mlelelo)Vig:1411

A Kubernetes-based, in-browser training tool

Agenda

Introduction

History and Need

Design Goals

Technology Choices & Architecture
Backend Design

Frontend Design

Demo!

Q&A

Introduction

Eamon Bauman
Senior Field Engineer
SUSE (formerly Rancher Labs)

Chris Kim

Software Engineer
SUSE (formerly Rancher Labs)

History - Rancher Rodeos

® In-person (pre-COVID) half-day seminar

® Introduction to

o Docker
o Kubernetes

o Rancher

® Hosted at various worldwide locations

® Operated by Rancher Field Engineers -'

History - Rancher Rodeos

® Format was slide deck + interactive learning session
® Typically hosted at a hotel or conf. center
® Heavy use of Hashicorp Vagrant

® ..see the problem?

VAGRANT

History - Rancher Rodeos

® Conference WiFi
o Great for simple access T e qudore raset e
o Not so great for large downloads
® Ubuntu 16.04 LTS: 291MB Ll l
o ...times 30-50 users ...
o ...all at once.

® Provisioning took hours

b/s

® Otherissues
o Lack of admin rights
o Firewalls |
° Z3CALER Sor o dymume o e ingm

@ out 95%: 790.43Mb/s
OIn 95%: 80.45Mb/s

Port Status: Oup M@ Down [Testing

History - Rancher Rodeos

Potential Solutions

® Pre-seed or use smaller images
o Doesn’t solve for lack of admin rights

® Cloud host VMs

o Largely a manual process

o Also doesn’t solve firewall (maybe no outbound tcp/22, or proxies in the way)
® Something like Katacoda?

o “Magic Proxy” issues, due to no host header sent
o Lack of flexibility

We needed something new.

Introducing HobbyFarm

HobbyFarm

® HobbyFarm is an interactive, browser-based, Kubernetes-powered learning
tool

® HobbyFarm provides individual virtual machine(s) to users, along with
instructions for learning new technologies

® HobbyFarm is 100% open source (https://github.com/hobbyfarm)

Primary Design Goals

® Entirely browser-based
o Content written as markdown, rendered as HTML
o Web shells connect into virtual machines

o Even with restrictive firewalls, tcp/80 and tcp/443 to Internet and most* domains should be
allowed

Automated provisioning of resources (VMs)

Schedule events ahead of time
o VMs prepared prior to event

® Flexibility in infrastructure choices
o AWS, Azure, VMware, etc.

® Flexibility in VM choices
o Stateful capabilities, Host OS, resources, package installation, etc.

Secondary Design Goals

® “Click-to-run” functionality
o Click code block in browser, executed in web shell
o This quickly became a primary design requirement
® Full admin interface
o Currently a work-in-progress, most operations available
o Heavier configuration done “behind the scenes”

® Exportable content
o Users can take the content with them for viewing later

Technology Choices

Go

Kubernetes
o Controllers are critical to this design

Terraform
o https://github.com/rancher/terraform-controller

Angular

Clarity Design System
o https://clarity.design/

Virtual Machine Technology Choice

Every user needs their own segmented space to work with
o Containers did not provide enough isolation between users

Rancher does not have a very large internal datacenter, so we would rely on
the public cloud

We analyzed the idea of using something like KubeVirt, i.e. running the VMs
in containers

We settled on using another Rancher project - the terraform-controller

Even so, HobbyFarm is built to be pluggable with any provisioning tool (and
you can even provision VMs out of band)

Architecture Ciient U1 [Admin Ul |

Client Frontend Admin Frontend

JSON API JSON API
Websocket ________|_
for Shell PP -
.’ v ~~ | "Gargantua"
. ’ Shell Server API Server " .
! ‘\ l
1 1
1 '
1 !
\ !

'l‘m‘vg
e T,

~ - - - -
DR Controllers .- ’
Kubernetes

Cluster

Terraform
Controller

Gargantua

® The HobbyFarm backend is a Golang monolith
® The name is inspired by the movie “Interstellar”

Backend Design

® Kubernetes client-go

® Kubernetes controllers

® JSON API

o JWT

® Terraform Controller

® Websocket Shell

Data Storage

® All metadata is stored in the Kubernetes cluster as custom resources (CR)

® The API Server and Shell Server both interact with the Kubernetes API to
retrieve/store

® There are also a set of controllers (more on this later) that are constantly
watching the Kubernetes API and acting on changes, which is the magic

behind what makes HobbyFarm work

Why Kubernetes?

® Controllers play a huge role

o HF leverages control loops and constant reconciliation
o Client-go provides a great framework for writing reactive controllers

o K8s controllers are a natural fit for that sort of work

® Rancher is a Kubernetes company
o Dogfooding

o Good experience

JSON API

® Gargantua serves a JSON-formatted REST API to the front end
® Every object that is served from the REST API has a corresponding

Kubernetes Custom Resource

o However, not every HobbyFarm CR is served via the REST API

Software

Entities

User
A
AccessCode
A
Scenario t
1
1
1
[
1
1
ScenarioSession| |_ _ ./~
Controller el
(gargantua)

~

- -

- - . -
e T T

Environment
Controller L - Terr;ﬂorm
{ =
a) N ontr
T T) “ (garg::ntua)l
.] -
]
v A 4 ‘
[S=~s '
\ \ Environment h
\ ' !
v ' - '
ScenarioSession o ' !
L
~-- K N
A PN
' \
\
VirtualMachineTemplate €~ ~ \
€=~ ~7 \
r
’ ~
’ N
Vi A}
’, A}
, \
- VMClaim ‘ M
_ = = | VirtualMachineClaim [= = = = = 7 T X '
’ ! ’ 1
¥) (gargantua) | +* \
’ P '
4] - 1
A & -~ fl— - '
R 1
S e " IManhi S ’ 5 " P '
~ =P Vil hine 2 — H Virty hineSet N
Ch - 1
'
A A '
A --- e L]
Ss ' v
S VMSet Al
Controller s .,

(gargantua)

Software Entities - VMs & Environments

® Environment

® VirtualMachineTemplate
® VirtualMachine

® VirtualMachineClaim

® VirtualMachineSet
® DynamicBindRequest & DynamicBindConfiguration

Software Entities - Content & Access

® Scenario

® Course

® AccessCode

® ScheduledEvent

® User

Basic K8s Controller Architecture

Two distinctive “loops” in a controller

The basic controller architecture of Gargantua operates as follows

o The controller performs a K8s APl Watch for changes to the object that the controller
operates upon

o When a change is seen, the object name/metadata is then queued into a workqueue
The controller in another loop is constantly popping objects off of the workqueue

o When it pops an object off the workqueue, it operates on the object

You can store (pretty much) anything in a Custom Resource
This makes using the K8s API/client-go very powerful
Note that there can be many loops watching the same workqueue

Gargantua Controller Example - Scheduled Event

® Read in list of scheduled events and determine if action required

o Brand new event

o Start or end time passed

@ If action required, reconcile to desired state

o Create access code
0 Create VM set

o Trigger VM provisioning

Virtual Machines

Virtual Machines metadata is stored in HobbyFarm/K8s API

The design is supposed to be agnostic, as to allow any type of virtual

machine

Amazon EC2
Azure

VMware
KubeVirt
Etc.

® Provisioning is handled outside of HobbyFarm

o There are data structures to represent a “desired” VM and an external provisioning tool can
actually create the VM using these
o Gargantua has a terraform-controller integration

O O O O O

rancher/terraform-controller

® rancher/terraform-controller is another K8s-powered Golang tool

® It performs terraform apply based on the K8s CR definition

o Originally built for Rancher to serve as a general purpose VM provisioner

® Uses the rancher/wrangler framework for controller management

o This is different from HobbyFarm, which does not use a framework

® Fundamentally, the ideas are the same as HobbyFarm

Shell Server

Takes an incoming websocket connection from the user-facing frontend
Establishes an SSH session with the user’s desired VM

Acts as a middleware to handle incoming websocket messages and relay
them to the open tty

® 10.pipe
o Incoming websocket messages are piped from the socket to the shell’s stdin

o Outbound messages from stdout, stderr are piped to the socket’s write

Frontend Design

Angular
AuthO JWT

Clarity Design Framework

o Themed
Ngx-markdown
xterm

Hacky dynamic HTML insertion

Click to run functionality

Angular + Clarity Design Framework

® |/we are *not* great wranglers of css nor design
Did not want to be hampered by learning and designing an entire
frontend

But still needed a nice looking Ul

Clarity Design Framework made this trivial

o Opinionated

o Built in Angular from the ground up

o Looks really nice with very little effort

In-Browser Terminal

According to a user’s VMClaim, one or more tabs are created on the page
Each tab contains an xterm.js instance

Each tab is an Angular component that calls the Shell Server and hooks up a
websocket to the xterm.js instance

User gets a real terminal, not emulated. It is direct input/output (via shell
server piping) from their VMs

All control operators work, e.c. *C

? Info cluster01 rancher01

Public IP: 3.136.22.208 Private IP: 172.31.10.153 Hostname: ec2-3-136-22-208.us-east-2.compute.amazonaws.com Shell Status: Connected

ubuntu@ip-172-31-10-153:~$ uname -a

Linux ip-172-31-10-153 4.4.0-1098-aws #109-Ubuntu SMP Fri Nov 8 09:30:18 UTC 201
9 x86_64 x86_64 x86_64 GNU/Linux

ubuntu@ip-172-31-10-153:~$ []

Markdown Rendering

® Needed ability to insert variables into rendered

markdown

® Variable values not known until runtime
o Data from the VMs, e.g. public IP, hostname, etc.

® Ngx-markdown custom renderer

o Custom function to handle rendering of markdown code
blocks

o Looks for ${vminfo:x:y} code where x is a VM and
y is a property on that VM

o Example: $ {vminfo:machine0Ol:private ip}
would be replaced with 172.16.34.55

B Sourced from a VM object obtained via API calls,
passing user info and context

RKE uses SSH tunneling, which is why we generated the keypair

in the first part of this scenario.

cat << EOF > rancher-cluster.yml
nodes:

- address: 3.136.22.208
internal_address: 172.31.10.153
user: ubuntu
role: [controlplane,etcd,worker]

addon_job_timeout: 120
EOF

A Click to run on Rancher01

CI iC k-to- R un The following command will generate the keypair and copy it

into the file.

. - . h-k -b 2048 -t —f \
® Provide ability for user to click on a code 7" rea

block and insert into terminal cat /home/ubuntu/.ssh/id_rsa.pub \
. Leverages Same ngx_markdown hOOk as >> /home/ubuntu/.ssh/authorized_keys
variable rendering

/home/ubuntu/.ssh/id_rsa -N ""

A\ Click to run on Rancher01

o Looksfor " "ctr:machineOl
o Any code in that block becomes the code to run in the
terminal

® Each terminal component in Angular listens to
an Observable of “CTR messages”

® If a CTR message matches that terminal’s
machine id, inserts content into terminal

Dynamic HTML

® Angular does not like dynamic HTML

o Components and their templates are expected to be static

® You can substitute components dynamically

o But not the content of the component

® HobbyFarm’s markdown must be dynamic HTML
o We can’t generate a component for every step in a scenario
o We can’t just string insert the markdown onto the page - need to build tags based on

markdown

Dynamic HTML

HobbyFarm has a dynamic HTML component that...
... takes input HTML

“Sanitizes” it

Sets it as the innerHTML of a the containing Angular object (e.g. <dynamic-

html [content]="content”></dynamic-html>)

o the child elements of that component tag are the rendered-from-markdown HTML elements,

e.g. <p>, , <code>, <hl>

Problems Faced

® Terraform is not always reliable

® There is abstraction upon abstraction upon abstraction

® KB8s API is not fast

o K3s + MySQL solves this somewhat, but K8s API was still not designed for this

o We looked at using an embedded K3s server for the sole purpose of HobbyFarm data storage

® Users click instructions too many times

® User proxies

Demo
Timell

