Not all ML algorithms go to distributed heaven

Alexey Zinoviev, Java/BigData Trainer, Apache Ignite Committer

Follow me

E-mail : zaleslaw.sin@gmail.com

Twitter : @zaleslaw @BigDataRussia

vk.com/big_data_russia Big Data Russia

+ Telegram @bigdatarussia

vk.com/java_jvm Java & JVM langs

+ Telegram @javajvmlangs

What is Machine Learning?

ML Task in math form (shortly)

$$y = f(x; w)$$

ML Task in math form (by Vorontsov)

X - objects, Y - answers, $f: X \to Y$ arget function $x_1, ..., x_n \subset X$ training sample $y_i = y(x_i), i = 1, ..., n$ known answers Find decision function $a: X \to Y, a \approx f$

Model example [Linear Regression]

$$f(x) = \sum_{i=1}^{K} w_i \cdot x_i + w_0$$

Model example [Linear Regression]

$$f(x) = \sum_{i=1}^{K} w_i \cdot x_i + w_0$$

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Model example [Decision Tree]

Distributed ML

scikit-learn

Classification

Regression

Clustering

Neural Networks

Multiclass and multilabel algorithms

Preprocessing

NLP

Dimensionality reduction

Pipelines

Imputation of missing values

Model selection and evaluation

Model persistence

Ensemble methods

Tuning the hyper-parameters

Take scikit-learn and distribute it!!!

Take scikit-learn and distribute it!!!

Take scikit-learn and distribute it!!!

Main issues of standard implementation

- It designed by scientists and described in papers
- Pseudo-code from papers copied and adopted in Python libs
- Typically, it's implemented with one global while cycle
- Usually, it uses simple data structures like multi-dimensional arrays
- These data structures are located in shared memory on one computer
- A lot of algorithms has O(n^3) calculation complexity and higher
- As a result all these algorithms could be used for 10²-10⁵ observations effectively

Distributed Pipeline

ML Pipeline

ML Pipeline

ML Pipeline

What can be distributed in typical ML Pipeline

- Data primitives (datasets, RDD, dataframes and etc)
- Preprocessing
- Training
- Cross-Validation and another techniques of hyper-parameter tuning
- Prediction (if you need massive prediction, for example)
- Ensembles (like training trees in Random Forest)

What can be distributed in typical ML Pipeline

Step	Apache Spark	Apache Ignite
Dataset	distributed	distributed
Preprocessing	distributed	distributed
Training	distributed	distributed
Prediction	distributed	distributed
Evaluation	distributed	distributed (since 2.8)
Hyper-parameter tuning	parallel	parallel (since 2.8)
Online Learning	distributed in 3 algorithms	distributed
Ensembles	for RF*	distributed/parallel

Distributed Data Structures

What can be distributed in typical ML Pipeline

- Horizontal fragmentation wherein subsets of instances are stored at different sites (distributed by rows)
- Vertical fragmentation wherein subsets of attributes of instances are stored at different sites (distributed by columns)
- Cell fragmentation mixed approach of two above (distributed by row and column ranges)
- Improvement with data collocation based on some hypothesis (geographic factor, for example)

The main problem with classic ML algorithm

They are designed to learn from a unique data set

Popular Matrix Representations

How to multiply distributed matrices?

How to multiply distributed matrices?

- Rows * columns (deliver columns to rows in shuffle phase)
- Block * block (Cannon's algorithm)
- SUMMA: Scalable Universal Matrix Multiplication Algorithm
- <u>Dimension Independent Matrix Square using MapReduce (DIMSUM)</u> (<u>Spark PR</u>)
- OverSketch: Approximate Matrix Multiplication for the Cloud
- Polar Coded Distributed Matrix Multiplication

Block multiplication vs 2.5D LU Decomposition

Block multiplication vs 2.5D LU Decomposition

* All layers always need to contribute to reduction even if iteration done with subset of layers.

Popular Matrix Representations

(a) BCSR.

(b) VBL.

(c) CSX.

Reasons to avoid distributed algebra

- 1. A lot of different Matrix/Vector format
- 2. Bad performance results for SGD-based algorithms
- 3. A lot of data are shuffled with Sparse Block Distributed Matrices
- 4. Extension to algorithms that are not based on Linear Algebra
- 5. Slow but direct extension of Vector/Matrix distributed operations
- 6. Illusion that a lot of algorithms could be easily adopted (like DBScan)

Partition-based dataset

Dataset dataset = ... // Partition based dataset, internal API

dataset.compute((env, ctx, data) -> map(...), (r1, r2) -> reduce(...))

Preprocessors

Normalize vector v to L2 norm

Distributed Vector Normalization

- 1. Define the p (vector norm) $\|\mathbf{x}\|_p := \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$.
- 2. Run normalization of each vector on each partition in Map phase

Standard Scaling

Distributed Standard Scaling

- 1. Collect Standard Scaling statistics (mean, variance)
 - one Map-Reduce step to collect
- 2. Scale each row using statistics (or produced model)
 - one Map step to transform

One-Hot Encoding

Distributed Encoding

- 1. Collect Encoding statistics (Categories frequencies)
 - one Map-Reduce step to collect
- 2. Transform each row using statistics (or produced model)
 - one Map step to transform
 - NOTE: it adds k-1 new columns for each categorial feature, where k is amount of categories

ML Algorithms

Classification algorithms

- Logistic Regression
- SVM
- KNN
- ANN
- Decision trees
- Random Forest

Regression algorithms

- KNN Regression
- Linear Regression
- Decision tree regression
- Random forest regression
- Gradient-boosted tree regression

Distributed approaches to design ML algorithm

- Data-Parallelism: The data is partitioned and distributed onto the different workers. Each worker typically updates all parameters based on its share of the data
- 2. **Model-Parallelism:** Each worker has access to the entire dataset but only updates a subset of the parameters at a time
- 3. Combination of two above

The iterative-convergent nature of ML programs

- 1. Find or prepare something locally
- Repeat it a few times
 (locIterations++)
- 3. Reduce results
- 4. Make next step
 - (globalIterations++)
- 5. Check convergence

Shortly, Distributed ML Training can be implemented as an ...

Iterative MapReduce algorithm in-memory or on disk

Distributed approaches to design ML algorithm

- Data-Parallelism: The data is partitioned and distributed onto the different workers. Each worker typically updates all parameters based on its share of the data
- 2. **Model-Parallelism:** Each worker has access to the entire dataset but only updates a subset of the parameters at a time
- 3. Combination of two above

Potential acceleration points in Iterative MR

- 1. Reduce the amount of global iterations
- 2. Reduce the time of one global iteration
- 3. Reduce the size of shuffled data pushed through network

ML algorithms that are easy to scale

- 1. Linear Regression via SGD
- 2. Linear Regression via LSQR
- 3. K-Means
- 4. Linear SVM
- 5. KNN
- 6. Logistic Regression

They are not designed for distributed world

- 1. PCA (matrix calculations)
- 2. DBSCAN
- 3. Topic Modeling (text analysis)

Linear Regression via LSQR

The iterative-convergent nature of ML programs

- 1. Find or prepare something locally
- Repeat it a few times
 (locIterations++)
- 3. Reduce results
- 4. Make next step
 - (globalIterations++)
- 5. Check convergence

Linear Regression with MR approach

Golub-Kahan-Lanczos Bidiagonalization Procedure

core of LSQR linear regression trainer

for k = 1, 2..n $u_k = Av_k - \beta_{k-1}u_{k-1}$ $a_k = ||u_k||_2$ $u_k = u_k/a_k$ $v_{k+1} = A^*u_k - a_kv_k$ $\beta = ||v_{k+1}||_2$ $v_{k+1} = v_{k+1}/\beta_k$ end.

v. result

Linear Regression with MR approach

Golub-Kahan-Lanczos Bidiagonalization Procedure

core of LSQR linear regression trainer

Clustering (K-Means)

K-Means in 6 steps

Distributed K-Means (First version)

- 1. Fix k
- 2. Initialize k centers
- 3. Clusterize points locally on each partition (local K-Means)
- 4. Push to reducer { centroid, amount of points, cluster diameter }
- 5. Join on reducer clusters

Distributed K-Means (Second version)

- 1. Fix k & Initialize k cluster centers
- 2. Spread them among cluster nodes
- 3. Calculates distances locally on every node
- 4. Form stat for every cluster center on every node
- 5. Merge stats on Reducer
- 6. Recalculate k cluster centers and repeat 3-7 before

convergence

SGD

Linear Regression Model

$$f(x) = \sum_{i=1}^{K} w_i \cdot x_i + w_0$$

Target function for Linear Regression

$$f(x) = \sum_{i=1}^{K} w_i \cdot x_i + w_0$$
$$MSE(f, X, Y) = \frac{1}{N} \sum_{i=1}^{N} (f(X_i) - Y(X_i))^2 \to min$$

Loss Function

$$f(x) = \sum_{i=1}^{K} w_i \cdot x_i + w_0$$
$$MSE(f, X, Y) = \frac{1}{N} \sum_{i=1}^{N} (f(X_i) - Y(X_i))^2 \to min$$

_

$$\nabla MSE(f, X, Y) = \left[\frac{\partial MSE(f, X, Y)}{\partial \omega_j}\right]_{j=0\dots K} = \left[\frac{2}{N}\sum_{i=1}^N x_{ij}(f(x_i) - y(x_i))\right]_{j=1\dots K}$$

Distributed Gradient

$$f(x) = \sum_{i=1}^{K} w_i \cdot x_i + w_0$$
$$MSE(f, X, Y) = \frac{1}{N} \sum_{i=1}^{N} (f(X_i) - Y(X_i))^2 \to min$$

$$\nabla MSE(f, X, Y) = \left[\frac{\partial MSE(f, X, Y)}{\partial \omega_j}\right]_{j=0\dots K} = \left[\frac{2}{N}\sum_{i=1}^N x_{ij}(f(x_i) - y(x_i))\right]_{j=1\dots K}$$

$$\nabla [\sum_{1}^{n} (y - \hat{y})^{2}] = \nabla [\sum_{1}^{n} (y - \hat{y})^{2}] + \nabla [\sum_{n}^{n} (y - \hat{y})^{2}] + \dots + \nabla [\sum_{n_{k-1}}^{n} (y - \hat{y})^{2}]$$

SGD Pseudocode

```
def SGD(X, Y, Loss, GradLoss, W0, s):
   W = WO
   lastLoss = Double.Inf
    for i = 0 .. maxIterations:
      W = W - s * GradLoss(W, X, Y)
       currentLoss = Loss (Model (W), X, Y)
       if abs(currentLoss - lastLoss) > eps:
          lastLoss = currentLoss
      else:
          break
   return Model(W)
```

What can be distributed?

```
def SGD(X, Y, Loss, GradLoss, W0, s):
   W = WO
   lastLoss = Double.Inf
    for i = 0 .. maxIterations:
       W = W - s * GradLoss(W, X, Y)
       currentLoss = Loss (Model (W), X, Y)
       if abs(currentLoss - lastLoss) > eps:
          lastLoss = currentLoss
      else:
          break
   return Model(W)
```

MapReduce approach

MapReduce approach

Naive Apache Ignite implementation

try (Dataset<EmptyContext, SimpleLabeledDatasetData> dataset = datasetBuilder.build(
 LearningEnvironmentBuilder.defaultBuilder(),new EmptyContextBuilder<>(),
 new SimpleLabeledDatasetDataBuilder<>(vectorizer)

```
)) {
  int datasetSize = sizeOf(dataset);
  double error = computeMSE(model, dataset);
  int i = 0;
  while(error > minError && i < maxIterations) {</pre>
    Vector grad = dataset.compute(
          data -> computeLocalGrad(model, data), // map phase
          (left, right) -> left.plus(right) // reduce phase
    );
    grad = grad.times(2.0).divide(datasetSize); // normalize part of grad
    Vector newWeights = model.weights().minus(grad.times(gradStep)); // add anti-gradient
    model.setWeights(newWeights);
     error = computeMSE(model, dataset);
     i++;
```

Distributed Gradient

	loss function $L(\mathbf{w};\mathbf{x},y)$	gradient or sub-gradient
hinge loss	$\max\{0,1-y\mathbf{w}^T\mathbf{x}\}, \hspace{1em} y\in\{-1,+1\}$	$\left\{ egin{array}{ll} -y \cdot \mathbf{x} & ext{if } y \mathbf{w}^T \mathbf{x} < 1, \ 0 & ext{otherwise.} \end{array} ight.$
logistic loss	$\log(1+\exp(-y\mathbf{w}^T\mathbf{x})), \hspace{1em} y\in\{-1,+1\}$	$-y\left(1-rac{1}{1+\exp(-y\mathbf{w}^T\mathbf{x})} ight)\cdot\mathbf{x}$
squared loss	$rac{1}{2}(\mathbf{w}^T\mathbf{x}-y)^2, y\in\mathbb{R}$	$(\mathbf{w}^T\mathbf{x} - y)\cdot\mathbf{x}$

SVM

Linear SVM: it's easy!

Linear SVM: it's easy!

Distributed Soft-margin Linear SVM

$$\min_{\mathbf{w}\in\mathbb{R}^d}\frac{\lambda}{2}\|\mathbf{w}\|^2 + \frac{1}{n}\sum_{i=1}^n l_i\left(\mathbf{w}^T\mathbf{x}_i\right)$$

$$l_i = \max\left(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i\right)$$

Distributed Soft-margin Linear SVM

Algorithm 1: COCOA: Communication-Efficient Distributed Dual Coordinate Ascent

```
Input: T \ge 1, scaling parameter 1 \le \beta_K \le K (default: \beta_K := 1).
Data: \{(x_i, y_i)\}_{i=1}^n distributed over K machines
Initialize: \alpha_{[k]}^{(0)} \leftarrow 0 for all machines k, and w^{(0)} \leftarrow 0
for t = 1, 2, ..., T
     for all machines k = 1, 2, ..., K in parallel
          (\Delta \alpha_{[k]}, \Delta w_k) \leftarrow \text{LocalDualMethod}(\alpha_{[k]}^{(t-1)}, w^{(t-1)})
      lpha_{[k]}^{(t)} \leftarrow lpha_{[k]}^{(t-1)} + rac{eta_K}{K} \Delta lpha_{[k]}
     end
     reduce w^{(t)} \leftarrow w^{(t-1)} + \frac{\beta_K}{K} \sum_{k=1}^K \Delta w_k
end
```

Kernel Trick

Input Space

Kernel Trick

Input Space

Feature Space

The main problem with SVM

No distributed SVM with any kernel except linear

KNN

kNN (k-nearest neighbor)

Distributed kNN (First version)

- Compute the cross product between the data we wish to classify and our training data
- 2. Ship the data evenly across all of our machines
- 3. Compute the distance between each pair of points locally
- 4. Reduce for each data point we wish to classify that data point and the K smallest distances, which we then use to predict

Distributed kNN (Second version)

- 1. Spread the data on N machines
- For each predicted point find k nearest neighbour on each node (k * N totally)
- Collect k * N candidates to Reducer and re-select the k closest neighbours

The main problem with kNN

No real training phase

Approximate Nearest Neighbours

- 1. Spread the train data for *N* machines
- 2. Find limited set of candidates *S* representing all train data with procedure *A*
- 3. Spread the test data for *M* machines with *S* candidates
- 4. Classify locally by local kNN based on S candidates

Model Evaluation

Model Evaluation with K-fold cross validation

Pipeline API

Test-Train Split

Parameter Grid

Binary Evaluator

Binary Classification Metrics

Tuning Hyperparameters

Distributed Binary Classification Metrics

- 1. Accuracy is easy
- 2. Precision & Recall
- 3. Balanced Accuracy
- 4. ROC AUC ???? a lot of calculations
- Iterate among pairs <GroundThruth, Prediction> locally and increment counters locally, after that merge them (MR approach)

K-fold Cross-Validation

- It could generate K tasks for training and evaluation to run in parallel
- Results could be merged on one node or in distributed data primitive

Hyper-parameter tuning

Ensembles in distributed mode

Empirical rule

The computational cost of training several classifiers on subsets of data is lower than training one classifier on the whole data set

Machine Learning Ensemble Model Averaging

Ensemble as a Mean value of predictions

Majority-based Ensemble

Ensemble as a weighted sum of predictions

Input Value

Random Forest

Distributed Random Forest

Distributed Random Forest on Histograms

Bagging

Boosting

Stacking

How to contribute?

Apache Ignite Community

> 200 contributors totally

8 contributors to ML module

VK Group

Blog posts

Ignite Documentation

ML Documentation

Roadmap for Ignite 3.0

NLP (TF-IDF, Word2Vec)

More integration with TF

Clustering: LDA, Bisecting K-Means

Naive Bayes and Statistical package

Dimensionality reduction

... a lot of tasks for beginners:)

The complexity of ML algorithms

Assume, **n** the sample size and **p** the number of features

Algorithm	Training complexity	Prediction complexity
Naive Bayes	O(n*p)	O(p)
kNN	O(1)	O(n*p)
ANN	O(n*p) + KMeans Complexity	O(p)
Decision Tree	O(n^2*p)	O(p)
Random Forest	O(n^2*p*amount of trees)	O(p*amount of trees)
SVM	O(n^2*p + n^3)	O(amount of sup.vec * p)
Multi - SVM	O(O(SVM) * amount of classes)	O(O(SVM) * amount of classes * O(sort(classes)))

Papers and links

- 1. <u>A survey of methods for distributed machine learning</u>
- 2. <u>Strategies and Principles of Distributed Machine Learning on Big Data</u>
- 3. Distributed k-means algorithm
- 4. <u>MapReduce Algorithms for k-means Clustering</u>
- 5. <u>An Extended Compression Format for the Optimization of Sparse</u> <u>Matrix-Vector Multiplication</u>
- 6. <u>Communication-Efficient Distributed Dual Coordinate Ascent</u>
- 7. Distributed K-Nearest Neighbors

Follow me

E-mail : zaleslaw.sin@gmail.com

Twitter : @zaleslaw @BigDataRussia

vk.com/big_data_russia Big Data Russia

+ Telegram @bigdatarussia

vk.com/java_jvm Java & JVM langs

+ Telegram @javajvmlangs

