML Pipeline
● Data primitives (datasets, RDD, dataframes and etc)

● Preprocessing

● Training

● Cross-Validation and another techniques of hyper-parameter tuning

● Prediction (if you need massive prediction, for example)

● Ensembles (like training trees in Random Forest)

What can be distributed in typical ML Pipeline
Step Apache Spark Apache Ignite

Dataset distributed distributed

Preprocessing distributed distributed

Training distributed distributed

Prediction distributed distributed

Evaluation distributed distributed (since 2.8)

Hyper-parameter tuning parallel parallel (since 2.8)

Online Learning distributed in 3 algorithms distributed

Ensembles for RF* distributed/parallel

Distributed Data Structures

What can be distributed in typical ML Pipeline
● Horizontal fragmentation wherein subsets of instances are stored at

different sites (distributed by rows)

● Vertical fragmentation wherein subsets of attributes of instances are

stored at different sites (distributed by columns)

● Cell fragmentation - mixed approach of two above (distributed by row

and column ranges)

● Improvement with data collocation based on some hypothesis

(geographic factor, for example)

The main problem with classic ML algorithm

They are designed to learn from a unique data set

Popular Matrix Representations

How to multiply distributed matrices?

How to multiply distributed matrices?
● Rows * columns (deliver columns to rows in shuffle phase)

● Block * block (Cannon's algorithm)

● SUMMA: Scalable Universal Matrix Multiplication Algorithm

● Dimension Independent Matrix Square using MapReduce (DIMSUM)

(Spark PR)

● OverSketch: Approximate Matrix Multiplication for the Cloud

● Polar Coded Distributed Matrix Multiplication

http://www.netlib.org/lapack/lawnspdf/lawn96.pdf
http://stanford.edu/~rezab/papers/dimsum.pdf
https://github.com/apache/spark/pull/1778
https://people.eecs.berkeley.edu/~vipul_gupta/oversketch.pdf
https://arxiv.org/pdf/1901.06811.pdf

Block multiplication vs 2.5D LU Decomposition

Block multiplication vs 2.5D LU Decomposition

Popular Matrix Representations

Reasons to avoid distributed algebra
1. A lot of different Matrix/Vector format

2. Bad performance results for SGD-based algorithms

3. A lot of data are shuffled with Sparse Block Distributed Matrices

4. Extension to algorithms that are not based on Linear Algebra

5. Slow but direct extension of Vector/Matrix distributed operations

6. Illusion that a lot of algorithms could be easily adopted (like DBScan)

Partition-based dataset

Partition Data Dataset Context Dataset Data

Upstream Cache Context Cache On-Heap

Learning Env

On-Heap

Durable Stateless Durable Recoverable

Dataset dataset = … // Partition based dataset, internal API

dataset.compute((env, ctx, data) -> map(...), (r1, r2) -> reduce(...))

double[][] x = …
double[] y = ...

double[][] x = …
double[] y = ...

Partition Based Dataset StructuresSource Data

Preprocessors

Normalize vector v to L2 norm

Distributed Vector Normalization

1. Define the p (vector norm)

2. Run normalization of each vector on each partition in Map

phase

Standard Scaling

Distributed Standard Scaling

1. Collect Standard Scaling statistics (mean, variance)

○ one Map-Reduce step to collect

2. Scale each row using statistics (or produced model)

○ one Map step to transform

One-Hot Encoding

Distributed Encoding

1. Collect Encoding statistics (Categories frequencies)

○ one Map-Reduce step to collect

2. Transform each row using statistics (or produced model)

○ one Map step to transform

○ NOTE: it adds k-1 new columns for each categorial

feature, where k is amount of categories

ML Algorithms

Classification algorithms
● Logistic Regression

● SVM

● KNN

● ANN

● Decision trees

● Random Forest

Regression algorithms
● KNN Regression

● Linear Regression

● Decision tree regression

● Random forest regression

● Gradient-boosted tree

regression

Distributed approaches to design ML algorithm
1. Data-Parallelism: The data is partitioned and distributed onto the

different workers. Each worker typically updates all parameters based

on its share of the data

2. Model-Parallelism: Each worker has access to the entire dataset but

only updates a subset of the parameters at a time

3. Combination of two above

The iterative-convergent nature of ML programs
1. Find or prepare something

locally

2. Repeat it a few times

(locIterations++)

3. Reduce results

4. Make next step

(globalIterations++)

5. Check convergence

Shortly, Distributed ML Training can be
implemented as an ...

Iterative MapReduce algorithm in-memory or on disk

Distributed approaches to design ML algorithm
1. Data-Parallelism: The data is partitioned and distributed onto the

different workers. Each worker typically updates all parameters based

on its share of the data

2. Model-Parallelism: Each worker has access to the entire dataset but

only updates a subset of the parameters at a time

3. Combination of two above

Potential acceleration points in Iterative MR
1. Reduce the amount of global iterations

2. Reduce the time of one global iteration

3. Reduce the size of shuffled data pushed through network

ML algorithms that are easy to scale
1. Linear Regression via SGD

2. Linear Regression via LSQR

3. K-Means

4. Linear SVM

5. KNN

6. Logistic Regression

They are not designed for distributed world
1. PCA (matrix calculations)

2. DBSCAN

3. Topic Modeling (text analysis)

Linear Regression via LSQR

The iterative-convergent nature of ML programs
1. Find or prepare something

locally

2. Repeat it a few times

(locIterations++)

3. Reduce results

4. Make next step

(globalIterations++)

5. Check convergence

Linear Regression with MR approach

Golub-Kahan-Lanczos Bidiagonalization Procedure
core of LSQR linear regression trainer

A,
feature matrix

u,label vector

v, result

Linear Regression with MR approach

A,
feature matrix

u,label vector

v, result

Part 1

Part 2

Part 3

Part 4

Golub-Kahan-Lanczos Bidiagonalization Procedure
core of LSQR linear regression trainer

M
ap

R
ed

uc
e

M
ap

R
ed

uc
e

Clustering (K-Means)

K-Means in 6 steps

Distributed K-Means (First version)

1. Fix k

2. Initialize k centers

3. Clusterize points locally on each partition (local K-Means)

4. Push to reducer { centroid, amount of points, cluster

diameter }

5. Join on reducer clusters

Distributed K-Means (Second version)

1. Fix k & Initialize k cluster centers

2. Spread them among cluster nodes

3. Calculates distances locally on every node

4. Form stat for every cluster center on every node

5. Merge stats on Reducer

6. Recalculate k cluster centers and repeat 3-7 before

convergence

SGD

Linear Regression Model

Target function for Linear Regression

Loss Function

Distributed Gradient

SGD Pseudocode
def SGD(X, Y, Loss, GradLoss, W0, s):

W = W0
lastLoss = Double.Inf

 for i = 0 .. maxIterations:
W = W - s * GradLoss(W, X, Y)
currentLoss = Loss(Model(W), X, Y)
if abs(currentLoss - lastLoss) > eps:

lastLoss = currentLoss
else:

break
return Model(W)

What can be distributed?
def SGD(X, Y, Loss, GradLoss, W0, s):

W = W0
lastLoss = Double.Inf

 for i = 0 .. maxIterations:
W = W - s * GradLoss(W, X, Y)
currentLoss = Loss(Model(W), X, Y)
if abs(currentLoss - lastLoss) > eps:

lastLoss = currentLoss
else:

break
return Model(W)

MapReduce approach

Calculate local
improvements

Aggregate local
improvements

We have
a model

Update
model

Ma
p

Reduce

MapReduce approach

Calculate local
improvements

Aggregate local
improvements

We have
a model

Update
model

Ma
p

Reduce

Naive Apache Ignite implementation
try (Dataset<EmptyContext, SimpleLabeledDatasetData> dataset = datasetBuilder.build(
 LearningEnvironmentBuilder.defaultBuilder(),new EmptyContextBuilder<>(),
 new SimpleLabeledDatasetDataBuilder<>(vectorizer)
)) {
 int datasetSize = sizeOf(dataset);
 double error = computeMSE(model, dataset);
 int i = 0;
 while(error > minError && i < maxIterations) {
 Vector grad = dataset.compute(
 data -> computeLocalGrad(model, data), // map phase
 (left, right) -> left.plus(right) // reduce phase
);
 grad = grad.times(2.0).divide(datasetSize); // normalize part of grad
 Vector newWeights = model.weights().minus(grad.times(gradStep)); // add anti-gradient
 model.setWeights(newWeights);
 error = computeMSE(model, dataset);
 i++;
 }
}

Distributed Gradient

SVM

Linear SVM: it’s easy!

Linear SVM: it’s easy!

Distributed Soft-margin Linear SVM

Distributed Soft-margin Linear SVM

Kernel Trick

Kernel Trick

The main problem with SVM

No distributed SVM with any kernel except linear

KNN

kNN (k-nearest neighbor)

Distributed kNN (First version)

1. Compute the cross product between the data we wish to

classify and our training data

2. Ship the data evenly across all of our machines

3. Compute the distance between each pair of points locally

4. Reduce for each data point we wish to classify that data

point and the K smallest distances, which we then use to

predict

Distributed kNN (Second version)

1. Spread the data on N machines

2. For each predicted point find k nearest neighbour on each

node (k * N totally)

3. Collect k * N candidates to Reducer and re-select the k

closest neighbours

The main problem with kNN

No real training phase

Approximate Nearest Neighbours

1. Spread the train data for N machines

2. Find limited set of candidates S representing all train data

with procedure A

3. Spread the test data for M machines with S candidates

4. Classify locally by local kNN based on S candidates

Model Evaluation

Pipeline API

Test-Train Split

Parameter Grid

Binary Evaluator

Binary Classification Metrics

Tuning Hyperparameters

Model Evaluation with K-fold cross validation

Distributed Binary Classification Metrics

1. Accuracy is easy

2. Precision & Recall

3. Balanced Accuracy

4. ROC AUC ???? a lot of calculations

5. Iterate among pairs <GroundThruth, Prediction> locally

and increment counters locally, after that merge them (MR

approach)

K-fold Cross-Validation

● It could generate K tasks for training and evaluation to run

in parallel

● Results could be merged on one node or in distributed

data primitive

Hyper-parameter tuning

Ensembles in distributed mode

Empirical rule ##

The computational cost of training several classifiers

on subsets of data is lower than training one

classifier on the whole data set

Ensemble as a Mean
value of predictions

Majority-based Ensemble

Ensemble as a weighted
sum of predictions

Machine Learning Ensemble Model Averaging

Random Forest

Distributed Random Forest

Distributed Random Forest on Histograms

Bagging

Boosting

Stacking

How to contribute?

> 200 contributors totally

8 contributors to ML module

VK Group

Blog posts

Ignite Documentation

ML Documentation

Apache Ignite Community

https://vk.com/apacheignite
https://ignite.apache.org/blogs.html
https://apacheignite.readme.io/docs
https://apacheignite.readme.io/docs/machine-learning

NLP (TF-IDF, Word2Vec)

More integration with TF

Clustering: LDA, Bisecting K-Means

Naive Bayes and Statistical package

Dimensionality reduction

… a lot of tasks for beginners:)

Roadmap for Ignite 3.0

Assume, n the sample size and p the number of features

The complexity of ML algorithms

Algorithm Training complexity Prediction complexity

Naive Bayes O(n*p) O(p)

kNN O(1) O(n*p)

ANN O(n*p) + KMeans Complexity O(p)

Decision Tree O(n^2*p) O(p)

Random Forest O(n^2*p*amount of trees) O(p*amount of trees)

SVM O(n^2*p + n^3) O(amount of sup.vec * p)

Multi - SVM O(O(SVM) * amount of classes) O(O(SVM) * amount of classes *
O(sort(classes)))

Papers and links
1. A survey of methods for distributed machine learning

2. Strategies and Principles of Distributed Machine Learning on Big Data

3. Distributed k-means algorithm

4. MapReduce Algorithms for k-means Clustering

5. An Extended Compression Format for the Optimization of Sparse

Matrix-Vector Multiplication

6. Communication-Efficient Distributed Dual Coordinate Ascent

7. Distributed K-Nearest Neighbors

https://link.springer.com/article/10.1007/s13748-012-0035-5
https://arxiv.org/pdf/1512.09295.pdf
https://arxiv.org/pdf/1312.4176.pdf
https://stanford.edu/~rezab/classes/cme323/S16/projects_reports/bodoia.pdf
https://www.computer.org/csdl/journal/td/2013/10/ttd2013101930/13rRUwvT9gg
https://www.computer.org/csdl/journal/td/2013/10/ttd2013101930/13rRUwvT9gg
https://arxiv.org/pdf/1409.1458.pdf
https://stanford.edu/~rezab/classes/cme323/S16/projects_reports/neeb_kurrus.pdf

E-mail : zaleslaw.sin@gmail.com

Twitter : @zaleslaw @BigDataRussia

vk.com/big_data_russia Big Data Russia

+ Telegram @bigdatarussia

vk.com/java_jvm Java & JVM langs

+ Telegram @javajvmlangs

Follow me

