
HobbyFarm

A Kubernetes-based, in-browser training tool

Agenda

● Introduction
● History and Need
● Design Goals
● Technology Choices & Architecture
● Backend Design
● Frontend Design
● Demo!
● Q&A

Introduction

Eamon Bauman
Senior Field Engineer
SUSE (formerly Rancher Labs)

Chris Kim
Software Engineer
SUSE (formerly Rancher Labs)

History - Rancher Rodeos

● In-person (pre-COVID) half-day seminars

● Introduction to

○ Docker

○ Kubernetes

○ Rancher

● Hosted at various worldwide locations

● Operated by Rancher Field Engineers

History - Rancher Rodeos

● Format was slide deck + interactive learning session

● Typically hosted at a hotel or conf. center

● Heavy use of Hashicorp Vagrant

● ...see the problem?

History - Rancher Rodeos

● Conference WiFi
○ Great for simple access
○ Not so great for large downloads

● Ubuntu 16.04 LTS: 291MB
○ … times 30-50 users …
○ … all at once.

● Provisioning took hours
● Other issues

○ Lack of admin rights
○ Firewalls
○ ZSCALER

History - Rancher Rodeos

Potential Solutions

● Pre-seed or use smaller images
○ Doesn’t solve for lack of admin rights

● Cloud host VMs
○ Largely a manual process
○ Also doesn’t solve firewall (maybe no outbound tcp/22, or proxies in the way)

● Something like Katacoda?
○ “Magic Proxy” issues, due to no host header sent
○ Lack of flexibility

We needed something new.

Introducing HobbyFarm

HobbyFarm

● HobbyFarm is an interactive, browser-based, Kubernetes-powered learning
tool

● HobbyFarm provides individual virtual machine(s) to users, along with
instructions for learning new technologies

● HobbyFarm is 100% open source (https://github.com/hobbyfarm)

Primary Design Goals

● Entirely browser-based
○ Content written as markdown, rendered as HTML
○ Web shells connect into virtual machines
○ Even with restrictive firewalls, tcp/80 and tcp/443 to Internet and most* domains should be

allowed

● Automated provisioning of resources (VMs)
● Schedule events ahead of time

○ VMs prepared prior to event

● Flexibility in infrastructure choices
○ AWS, Azure, VMware, etc.

● Flexibility in VM choices
○ Stateful capabilities, Host OS, resources, package installation, etc.

Secondary Design Goals

● “Click-to-run” functionality
○ Click code block in browser, executed in web shell
○ This quickly became a primary design requirement

● Full admin interface
○ Currently a work-in-progress, most operations available
○ Heavier configuration done “behind the scenes”

● Exportable content
○ Users can take the content with them for viewing later

Technology Choices

● Go
● Kubernetes

○ Controllers are critical to this design

● Terraform
○ https://github.com/rancher/terraform-controller

● Angular
● Clarity Design System

○ https://clarity.design/

Virtual Machine Technology Choice

● Every user needs their own segmented space to work with
○ Containers did not provide enough isolation between users

● Rancher does not have a very large internal datacenter, so we would rely on
the public cloud

● We analyzed the idea of using something like KubeVirt, i.e. running the VMs
in containers

● We settled on using another Rancher project - the terraform-controller
● Even so, HobbyFarm is built to be pluggable with any provisioning tool (and

you can even provision VMs out of band)

Architecture

Gargantua

● The HobbyFarm backend is a Golang monolith
● The name is inspired by the movie “Interstellar”

Backend Design

● Kubernetes client-go

● Kubernetes controllers

● JSON API

○ JWT

● Terraform Controller

● Websocket Shell

Data Storage

● All metadata is stored in the Kubernetes cluster as custom resources (CR)

● The API Server and Shell Server both interact with the Kubernetes API to

retrieve/store

● There are also a set of controllers (more on this later) that are constantly

watching the Kubernetes API and acting on changes, which is the magic

behind what makes HobbyFarm work

Why Kubernetes?

● Controllers play a huge role

○ HF leverages control loops and constant reconciliation

○ Client-go provides a great framework for writing reactive controllers

○ K8s controllers are a natural fit for that sort of work

● Rancher is a Kubernetes company

○ Dogfooding

○ Good experience

JSON API

● Gargantua serves a JSON-formatted REST API to the front end

● Every object that is served from the REST API has a corresponding

Kubernetes Custom Resource

○ However, not every HobbyFarm CR is served via the REST API

Software Entities

Software Entities - VMs & Environments

● Environment

● VirtualMachineTemplate

● VirtualMachine

● VirtualMachineClaim

● VirtualMachineSet

● DynamicBindRequest & DynamicBindConfiguration

Software Entities - Content & Access

● Scenario

● Course

● AccessCode

● ScheduledEvent

● User

Basic K8s Controller Architecture

● Two distinctive “loops” in a controller
● The basic controller architecture of Gargantua operates as follows

○ The controller performs a K8s API Watch for changes to the object that the controller
operates upon

○ When a change is seen, the object name/metadata is then queued into a workqueue
○ The controller in another loop is constantly popping objects off of the workqueue
○ When it pops an object off the workqueue, it operates on the object

● You can store (pretty much) anything in a Custom Resource
● This makes using the K8s API/client-go very powerful
● Note that there can be many loops watching the same workqueue

Gargantua Controller Example - Scheduled Event

● Read in list of scheduled events and determine if action required

○ Brand new event

○ Start or end time passed

● If action required, reconcile to desired state

○ Create access code

○ Create VM set

○ Trigger VM provisioning

Virtual Machines

● Virtual Machines metadata is stored in HobbyFarm/K8s API
● The design is supposed to be agnostic, as to allow any type of virtual

machine
○ Amazon EC2
○ Azure
○ VMware
○ KubeVirt
○ Etc.

● Provisioning is handled outside of HobbyFarm
○ There are data structures to represent a “desired” VM and an external provisioning tool can

actually create the VM using these
○ Gargantua has a terraform-controller integration

rancher/terraform-controller

● rancher/terraform-controller is another K8s-powered Golang tool

● It performs terraform apply based on the K8s CR definition

○ Originally built for Rancher to serve as a general purpose VM provisioner

● Uses the rancher/wrangler framework for controller management

○ This is different from HobbyFarm, which does not use a framework

● Fundamentally, the ideas are the same as HobbyFarm

Shell Server

● Takes an incoming websocket connection from the user-facing frontend

● Establishes an SSH session with the user’s desired VM

● Acts as a middleware to handle incoming websocket messages and relay

them to the open tty

● io.pipe

○ Incoming websocket messages are piped from the socket to the shell’s stdin

○ Outbound messages from stdout, stderr are piped to the socket’s write

Frontend Design

● Angular

● Auth0 JWT

● Clarity Design Framework

○ Themed

● Ngx-markdown

● xterm

● Hacky dynamic HTML insertion

● Click to run functionality

Angular + Clarity Design Framework

● I/we are *not* great wranglers of css nor design

● Did not want to be hampered by learning and designing an entire

frontend

● But still needed a nice looking UI

● Clarity Design Framework made this trivial

○ Opinionated

○ Built in Angular from the ground up

○ Looks really nice with very little effort

In-Browser Terminal

● According to a user’s VMClaim, one or more tabs are created on the page
● Each tab contains an xterm.js instance
● Each tab is an Angular component that calls the Shell Server and hooks up a

websocket to the xterm.js instance
● User gets a real terminal, not emulated. It is direct input/output (via shell

server piping) from their VMs
● All control operators work, e.c. ^C

Markdown Rendering

● Needed ability to insert variables into rendered
markdown

● Variable values not known until runtime
○ Data from the VMs, e.g. public IP, hostname, etc.

● Ngx-markdown custom renderer
○ Custom function to handle rendering of markdown code

blocks
○ Looks for ${vminfo:x:y} code where x is a VM and

y is a property on that VM
○ Example: ${vminfo:machine01:private_ip}

would be replaced with 172.16.34.55
■ Sourced from a VM object obtained via API calls,

passing user info and context

Click-to-Run

● Provide ability for user to click on a code
block and insert into terminal

● Leverages same ngx-markdown hook as
variable rendering
○ Looks for ```ctr:machine01
○ Any code in that block becomes the code to run in the

terminal

● Each terminal component in Angular listens to
an Observable of “CTR messages”

● If a CTR message matches that terminal’s
machine id, inserts content into terminal

Dynamic HTML

● Angular does not like dynamic HTML

○ Components and their templates are expected to be static

● You can substitute components dynamically

○ But not the content of the component

● HobbyFarm’s markdown must be dynamic HTML

○ We can’t generate a component for every step in a scenario

○ We can’t just string insert the markdown onto the page - need to build tags based on

markdown

Dynamic HTML

● HobbyFarm has a dynamic HTML component that…

● … takes input HTML

● “Sanitizes” it

● Sets it as the innerHTML of a the containing Angular object (e.g. <dynamic-

html [content]=”content”></dynamic-html>)

○ the child elements of that component tag are the rendered-from-markdown HTML elements,

e.g. <p>, , <code>, <h1>

Problems Faced

● Terraform is not always reliable

● There is abstraction upon abstraction upon abstraction

● K8s API is not fast

○ K3s + MySQL solves this somewhat, but K8s API was still not designed for this

○ We looked at using an embedded K3s server for the sole purpose of HobbyFarm data storage

● Users click instructions too many times

● User proxies

Demo
Time!!

