
Transaction Cascades
or how to build a transactional microservice

architecture

Harald Wendel
TransferWise

1

About me

● Engineering Lead @ TransferWise

● 15 years of Java

● Spent the last 10 years building trading and risk

management systems

2

What you’ll learn today is

How to build a transactional microservice
architecture that scales

and a little bit about transactions and KAFKA :-)

3

You should listen to this if

● You’re stuck with this monolith that dies under the load

● You’re interested in building asynchronous systems

● You just want to hear what we are doing with KAFKA

● You don’t like the term ‘Enterprise” :-)

4

● Quick Recap: Transactions

● What problem are we trying to solve?

● Quick Recap: KAFKA

● Solution

● Performance

● Alternatives

● Q&A

5

● Quick Recap: Transactions
● What problem are we trying to solve?

● Quick Recap: KAFKA

● Solution

● Performance

● Alternatives

● Q&A
6

What is a transaction (in computer science)?

● An atomic unit of work

● Must either complete entirely or not at all

● Moves a system from one valid state to another

● Can be distributed or local

● ACID properties
7

ACID

● Atomicity

● Consistency

● Isolation

● Durability

8

Atomicity

● Transactions are either completed entirely or not at all

● If one part fails then the whole transaction fails

9

Consistency

● Transactions move a system from one valid state to

another

10

Isolation

● Concurrent transactions leave the system in a state as if

they were serialized

11

Durability

● Changes are stored permanently

12

Distributed Transactions

● Involves multiple network hosts

● Common implementations use 2-Phase-Commit (2PC) to

guarantee ACID properties

● 2PC requires a transaction coordinator

13

Distributed Transactions - Java

● Java Transaction API (JTA) to implement transactional

resources

● EJB containers provide JTA support out-of-the-box

● Standalone transaction manager (Atomikos, Bitronix, etc)

14

● Quick Recap: Transactions

● What problem are we trying to solve?
● Quick Recap: KAFKA

● Solution

● Performance

● Alternatives

● Q&A
15

16

The Monolith

class PaymentProcessor {

@Transactional // local database transaction
void processPayment(Payment payment) {

payoutToRecipient(payment);

notifyCustomer(payment);
}

}

17

18

Multiple services and databases

Payment
Processor

Email
Service

DBDB

19

Adding Microservice Calls - Happy Flow

class PaymentProcessor {

@Transactional // now what does that mean?
void processPayment(Payment payment) {

payoutToRecipient(payment);

emailClient.notifyCustomer(payment);
}

}

20

Multiple Services and Databases

Payment
Processor

Email
Service

DBDB

21

Adding Microservice Calls - Unhappy Flow

class PaymentProcessor {

@Transactional // still just a local transaction
void processPayment(Payment payment) {

payoutToRecipient(payment);
emailClient.notifyCustomer(payment);

transactionManager.onRollback(() -> {
emailClient.unnotifyCustomer(payment); ?????

});
}

} 22

Async Processing

class PaymentProcessor {

@Transactional(transactionManager = “jta”)
void processPayment(Payment payment) {

payoutToRecipient(payment);

sendToJmsBroker(new CustomerNotification(...));
}

}

23

Multiple Services and Databases + JMS Broker

Payment
Processor

Email
Service

DB
Transaction

Manager

JMS Broker

DB

24

25

● Quick Recap: Transactions

● What problem are we trying to solve?

● Quick Recap: KAFKA
● Solution

● Performance

● Alternatives

● Q&A
26

27

Why KAFKA?

● High availability

● High throughput

● (Eventually) persistent

28

KAFKA - Topics and Logs

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6

0 1 2 3 4 5 6 7

Partition 0

Partition 1

Partition 2

Writes

29

KAFKA - Producer / Consumer

0 1 2 3 4 5 6 7 8 9 10

Producers

Consumer 1
(offset: 9)

Consumer 2
(offset: 5)

30

Cluster

KAFKA - Nodes and Consumer Groups

Node 1

P0 P3 P5

Node 2

P1 P2 P4

Consumer Group 2

C2 C3 C5C4

Consumer Group 2

C0 C1

31

KAFKA - Design Notes

● At least once delivery

● Uses pagecache instead of heap (by default no fsync)

● Uses linear reads and writes for throughput (X00MB/sec)

32

Our Cluster

● 5 Nodes

● 4 vCPUs, 16G Memory, 500G sdd, 1G NIC per node

● ISR = 2, replication factor = 3

● Runs on virtualized hardware

● 3 zookeepers
33

● Quick Recap: Transactions

● What problem are we trying to solve?

● Quick Recap: KAFKA

● Solution
● Performance

● Alternatives

● Q&A
34

35

Solution - Overview

● Split transactions into small and fast blocks

● Use only local transactions

● Store and forward notifications to the next service

● Use KAFKA for high throughput

36

Store Message

37

Transaction

Insert ...
Insert ...
Update ...
Delete ...
Insert CustomerNotification
Commit

DB

Payment Processor

class PaymentProcessor {

@Transactional // local database transaction
void processPayment(Payment payment) {

payoutToRecipient(payment);

saveToDatabase(new CustomerNotification(...));
}

}

38

Message Implementation - 1/2

abstract class Message {

private String uuid = UUID.randomUUID().toString();

abstract String getDestination();
}

39

Message Implementation - 2/2

class CustomerNotification extends Message {

...

String getDestination() {
return “topic.CustomerNotification”;

}
}

40

Message table

create table message (

destination varchar(255) not null,

payload text not null // json or any other format
)

41

Poll Message and Send

42

DB

MessageSender
Select from message
Send To KAFKA
Delete from message

Sending Messages - 1/2

class MessageSender implements Runnable {

void run() {
while (running) {

Message message = pollFromDatabase();
sendToKafka(message);

}
}

}

43

Sending Messages - 2/2

sendToKafka(Message message) {

String topic = message.getDestination();
String value = serialize(message);

producer.send(new ProducerRecord(topic,value),
(...) -> removeFromDatabase(message)

);
}

44

Consume and De-duplicate

45

MessageConsumer

Read From Kafka

Transaction
Duplicate Check
Insert
Update
Commit

DB

Consuming Messages - 1/3

class MessageProcessor implements Runnable {
void run() {

while (true) {
for (ConsumerRecord r : consumer.poll(...)) {

Message message = parse(r);
processMessage(message);

}
consumer.commitAsync();

}
}

}

}

46

Consuming Messages - 2/3

@Transactional // local database transaction
void processMessage(Message message) {

if (!isDuplicate(message)) {
...

}
}

47

Consuming Messages - 3/3

boolean isDuplicate(Message message) {
try {

saveMessageUuidToDatabase(message.getUuid());
return false;

} catch (DuplicateKeyException e) {
return true;

}
}

48

Multiple Services and Databases + KAFKA

Payment
Processor

Email
Service

DB

KAFKA

DB

49

● Quick Recap: Transactions

● What problem are we trying to solve?

● Quick Recap: KAFKA

● Solution

● Performance
● Alternatives

● Q&A
50

51

Which components are we monitoring?

● Message loader

● Message sender

● Message consumer (incl. dedup)

● End-to-End

52

Message Loader

● Avg batch size: 20 (max 500)

● 500ms sleep if no new messages available

● Average 90 ms/batch

● MySQL 5.7 innodb

53

Message Loader - Count vs Batch Size

54

Message Loader - Latency vs Batch Size

55

Message Sender

● 4 publisher threads

● Throughput is up to 700 msg/sec on a busy day

56

Message Sender - Count vs Latency

57

Message Consumer

● One thread per partition

● ~ 350 msg/sec per partition

● Dedup time: 3 ms/msg using MySQL

● Fast dedup is key to high throughput

58

End-to-end

● We care more about throughput than latency

● We don’t have millisecond latency data :-(

● But we measure it in seconds!

● On average our latency is < 1 sec

59

● Quick Recap: Transactions

● What problem are we trying to solve?

● Quick Recap: KAFKA

● Solution

● Performance

● Alternatives
● Q&A

60

Alternative Solutions

● Using a traditional JMS broker with transaction support

(Artemis, ActiveMQ, TIBCO, etc.)

● JBoss REST-AT (still a draft, supported by WildFly)

● Try to write your own XA stuff?

61

Modify our solution to your liking!

● Choose a different broker or messaging platform

● Choose a different database

● Replace the broker with direct service calls

● Add commit hooks for low latency

62

Thank You!
Harald Wendel

harald.wendel@transferwise.com

63

