
Microservices: Single digit
microseconds latency

Dmitry Pisklov

26 OCT 2019

Outline

● Microservice application:

architecture example
● What is latency and how can we

measure it
● Reducing the latency

Intro: Who we are

● Dmitry Pisklov
▾ Developer @ Chronicle Software

● Chronicle Software founder –
Peter Lawrey
▾ Java Champion
▾ Most answers for Java and JVM

on StackOverflow.com

0. Microservices:
Architecture Example

0.0. Micro-services Architecture Example

0.1. Micro-services Architecture Example

0.2. Micro-services Architecture Example

0.3. Micro-services Architecture Example

0.4. Micro-services Architecture Example

0.5. Micro-services Architecture Example

0.6. How fast is fast? Example measured

1. Latency: what is it and
how to measure latency?

1.0. Measuring latency

● What is Latency?
● Latency in Microservices

1.0. Measuring latency

● What is Latency?
● Latency in Microservices

▼ Service response time
▪ Marshaling time
▪ Computation time

1.0. Measuring latency

● What is Latency?
● Latency in Microservices

▼ Service response time
▪ Marshaling time
▪ Computation time

▼ IPC latency

1.1. Measuring latency

● Measuring latency – how?

1.2. JMH vs JLBH: introducing JLBH

● JMH is for Micro-benchmarks
● JLBH – Java Latency Benchmark

Harness
● Documentation and examples

▼ GitHub -
https://github.com/OpenHFT/Chronicle-
Core#jlbh

https://github.com/OpenHFT/Chronicle-Core/tree/master/src/main/java/net/openhft/chronicle/core/jlbh
https://github.com/OpenHFT/Chronicle-Core/tree/master/src/main/java/net/openhft/chronicle/core/jlbh

1.2. JMH vs JLBH: why we use JLBH

● Code running in context – full stack
● Variable throughput

▼ For each throughput we can estimate max
tail latency and provide SLAs

● Accounts for coordinated omission
● Various sampling points in the code

http://highscalability.com/blog/2015/10/5/your-load-generator-is-probably-lying-to-you-take-the-red-pi.html

1.3. Measuring latency – JLBH example

●

1.3. Measuring latency – JLBH example

●

1.4. JLBH future

● Community asks – we do!

2. Fighting latency
in Your Software

2.0. Use less code to achieve perfection

“Perfection is achieved, not when
there is nothing more to add, but
when there is nothing left to take
away.”

– Antoine de Saint-Exupéry

2.1. Use less code

● JVM only inlines smaller methods
▼ -XX:InlineSmallCode=size
▼ -XX:MaxInlineSize=size

● Large methods are not JIT-compiled
▼ -XX:-DontCompileHugeMethods
▼ -XX:HugeMethodLimit=size

2.2. Use specializations – with care

● Specialized code is faster
– Less checks, less conditions, less data

written
– More

limitations

2.3. Generate optimized code

● Primitive specializations
● Generated efficient

marshaling/unmarshaling code
● Koloboke collections by Roman

Leventov – only generates
actually used methods

2.4.0. Specialization example – Koloboke

2.4.1. Specialization example – Koloboke

● MOAR

2.5. Multithreading? Forget it!

● Threads are evil (for microservices)
▼ Single-threaded application with event loop

● Even faster on dedicated CPU

2.6. Multithreading? Forget it!

● Threads are evil (for microservices)
▼ Single-threaded application with event loop

● Even faster on dedicated CPU
▼ Shared memory & CAS for synchronization –

only when needed, avoid sharing data

2.7. Multithreading? Forget it!

● Threads are evil (for microservices)
▼ Single-threaded application with event loop

● Even faster on dedicated CPU
▼ Shared memory & CAS for synchronization –

only when needed, avoid sharing data
▼ Memory barriers – use minimally required!

● StoreLoad (volatile)
● StoreStore (ordered a.k.a. lazySet)

2.8. Memory barriers benchmarked

● How fast are different barriers?

2.8. Memory barriers benchmarked

● How fast are different barriers?

Benchmark Mode Samples Score Score error Units

lazySetLong avgt 5 17.630 0.650 ns/op

volatileSetLong avgt 5 23.009 0.794 ns/op

2.9. Memory barriers usage example

2.10. Java – what means my name to you?

● Know your language
▼ How efficient JDK data structures are?

2.11. Java SDK efficiency

● Know your language
▼ How efficient JDK data structures are?

HashMap#put:

2.12. YAGNI

● Know your language (Doug bless Java!)

● YAGNI – don’t write code for what you don’t use

2.13. To framework or not to framework

● Know your language (Doug bless Java!)

● YAGNI – don’t write code for what you don’t use

● If it can be done without a 3rd party
library/framework – do it!

2.14. Safety first?

● Know your language (Doug bless Java!)

● YAGNI – don’t write code for what you don’t use

● If it can be done without a 3rd party
library/framework – do it!

● Don’t be afraid to be Unsafe – it’s not scary!
(provided you know what you are doing...)

2.15.0. Cutting off safety nets – example

2.15.1. Cutting off safety nets – example

2.15.2. Cutting off safety nets – example

2.15.3. Cutting off safety nets – example

2.15.4. Cutting off safety nets – example

2.15.4. Cutting off safety nets – example

2.15.5. Cutting off safety nets – example

2.15.6. Cutting off safety nets – example

● Numbers? I haz sum 4 u!
▾ 50%-tile: 6.8 5.7 s→ μ
▾ 90%-tile: 8.2 7.1 s→ μ
▾ Consistently 1.1 s lessμ

☛ YMMV

2.16. Waiting for something – eagerly!

● Use busy loops when waiting on
condition and non-blocking operations

▼ wait/notify or sleep are slower, and also
stalling CPU

▼ while (condition) Thread.yield();
▼ while (condition);

● The lowest latency
● Avoids CPU slowdown

2.17. Busy wait vs sleep example

● BUSY100
50/90 97/99 99.7/99.9 99.97/99.99 - worst
0.095/0.11 0.11/0.16 0.36/0.65 0.65/0.65-0.65

● PAUSE1
50/90 97/99 99.7/99.9 99.97/99.99 - worst
0.26/0.34 0.59/0.66 0.71/0.75 12/13 - 16

2.18. Working with character-based data

● Strings
▼ Strings are immutable (and expensive)
▼ Use StringBuilder Luke (and you can

share it!)
▼ Chronicle Bytes – can do much more,

heap or off heap

2.19. Bytes code examples

2.20. Bytes code examples

2.21. Mastering GC

● Garbage Collection
▼ Even minor collections are slow for us (several ms)

▼ Avoid garbage at all cost

2.22. Mastering GC – reduce, reuse, recycle

● Garbage Collection
▼ Even minor collections are slow for us (several ms)

▼ Avoid garbage at all cost
▸ Reuse objects (especially when marshalling)

2.23. Mastering GC – objects pooling

● Garbage Collection
▼ Even minor collections are slow for us (several ms)

▼ Avoid garbage at all cost
▸ Reuse objects (especially when marshalling)
▸ Pool objects if you can’t reuse single object
▸ Most of all – use off-heap memory

2.23. Object pooling example

3. Fighting latency:
Inter-process communication

3.0. Memory vs Network IO vs Disk IO

● Writing/reading to/from memory is
the fastest option

▼ Right after CPU caches…
▼ Remember about “mechanical sympathy”

https://groups.google.com/forum/?fromgroups#!forum/mechanical-sympathy

3.0. Memory vs Network IO vs Disk IO

● Writing/reading to/from memory is
the fastest option

▼ Right after CPU caches…
▼ Remember about “mechanical sympathy”

● Disk IO is slower than DC-local
network IO

▼ UDP is faster than TCP

https://groups.google.com/forum/?fromgroups#!forum/mechanical-sympathy

3.1. Writing to memory + writing to disk

● What if we can write to main memory
while OS writes to (local) disk for us?

3.2. Memory mapped files

● What if we can write to main memory
while OS writes to (local) disk for us?

● Welcome to memory-mapped files

3.3. Memory mapped files – SHM

● What if we can write to main memory
while OS writes to (local) disk for us?

● Welcome to memory-mapped files
▼ Memory-mapping is shared between

processes – effectively providing
shared memory IPC

3.4. Memory-mapped files: Chronicle Q

● Chronicle Queue – uses off-heap
memory to map files
▼ 4 sμ roundtrip on consumer-grade

(a.k.a. desktop) box for
1024 bytes-long message

3.5. Marshaling / Unmarshaling

● [Un]Marshaling can be the biggest
contribution to latency
▼ Choose (and benchmark) your tools

● SBE (Agrona)
● Chronicle Wire
● Protobuf
● FlatBuffers etc...

3.5. Marshaling / Unmarshaling

● [Un]Marshaling can be the biggest
contribution to latency
▼ Choose (and benchmark) your tools

● SBE (Agrona)
● Chronicle Wire
● Protobuf
● FlatBuffers etc...

Low-latency

4. Fighting latency:
Environment
(OS & hardware)

4.0. CPU: C-states

● Intel C-states
▼ They will kill your latency!
▼ intel_idle.max_cstate=0
processor.max_cstate=0 idle=poll

4.1. CPU: turbo-boost

● Intel C-states
▼ They will kill your latency!

● Turbo boost
▼ Check your BIOS
▼ Depends on thermal envelope

● Careful – AVX throttling!

4.2. CPU: governors

● Intel C-states
▼ They will kill your latency!

● Turbo boost
● CPU caches
● Linux CPU governors

cpupower frequency-set -g performance

4.3. CPU: cooling

● Intel C-states
▼ They will kill your latency!

● Turbo boost
● CPU caches
● Linux CPU governors
● Cool CPU is – surprisingly – slow

4.4. CPU Pinning

● Isolate OS threads
▼ isolcpus

● Isolate IRQs
● Threads CPU affinity

For more –
come to the

discussion zone!

4.5. Memory management: swap

● Swap kills your performance
▼ sysctl -w vm.swappiness=0

4.6. Memory management: NUMA

● Swap kills your performance
▼ sysctl -w vm.swappiness=0

● NUMA
▼ numactl
▼ Disable

node
interleaving

4.7. Memory management: THP

● Swap kills your performance
▼ sysctl -w vm.swappiness=0

● NUMA
▼ numactl
▼ Disable node interleaving

● Transparent Huge Pages are bad
▼ transparent_hugepage=never

https://access.redhat.com/solutions/46111

4.8. Disk: IO scheduler

● SSD disks only
▼ Disable IO scheduler

● elevator=noop

4.9. Disk: file system

● SSD disks only
▼ Disable IO scheduler

● File system matters
▼ ext4 is faster than xfs

● barrier=0
● noatime

4.10. Kernel operations

● Kernel operations are expensive
▼ Kernel bypass is faster

● Solarflare networks

4.11. Kernel operations

● Kernel operations are expensive
▼ Kernel bypass is faster

● Solarflare networks
▼ Memory-mapped writes are user-

space
● OS later flushes data to disk

asynchronously

4.12. Miscellaneous tweaks

● System-specific tools
▼ RedHat/CentOS: tuned

● tuned-adm profile latency-performance

4.13. Miscellaneous tweaks

● System-specific tools
▼ RedHat/CentOS: tuned

● tuned-adm profile latency-performance

● Optimizing network IO
▼ Kernel TCP buffers

● sysctl -w net.core.rmem_max=2097152
● sysctl -w net.core.wmem_max=2097152

Summary

Summary & take away

● Microservices – not necessarily
slow thing in the cloud

● JLBH rulez – use it!
● Your environment can be friend –

or foe, your choice
▼ If you do the homework

Thank you for your
attention!

Linkedin: “Chronicle Performance
Engineers”

Blog: http://vanilla-java.github.io/

Blog: http://blog.pisklov.me

http://chronicle.software

https://github.com/OpenHFT/

Q & A

http://vanilla-java.github.io/
http://blog.pisklov.me/
http://chronicle.software/
https://github.com/OpenHFT/

	Страница 1
	Страница 2
	Страница 3
	Страница 4
	Страница 5
	Страница 6
	Страница 7
	Страница 8
	Страница 9
	Страница 10
	Страница 11
	Страница 12
	Страница 13
	Страница 14
	Страница 15
	Страница 16
	Страница 17
	Страница 18
	Страница 19
	Страница 20
	Страница 21
	Страница 22
	Страница 23
	Страница 24
	Страница 25
	Страница 26
	Страница 27
	Страница 28
	Страница 29
	Страница 30
	Страница 31
	Страница 32
	Страница 33
	Страница 34
	Страница 35
	Страница 36
	Страница 37
	Страница 38
	Страница 39
	Страница 40
	Страница 41
	Страница 42
	Страница 43
	Страница 44
	Страница 45
	Страница 46
	Страница 47
	Страница 48
	Страница 49
	Страница 50
	Страница 51
	Страница 52
	Страница 53
	Страница 54
	Страница 55
	Страница 56
	Страница 57
	Страница 58
	Страница 59
	Страница 60
	Страница 61
	Страница 62
	Страница 63
	Страница 64
	Страница 65
	Страница 66
	Страница 67
	Страница 68
	Страница 69
	Страница 70
	Страница 71
	Страница 72
	Страница 73
	Страница 74
	Страница 75
	Страница 76
	Страница 77
	Страница 78
	Страница 79
	Страница 80
	Страница 81
	Страница 82
	Страница 83
	Страница 84

