
Dismantling Technical Debt and Hubris

@ShelleyMLambert JPoint 2021

The Method behind the Madness

• Definitions

• Various (often conflicting) requests

• 4 modes of activities

• Maintenance

• Development Transformation

• Innovation

• Open-source Readiness

• Measuring success

Definitions

Technical Debt

• cost of additional future work caused by implementing an easy (limited) solution
instead of using a better approach that would take longer

Hubris

• excessive confidence or arrogance

• leads to lack of questioning and planning, short-sighted, harmful behaviour

Intended

Unintended

Reckless Prudent

Be
here * Technical Debt Quadrant - Martin Fowler

The Noise

Context and Stats

• Over quarter billion downloads

• Rapidly growing install base

• ~93,000,000 tests run per release, massive-scale devops

• Growth & Transformation while Maintaining Pace

Market share (JDK8, March 2020)  

blog.newrelic.com/technology/state-of-java

dash.adoptopenjdk.net

x 2

JDK8

x 8

JDK11

Making Sense of the Noise

• Assess and cull
• Fix test defects
• Maintain and improve tests
• Simplify test processes

Legacy Tests
for Java New Tests New Ways of

Testing
Open &

Transparent

Maintenance Development
Transformation Innovation Open source

Readiness

• Reduce defect escape rate
• Change-based testing
• Keep up with new features

• CTD
• Defect Injection
• Deep Learning

• Minimal tests & tools
• Functional coverage
• Improved workflows
• Portable

25 years Rapid
Release Research Spotlight

Legacy Tests

$(
JA

VA
_B

IN
)/

ja
va

-X
m

x5
12

m
 -j

ar
 jt

re
g.

ja
r

-v
m

op
tio

ns
:"-

Xm
x5

12
m

" -
w

wo
rk

 -r
 re

po
rt

 -j
dk

:$

(J
DK

_H
OM

E)

-e
xc

lu
de

:P
ro

bl
em

Li
st

.t
xt

jd
k_

m
at

h

$(
JA

VA
_B

IN
)/

ja
va

 -c
p

Ge
ne

ra
lT

es
t.

ja
r

or
g.

te
st

ng
.T

es
tN

G
-d

 $

(R
EP

OR
TD

IR
)

te
st

ng
.x

m
l -

te
st

na
m

es

flo
at

Sa
ni

ty
Te

st
s

-g
ro

up
s s

an
ity

pe
rl

st
f.

pl
 -t

es
t-

ro
ot

=o
pe

nj
dk

-

sy
st

em
te

st
_r

oo
t

-s
ys

te
m

te
st

-

pr
er

eq
s=

sy
st

em
te

st
_p

re
re

qs
 -j

av
a-

ar
gs

=-
Xj

it

-r
es

ul
ts

-r
oo

t=
re

po
rt

di
r

-t
es

t=
Co

nc
ur

re
nt

Lo
ad

Te
st

sb
t "

pa
rt

es
t $

(T
ES

T_
SU

IT
E)

”

${
AN

T_
HO

ME
}/

bi
n/

an
t

-D
iv

y_
in

st
al

l_
pa

th
=$

{A
NT

_H
OM

E}
/

lib
 -l

ib
 $

{A
NT

_H
OM

E}
/l

ib
 -f

 $

{L
UC

EN
E_

SO
LR

_H
OM

E}
/l

uc
en

e-

so
lr/

bu
ild

.x
m

l -
Du

se
r.h

om
e=

$

{L
UC

EN
E_

SO
LR

_H
OM

E}

-D
co

m
m

on
.d

ir=
$

{L
UC

EN
E_

SO
LR

_H
OM

E}
/l

uc
en

e-

so
lr/

lu
ce

ne
 te

st $(
JA

VA
_B

IN
)/

ja
va

-D
Bu

m
bl

eB
en

ch
.li

st
Op

tio

ns
 -j

ar
 B

um
bl

eB
en

ch
.ja

r

[B
en

ch
m

ar
k

na
m

e]

functional openjdk perfexternalsystem

testNG,
cmdlinetester STF junit, sbt &

others
Assorted

benchmarks
Jtreg,
testNG

so
m

e
ja

va
te

st
 c

om
m

an
d

no
t t

o
be

 d
isc

lo
se

d…

jck

javatest

The Problem with too many frameworks

• Increased automation complexity

• Auto-exclude/re-include

• Reporting

• Auto-triage

• Onboarding learning curve

• Documentation

Consolidate

functional openjdk perfexternalsystem

TestKitGen

testNG,
cmdlinetester STF

junit &
others

Assorted
benchmarks

Jtreg,
testNG

jck

javatest

m
ak

e
_f

un
ct

io
na

l

m
ak

e
_o

pe
nj

dk

m
ak

e
_s

ys
te

m

m
ak

e
_e

xt
er

na
l

m
ak

e
_p

er
f

m
ak

e
_j

ck

3-layer Cake of Automation

testkitgen (TKG)

Test Results Summary Service (TRSS)

CI System (Jenkins / Tekton / AzDO / Github Actions, etc.)

Responsibilities:
- Categorize logically, Generates test targets based on playlist (level/platform/version/impl specific)
- Execute tests via common command line / make target patterns
- Test addition via auto-discovered directories, Standardize exclusion
- Parameters: BUILD_LIST, EXTRA_OPTIONS, JVM_OPTIONS, TEST_FLAG, ITERATION
- Generate dynamic test playlists based on input (smart parallelization)

Responsibilities:
- Schedule regular builds
- Multiplex tests across multiple nodes of all platforms
- Basic GUI view of test results
- Basic forms of parallelization

Responsibilities:
- Monitor multiple CI servers
- Graphical, Aggregate summary, Deep history
- Search/sort/filter
- Pluggable parsers
- Basis for deeper analytics and deep learning services

Layer 1: Standalone
- Execution
- Exclusion
- Test target report summary

(TAP)
- Reproducibility

Layer 2: Requires L1
- More nodes
- Scheduling
- GUI
- enhanced reporting for tests

that support Junit output

Layer 3: Requires L1 & L2
- Database queries
- Basis for extras, search /sort /

filter /analyze across DB entries
- Monitor anything

Maintenance Mode

“Stuff was always broken. The code was broken, the tests were broken,
and the team was broken! I knew what it meant to be buried under quality
and technical debt where every innovative idea was squashed lest it risk
breaking the fragile product it depended on.” *

• Demotivating work to maintain legacy tests and ailing infrastructure

• Try to minimize effort in this mode by:
• assessment
• removal
• fixing defects
• estimated ~ 1 out of 10 test defects hide a real defect
• if too difficult to fix/maintain, replace/remove

* From “How Google Tests Software”

Development Transformation Mode

“The secret of change is to focus all of your energy not on fighting the old,
but on building the new.” *

Test and test framework reduction:
• Reduce before tests are written - Combinatorial Test Design
• Reduce number of frameworks
• Reduce after from existing pool of tests - Change-based testing based on code coverage

information on PR builds

Improve work flow:
• Remove ‘friction’, less time per change, less error prone
• Address long-standing legacy problems - tools that created more work (problem tracking)

* Socrates

Innovation Mode

“Innovation is creativity with a job to do.” *

• testkitgen (TKG) - thin veneer to make the large variety of tests to behave the same
• Continuous refinement - building blocks for future goodness
• Test Results Summary Service (TRSS) - visualizations and features to cope with massive

amount of test data

* John Emmerling

Open Source Readiness Mode

“Creating community involvement around a QA project is one of the best
things you can do for your product. It puts the product before interested
users early on in the process, and allows them to use and experiment
with in-development features ... creating a tribe of people who will follow
your product. That tribe will do far more evangelism and word-of-mouth
promotion than any glossy advertisement could hope to accomplish.” *

• Use open-source tools (avoid proprietary, in-house solutions)
• Minimal, simple and fast test suites, assure functional coverage (CTD), continuous

delivery schedule
• Clean, public-ready test code, 1st class citizen of same quality as product code, test

quality, tools & process attract contributors

* From “Building Open Source QA Communities of Beautiful Testing”

How Can We Measure Success?

Mode Success Metrics

Maintenance
• size of test defect queue

• # of frameworks to manage

• # of steps for common tasks

Development
Transformation

• execution time of test jobs

• # of tests in test groups

• # of defect escapes

• speed/ease of adding tests

Innovation • # of intermittent defects

• average defect triage time

Open Source
Readiness

• # of contributors to the open source project

• speed/ease of adding tests

• # of defects

Audience Participation

For each suggested metric,
what direction is better?

Which is best if bigger or
smaller? # of steps for common

tasks, execution time, #
intermittent defects, # of

contributors

Maintenance Mode Success Metrics

• Size of defect queue, backlog burndown

• Number of steps required to do common tasks

• Number of frameworks to manage (example, 20 to 5)

20 Frameworks to 5

No time for
war stories

Ask me
later!

Development Transformation Success Metrics

• Execution time of test jobs

• # of tests before & after change-based testing

• # of defect escapes (example, defect escape analysis)

• Speed & ease to add/execute tests (example, TKG
refinements)

Breakdown of Problem Reports - Defect Escape Analysis

TKG example - faster, better, smarter

• Flexible play and granularity
 slice’n’dice via playlists tags

• Standardized output
 enforced TAP output

• Reproduce/rerun
 failed.mk, rerun in Grinder, SHA.txt

• Automation
 Auto-detect & MachineInfo
 Auto-disable/re-enable
 PARALLEL=Dynamic|BySubdir|Iterations|None

Additional requirements

On-going refinements

Innovation Success Metrics

• Track specific goals of the prototypes

• Deepsmith: reduce # of intermittent defects

• Bug Prediction & Core Analytics: predict crashes/bugs

• Deep AQAtik: reduce average defect triage time
(example, deep AQAtik)

Deep AQAtik

• Utilize deep learning model to recommend possible
issues related to test failures

• Github, JBS, StackOverFlow, Support issues

Open-source Readiness Success Metrics

• # of contributors to the open-source repos

• # of forks, # of clones

• # of issues reported by external parties

• Speed and ease of adding tests

Total git clones & Unique git clones

Summary - Tips for success

• Actively reduce technical debt or suffer “death by a thousand
cuts”

• Make sense of the noise

• Recognize the egos in the room, call out hubris

• Ignore naysayers

• Measure & adjust

• Remember your mission

Stop the
stupid

Contact Information & References

• Adoptium and AQAvit projects:

• https://projects.eclipse.org/projects/adoptium

• https://projects.eclipse.org/projects/adoptium.aqavit

• Social media / Slack:

• Twitter: @ShelleyMLambert

• https://adoptium.net/slack.html

• Books:

• “How Google Tests Software” - James A. Whittaker, Jason A. Joseph, and Jeff Carollo

• “Beautiful Testing: Leading Professionals Reveal How They Improve Software” - Tim
Riley

Collaborate, learn
and grow

https://projects.eclipse.org/projects/adoptium
https://projects.eclipse.org/projects/adoptium.aqavit

