AN DRI RCNOER WY \ WATATIYw 0L T

4 IDK.

ORACLE

Why User-Mode Threads
Are Often the Right Answer

Ron Pressler
Java Platform Group
14 April 2021

Java Is Made of Threads

Exceptions

Thread Locals |/ R

+ = a2 B w

LA R LIRS
CEUER T "an

* Profiler (JFR

W B TR g T T W L - T
-

o
u
o
(]
=)
«
o
a

e ot e L
L TS NPT

T g) v g

B Ry i e s S g DO 1l B Ll L
T rlra e n wvr ey e 04 i s ag e o e v g P e |

T iy v s L 2v ® e o S v S |

Threads in Java

. jJava.lang.Thread

- One implementation: OS threads

- OS threads support all languages.

- RAM-heavy — megabyte-scale; page granularity; can't uncommit.
. Task-switching requires switch to kernel.

- Scheduling is a compromise for all usages. Bad cache locality.

3 Copyright © 2021, Oracle and/or its affiliates

Synchronous

by

« Easy to read
o Fits well with language (control flow, exceptions) ‘5 ‘5 ‘5

o Fits well with tooling (debuggers, profilers)

Programmer @

Bt OS / Hardware =

. A costly resource

4 Copyright © 2021, Oracle and/or its affiliates

R N w*‘..«;-"?i-"‘.""}jfw
Concurrency N \ ‘b 2 ‘w»‘ AT
' \ ; \ 7 . d

—

v

Reuse with Thread Pools

Reuse with Thread Pools

- Return at end
- Leaking ThreadlLocals

- Complex cancellation (interruption)

Reuse with Thread Pools

- Return at end

- Leaking ThreadlLocals

- Complex cancellation (interruption)
* Return at wait

- Incompatible APIs

* Lost context

Asynchronous

. Scalable

But

. Hard to read Programmer L

 Lost context: Very hard to debug and profile DY EH)AAE e

o Intrusive; nearly impossible to migrate

‘555 simple %\(ﬁc Programmer &

less scalable 0S / Hardware @

scalable, \(ﬁ(/
complex, \>\(3

non-interoperable,
hard to debug/profile

Programmer @
OS / Hardware @

10 Copyright © 2021, Oracle and/or its affiliates

| 06‘1,00
> Sp
e IR "'”Sl'm.y,,
Qe

Programmer @
OS / Hardware @

n Copyright © 2021, Oracle and/or its affiliates

(44
We must carefully balance
conservation and innovation”

— Mark Reinhold

. Forward Compatibility: we want N
existing code to enjoy new functionality

« \We want to correct past mistakes and
start afresh

“The solutions of yesterday
are the problems of today”

— Brian Goetz

Threads in Java

* The use of Thread.currentThread() and ThreadLocal is
pervasive. Without support, or with changed behaviour, little
existing code would run.

- Other parts are superseded by new APIs since Java 5 so their
datedness/clunkiness is mostly hidden/ignored.

Threads in Java

- java.lang.Thread

- The Java runtime is well positioned to implement threads.

- Resizable stacks (possible b/c we only need to support Java).
- Context-switching in user-mode.

- Pluggable schedulers, default optimised for transaction
processing.

Threads in Java

When code in a virtual thread calls an |/O method in the JDK,
suspend the virtual thread,
start a non-blocking |/O operation in the OS,
the scheduler schedules another virtual thread,
when |/O completes re-submit waiting thread to scheduler.

Module java.Lase
Package java.ut .concurrent

Class ConcurrentHashMap<K,V>

lava lang.Ob ect
java.utlAbstractMap<i V-

JavautiLcancurrent Concirrenttiashbapa K V.
Typs Parameaters:
K- the type of Kays maintained by this map
% - the type of mapped values
All Implamantad Intarfacan:
Sarializable, CarcurrantNapsK, e, ManK, e

publiz class ConcurremtHashMap<K, Ux
extards AbstractMap«K, Ve
inplenants ConcurrentMap«<K, Y=, Sarializahle

A bash tuble supporting full convurreacy of retoevals and ogh expected coovurrency for updates. This class
obevs the sawme functivnal specificstion us Heshtable, and mcludes versions of methods correspuadiog tv vach
method uf Hasntable However, even though all opecations sce thresd-safe, reinieval cperaiions do no! eatual
tovking, und therwe is ot any support fur lecking the sotcs tabls i g way that praveats all scceess, This class is
fully intecoperable with Hashtiable in programs that rely on its theesd sefety but not on its synchronizy son

Module java.hase
Packaga java.nio.channals

Class SocketChannel

leva.lang.Ooect
java.nic.chansels spabstractinteruptibleChanne|
[ava.nichanels SalectabieChannal
java.ni.chanrals.epl AbstractSelecstableChannel
Javanic.charnels. SocketChanne|

All Implemarted Intertacas:

Closeahbla, AutaCleseahle, BytaChannael, Channel, GatharingByteChanral, Intarruptinielhannal,
HatwarkCnaannel, ReadahlaByteChannal, ScatteringBytathannal, Wri tabhleByteChannel

public anstract class SocketChannel
extands AhstractSelectahleChannal
mplanents ByteChannal, ScatteringByteChannel, GatherirgByteCharnel, NetworkChannal

A zelectable channel for straame-arantad oommeeting sockets

A sockst channel is crested by invexiog one of the open methocs of bais class, It is ool pussible Lo creste & chancel
Tor an arblirary, pre-existing sccket. A newly-crasted socket channal 2 opan but pot yet connectad. An attampt to
mvoke an 100 operation upon an wnco cted channe) will causa a2 KotvetlonnectedException to ba thrown
socket channel can b connectod by inveking Its cornect method: onos connected, a socket channel remalns
connected untll 3 15 closed, Waether or ot a sockes channel s connected may be determined by invoking its

Module java.base
Package ava.ut .concurrent.locks

Class ReentrantLock
|ava lang.Qbject

java utl concurrent. lecss. ReentrantLock
All Implementad Intarfaces:

Sarializable, Lack

public cl1ass Reentrantlock
extards Gbject
inplenents Lack, Sertalizahle

A resatrant mutual exclusion Lot with the seme basic babaveor and semantcs as the tmplcit mooitor Jock
accessed usiayg synchronized methuds anc statements, but with sxtended capabilities,

A Reartrantlock |5 awned by the thread last suecessfully locking, hut net yer unlaclking it A thread fracidng lock
will ratumn, suecessfully acquiring the lack, whan the lock = nat owvned hy anather thnead. The mathed wil® reuaom
mmadiataly iFtha currant thread already owns tha lock. This can he chackad using mathods
isHeldEyCurrantThreadd |, and gqetdoiolount).

The constructor for this cluss sveepis an vplional Joimess parametes When sst Lrue, under contenbon, lecks
fuvor grunting svoess bo Los Jungest-waiting threed, Oltheowise thus lock does nol guarantee sny pusticulsr scosss
order: Programs using fuir locks aocusssd by many thoeads muy dosplay Juwers overall throughput e, are slower,

Module ava base
Package juva.iv

Class InputStream

java.lang Opact
|avaLioLInputStream

Al Implemented Interfaces;

Closeabla, futollosasble

Direct Known Subclasses:

dudialnputStraan, ByteArraylrautStraan, FilelnputStraar, FiltarlaputStraan, ObjectinputStrear,
FipedInputStraan, SequarceinputStrean StringBuffarInputitraan
public adstract <loss IngutStream

extends Object

ale
Thas abstract class s the suparclass of all classes reprassnting an inpat srvam of hytes,

Appalcations tat need o deding a sa0cla5s of Inputitrean muss alwass provide a metnod that raturmns the next
byte of iInput

Since:

1.0

virtual threads

“carrier” platform threads managed by a scheduler

17 Copyright © 2021, Oracle and/or its affiliates

async/await User-Mode Threads

CI

_ Erlang
JavasScript GO
KotTlin Jaus
44+ -"FusT

109

Concurrency

Algorithm (semantic)

(an abstract description of) What the computer does

Expression (syntactic)

How the algorithm is written (in a specific programming language/paradigm)

20 Copyright © 2020, Oracle and/or its affiliates

Concurrency: The Algorithmic View

Schedule multiple largely independent tasks to a set of computational resources

Performance: throughput (tasks/time unit)

21 Copyright © 2020, Oracle and/or its affiliates

Concurrency: The Syntactic View

- ; — Sequential composition
E.g X;Y,await X;VY, X.andThen(Y)
. | — Parallel composition
E.g. Thread.start(X), Promise.submit(X)
- (a|b);c—join
E.g. Thread. join, Future.get

. assignment/channels/locks/10

a;((bs;c)|(d]|(e;f));g));h

22 Copyright © 2020, Oracle and/or its affiliates

Process: Unit of Concurrency

E.g. a transaction

- Code (writing/reading)
. Troubleshooting: stack traces, debugger single-stepping
. Profiling

Process

a;b;c;d = (a;b);(c;d)

24 Copyright © 2020, Oracle and/or its affiliates

https://youtu.be/9vupFNsND6o
https://youtu.be/9vupFNsND6o

}
P ~
- Jf N bar() {
N— baz();
w
}
|
- ™
- e ~
N baz() {
_) o o o
}
|

25 Copyright © 2020, Oracle and/or its affiliates \ J

Call Stack
| . Thread

}
O) N
\ J(\ bar‘() {
N baz();
|/
O }
— |
~ ~
- e ~
O M baz() {
_) o o o
}
— |

26 Copyright © 2020, Oracle and/or its affiliates \ J

async foo() {

Async/Await

await bar();

}
B ™
- *ﬂr N async bar() {
S z;w.uéit baz();
|/
}
— <
~
= 6 N
— async baz() {
_) e o o
}
———

27 Copyright © 2020, Oracle and/or its affiliates \ J

Thread vs. Async/Await

Scheduling/interleaving points

Thread: Everywhere except where explicitly forbidden (with a CS)

async/await: Nowhere except where explicitly allowed (with await)

Thread vs. Async/Await

Scheduling/interleaving points

Thread: Everywhere except where explicitly forbidden (with a CS)

async/await: Nowhere except where explicitly allowed (with await)

JavaScript

Thread vs. Async/Await

Implementation

Thread: Requires integrating with the implementation of
subroutines (control over backend)

async/await: Can be implemented in the compiler frontend

Thread vs. Async/Await

Implementation

Thread: Requires integrating with the implementation of
subroutines (control over backend)

async/await: Can be implemented in the compiler frontend

KotTlin

Thread vs. Async/Await

Recursion & virtual calls

Thread: Yes (requiresb:sé/resizable stacks)

async/await: Can be excluded

Thread vs. Async/Await

Recursion & virtual calls

Thread: Yes (requiresbnsé/ resizable stacks)

async/await: Can be excluded

C4++"RHusT

Resizable Stack

. Transparent allocation
. Efficient allocation

- No internal pointers/tracked pointers (no FFI)

34 Copyright © 2020, Oracle and/or its affiliates

Performance

Latency — How long an operation takes (s)
Throughput — How many operations complete per time unit (ops/s)

Impact — How much a metric would improve with full optimisation (%)

Syntactic Concurrency: Generators et al.

- Updating simulation entities in a frame
- Generators (two processes with an unbuffered channel)

def rev_str(my_str):
length = len(my_str)
for 1 in range(length - 1, -1, -1):
yield my_str[il]

for char in rev_str("hello"):
print(char)

36 Copyright © 2020, Oracle and/or its affiliates

Context-Switching Impact: Generators

. Impact: 100%
. Best case latency: ~Ons (monomorphic, fits in cache)

Copyright © 2020, Oracle and/or its affiliates

Concurrency: Transactions

L =AW

https://inside.java/2020/08/07/loom-performance/

Throughput:)\=L/W
Context-switch impact on throughput: t/u

[— Mean context-switch latency

u — Mean wait (1/0) latency

https://inside.java/2020/08/07/loom-performance/
https://inside.java/2020/08/07/loom-performance/

Context-Switching Impact: Transactions

. Impact: low if blocking for external events
. Best case latency: 60ns (polymorphic, doesn't fit in cache) (1.5% impact)
. Target latency for <5% impact: <200ns

40 Copyright © 2020, Oracle and/or its affiliates

Conclusion

. Control over backend

- Rare /O in FFI

- No internal pointers/pointers tracked

. Efficient and transparent stack resizing

. Threads already in the platform, libraries and tooling

async/await User-Mode Threads

CI

_ Erlang
JavasScript GO
KotTlin Jaus
44+ -"FusT

109

Thank you

43 Copyright © 2020, Oracle and/or its affiliates

ORACLE

