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When I visit universities, young researchers ask me:

What’s the next big problem?

What should I work on?

My answer:

If I knew, I’d be working on it.
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What they really want to ask:

How can I win a Turing award?

My answer:

Don’t worry about the “big problem”.

Learn how to think properly.

I learned to think properly by learning math.
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Mathematics

By the end of your first year at university you learned almost all
the math I’ve ever found useful.

What you probably didn’t learn is how to use that math outside
a math class.

This lecture is a lesson in how to do that.
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The heart of mathematics is abstraction — ignoring
uninteresting details and finding what’s important.

This might not lead to an important problem, but it will
keep you from wasting time on non-problems.
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A Formal Language for Writing Math

You studied math in school without one.
Why use one now?

Because you can’t use math outside a math class
if only a math teacher can check your math.

You need to write math in a formal language
so tools can check it.
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The formal language I’ll use is called TLA+.

It’s mostly a precise way to write the math you already know.

It introduces two concepts you haven’t seen before.

But they’re so simple you probably won’t notice
that they’re new.
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The Problem Solved by Paxos

Multiple clients can send requests to a system.

The system must choose in what order to handle them.

The system is implemented by multiple computers.

They must choose a single ordering even if some
computers fail.

Paxos solves this problem by running multiple solutions
to the following problem.
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Paxos is efficient because it simultaneously executes
the first part of all the consensus solutions.

But we’re interested in why Paxos is correct,
not why it’s efficient.

So we abstract away such implementation details.
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A More Abstract Consensus Problem

Multiple clients can each send a request to a system.

The system must choose which one to handle next.

The system is implemented by multiple computers.

They must choose a single request even if some computers fail.

The computers may choose any request in the set Value.
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The Mathematical Model

An execution of the system is represented by a behavior.

A behavior is a sequence of states.

A state is an assignment of values to variables.

The system is described by a formula about behaviors that’s
true on behaviors that represent possible system executions.

I like this model because it’s simple, and it resembles
the way physics describes systems.

And years of experience has told me that it works well.
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Writing Formulas that Describe Behaviors

I’ll write them in a real language with a grammar
and formal semantics.

Because otherwise computer people won’t believe
I’m doing something relevant to real systems.

Perhaps with good reason.
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The specification appears in a module.
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This is the pretty-printed version.
The actual spec is in ASCII.
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Imports definitions from other modules.
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Contains definitions of a couple of operators
for finite sets.
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Declares a “variable” that remains constant
throughout a behavior.
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Declares a variable whose value can differ
in different states of a behavior.
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There are lots of ways to model choosing a value.

I decided to let chosen be the set of values that
have been chosen.

The spec should say that (in a correct behavior)
at most one value is chosen.
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It’s a useful notation for writing large formulas.
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Asserts that chosen is a set of values.
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Asserts that it’s a finite set.
(There’s no reason Value can’t be infinite.)
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In math, having a type just means belonging to some set.

TypeOK asserts that chosen is an element of the set
of all finite subsets of Value .
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Defining a type invariant helps the reader
understand the spec.
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You should put those explanations in comments in the module.

I’m telling you the explanations.

The written versions of the specs have lots of comments.
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The Spec Formula

Remember that I’m going to represent the system by a
mathematical formula.

The word spec is used to mean both that formula and the entire
module containing the formula.

For now, spec will mean the formula.
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The spec must describe a set of behaviors, where a behavior is
a sequence of states.

It does this with two formulas:

The Initial Formula

It describes all possible first states of a behavior.

The Next-State Formula

For any state in a behavior, it describes all
possible next states in the behavior.
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The Initial Formula

We can call the formula anything,
but Init is the conventional name.
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The Initial Formula

Asserts that the value of chosen in the state
is the empty set.

In the first state of the behavior, no value is chosen.
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The Next-State Formula

It equals the conjunction of two formulas.
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set Value such that the value of chosen

in the next state equals the set containing the
single element v .

10



The Next-State Formula

Asserts that in a state with chosen equal to
the empty set, there exists a value v in the
set Value such that the value of chosen

in the next state equals the set containing the
single element v .

10



The Next-State Formula

Asserts that in a state with chosen equal to
the empty set, there exists a value v in the
set Value such that the value of chosen

in the next state equals the set containing the
single element v .

10



The Next-State Formula

Asserts that in a state with chosen equal to
the empty set, there exists a value v in the
set Value such that the value of chosen

in the next state equals the set containing the
single element v .

10



The Next-State Formula

Asserts that in a state with chosen equal to
the empty set, there exists a value v in the
set Value such that the value of chosen

in the next state equals the set containing the
single element v .

′ (prime) means in the next state .

10



The Next-State Formula

Asserts that in a state with chosen equal to
the empty set, there exists a value v in the
set Value such that the value of chosen

in the next state equals the set containing the
single element v .

10



The Next-State Formula

Asserts that in a state with chosen equal to
the empty set, there exists a value v in the
set Value such that the value of chosen

in the next state equals the set containing the
single element v .

10



The Next-State Formula

Formula Next expresses a condition on a pair of states:

– A 1st state described by the unprimed variables.

– A 2nd state described by the primed variables.
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– A 2nd state described by the primed variables.

Think of the pair as describing a step in which
the system goes from the 1st state to the 2nd state.
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The Next-State Formula

Formula Next expresses a condition on a pair of states:
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– A next state described by the primed variables.
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The Next-State Formula

This formula has no primes, so it’s a condition on the
current state.

If it equals FALSE, then there is no next state for which
Next equals TRUE.

It’s an enabling condition for the step.
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Let’s construct a behavior satisfying these conditions.[
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]
A behavior of the Consensus system can have only
two states.
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I’ve described the possible behaviors with two formulas:

Let’s construct a behavior satisfying these conditions.[
chosen = { }

] [
chosen = {42}

]
-

I like to write behaviors like this.
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I’ve described the possible behaviors with two formulas:

I’ll now combine them into a single formula that’s
a condition on behaviors.
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a condition on behaviors.

2 means “at all points in the behavior”

For example, 2TypeOK asserts that all states of the
behavior satisfy TypeOK .And 2Next asserts that all steps of the
behavior satisfy Next .
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except this is its actual definition.
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Checking the Spec

Our specification is a formula that is true for some behaviors
and false for others.

There’s no mathematical sense in which such a formula is
correct or incorrect.

Our spec is correct if it means what we want it to mean, and
wanting is not a mathematical concept.

So, how do we check that our spec is correct?
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We check our spec by checking that it satisfies properties that it
should satisfy. For example, it should be type correct.

Type correctness of Spec means:
In every behavior that satisfies Spec ,
every state of that behavior satisfies TypeOK .

In other words:
Every behavior that satisfies Spec satisfies 2TypeOK .

In other words:
Every behavior satisfies Spec ⇒ 2TypeOK .

We write this:
THEOREM Spec ⇒ 2TypeOK
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For any formula F that expresses a condition on states,
if Spec ⇒ 2F is a theorem, then we say that F is an
invariant of Spec .

Recall that TypeOK is defined by:

The Consensus module defines this state condition that is
stronger than TypeOK , and asserts that it’s an invariant:
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if Spec ⇒ 2F is a theorem, then we say that F is an
invariant of Spec .

Recall that TypeOK is defined by:

The Consensus module defines this state condition that is
stronger than TypeOK , and asserts that it’s an invariant:

Defined in the FiniteSets module to be the
number of elements in a finite set.
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The invariance of Inv should be obvious.

Consensus should be obviously correct because we’ll use it
to define what correctness of the Paxos spec means.

We should check it for two reasons:

– To learn how, because we’ll need to check that our Paxos

spec correctly describes the Paxos algorithm.

– When you start writing specs, you can make mistakes
even in one as simple as Consensus .

The easy way to check a spec: use the TLC model checker.

Just tell TLC what set to use for Value .

TLC computes all possible executions and reports an error
if one doesn’t satisfy 2 Inv .
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Proving Invariance
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Proving Invariance

I’m not going to prove anything, but let’s see how it’s done.
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Proving Invariance

The second proof step is a condition on steps.

It asserts that if the current state satisfies Inv

and the step satisfies formula Next

then the next state satisfies Inv .

This condition is satisfied by every step of every behavior (sequence
of states).
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Proving Invariance

The last step of a proof is a QED step

It asserts that the preceding steps prove the theorem.
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Proving Invariance

Here’s its proof which says that the theorem follows from
steps 〈1〉1 and 〈1〉2 and the definition of Spec .

23



Proving Invariance

Here’s its proof which says that the theorem follows from
steps 〈1〉1 and 〈1〉2 and the definition of Spec .

23



Proving Invariance

The proof is correct because if a behavior satisfies Spec then

1. Its initial state satisfies Inv .

2. If any of its states satisfies Inv then so does its next state.

3. All of its states satisfy Inv .

4. The behavior satisfies 2 Inv .

23



Proving Invariance

The proof is correct because if a behavior satisfies Spec then

1. Its initial state satisfies Inv .

2. If any of its states satisfies Inv then so does its next state.

3. All of its states satisfy Inv .

4. The behavior satisfies 2 Inv .

23



Proving Invariance

The proof is correct because if a behavior satisfies Spec then

1. Its initial state satisfies Inv .
Because it satisfies Init

2. If any of its states satisfies Inv then so does its next state.

3. All of its states satisfy Inv .

4. The behavior satisfies 2 Inv .

23



Proving Invariance

The proof is correct because if a behavior satisfies Spec then

1. Its initial state satisfies Inv .
Because it satisfies Init (by definition of Spec )

2. If any of its states satisfies Inv then so does its next state.

3. All of its states satisfy Inv .

4. The behavior satisfies 2 Inv .

23



Proving Invariance

The proof is correct because if a behavior satisfies Spec then

1. Its initial state satisfies Inv .
Because it satisfies Init so by 〈1〉1 it satisfies Inv .

2. If any of its states satisfies Inv then so does its next state.

3. All of its states satisfy Inv .

4. The behavior satisfies 2 Inv .

23



Proving Invariance

The proof is correct because if a behavior satisfies Spec then

1. Its initial state satisfies Inv .

2. If any of its states satisfies Inv then so does its next state.

3. All of its states satisfy Inv .

4. The behavior satisfies 2 Inv .

23



Proving Invariance

The proof is correct because if a behavior satisfies Spec then

1. Its initial state satisfies Inv .

2. If any of its states satisfies Inv then so does its next state.
Because the step to the next state satisfies Next

3. All of its states satisfy Inv .

4. The behavior satisfies 2 Inv .

23



Proving Invariance

The proof is correct because if a behavior satisfies Spec then

1. Its initial state satisfies Inv .

2. If any of its states satisfies Inv then so does its next state.
Because the step to the next state satisfies Next (by definition of Spec )

3. All of its states satisfy Inv .

4. The behavior satisfies 2 Inv .

23



Proving Invariance

The proof is correct because if a behavior satisfies Spec then

1. Its initial state satisfies Inv .

2. If any of its states satisfies Inv then so does its next state.
Because the step to the next state satisfies Next so by 〈1〉2 its
next state satisfies Inv .

3. All of its states satisfy Inv .

4. The behavior satisfies 2 Inv .

23



Proving Invariance

The proof is correct because if a behavior satisfies Spec then

1. Its initial state satisfies Inv .

2. If any of its states satisfies Inv then so does its next state.

3. All of its states satisfy Inv .

4. The behavior satisfies 2 Inv .

23



Proving Invariance

The proof is correct because if a behavior satisfies Spec then
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2. If any of its states satisfies Inv then so does its next state.

3. All of its states satisfy Inv .
By 1 , 2 , and mathematical induction.

4. The behavior satisfies 2 Inv .
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Proving Invariance

The proof is correct because if a behavior satisfies Spec then

1. Its initial state satisfies Inv .

2. If any of its states satisfies Inv then so does its next state.

3. All of its states satisfy Inv .

4. The behavior satisfies 2 Inv .

This proves the theorem.
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Here’s the proof.

A complete proof would have proofs of the other two steps, each
proof being either

– A BY statement, or
– A sequence of steps 〈2〉1, 〈2〉2, . . . with their proofs, each proof being either

– A BY statement, or

– A sequence of steps 〈3〉1, 〈3〉2, . . . with their proofs, each proof being either

...
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The TLA+ proof system can check this proof.
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what it did before.

It always does the right thing because it satisfies some
inductive invariant.

To understand why the system works right, you need to find
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How I Discovered Paxos

Some people in the lab had built a distributed file system.

I thought what they claimed it accomplished was impossible.

I tried to prove it was impossible; instead I discovered
the Paxos algorithm.
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I don’t remember the thought process that led me to Paxos.

But I knew that execution on computers sending messages
to one another was an irrelevant detail.

I was thinking only about a set of processes and
what they needed to know about one another.

How they could get that information from messages
was the easy part that came later.

What I had first was what, many years later, I described
as the Voting algorithm that I’ll show you next.

But first . . .
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How to Write an Algorithm Today

1. Think up the algorithm.

2. Formally specify it.
If you can’t, go to 1.

3. Model check it.
If model checking finds an error, go to 1 or 2.
If you’re sufficiently convinced it’s correct
and you’re not going to publish it, then stop.

4. Write a rigorous correctness proof & keep model checking.
If you or the model checker find an error, go to 1 or 2.

Probably not machine checked.
See How to Write a 21st Century Proof .
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The Informal Idea Behind the Algorithm

The algorithm is executed by a set of processes.

An obvious approach:
Acceptors vote on which value to choose.
A value is chosen if a majority of acceptors vote for it.

An obvious problem with this obvious approach:
Assume 2N + 1 acceptors.
N vote for v1 . N vote for v2 .
The other acceptor votes and then fails.

There’s no way to tell if v1 was chosen, or v2 was chosen,
or neither was chosen.
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Here’s the solution to this problem:
Acceptors vote in a sequence of ballots.
A value is chosen if a majority of acceptors vote for it in any ballot.
Don’t allow different acceptors to vote for different values
in the same ballot.
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in any ballot numbered less than b .

Define v safe at b to mean this.
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What’s a quorum?
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Every quorum is a set of acceptors.
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The set of all ballot numbers.

“Ballot” is easier to say than “natural number”.
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Describes what votes have been cast.

The value of votes is an array indexed by acceptors.

votes[a] is the set of votes cast by acceptor a .

〈b, v〉 ∈ votes[a] means a voted for value v in ballot b .
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Describes what votes have been cast.

The value of votes is an array indexed by acceptors
a function with domain Acceptor

.

votes[a] is the set of votes cast by acceptor a .

〈b, v〉 ∈ votes[a] means a voted for value v in ballot b .
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S

[Acceptor → S ] is the set of all functions with
domain Acceptor and values in S .
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T

SUBSET T is the set of all subsets of T .
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Ballot ×Value is the set of
all 〈ballot, value〉 pairs.
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Acceptor a will never vote in any ballot < maxBal [a] .
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Some more definitions.
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asserts that accepter a voted
for value v in ballot b.
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asserts that every acceptor in some quorum
voted for value v in ballot b .
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The crucial definition.
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An acceptor will vote for value v in ballot b only if
this formula is true for some quorum Q .
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from now on, a can never vote
in any ballot c < maxBal [a]
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From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .
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Claim: If this is true for some quorum Q ,
then v is safe at b .
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By definition, this proves v is safe at b .
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From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
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〈1〉1. No value has been or ever will be chosen at d if c < d < b .
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So 〈1〉2 follows from the definition of safe at.
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or will vote for any value other than v in ballot c,
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Proof: An acceptor voted for v in ballot c , so no acceptor has voted
or will vote for any value other than v in ballot c, proving 〈1〉3 .
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〈1〉4. QED
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〈1〉1. No value has been or ever will be chosen at d if c < d < b .

〈1〉2. If c 6= −1 then no value other than v has been or will be
chosen at d for d < c .

〈1〉3. If c 6= −1 then no value other than v has been or will be chosen at c .

〈1〉4. QED

This completes the proof that:

ShowsSafeAt(Q , b, v) for a quorum Q implies
v is safe at b .
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〈1〉1. No value has been or ever will be chosen at d if c < d < b .

〈1〉2. If c 6= −1 then no value other than v has been or will be
chosen at d for d < c .

〈1〉3. If c 6= −1 then no value other than v has been or will be chosen at c .

〈1〉4. QED

This completes the proof that:

ShowsSafeAt(Q , b, v) for a quorum Q implies
v is safe at b .

Which is the heart of the Paxos algorithm.
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〈1〉3. If c 6= −1 then no value other than v has been or will be chosen at c .

〈1〉4. QED

This completes the proof that:

ShowsSafeAt(Q , b, v) for a quorum Q implies
v is safe at b .

The Voting module contains a theorem that is
a precise statement of this result.
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The Spec

[x ∈ S 7→ exp(x )] is the function f with domain S

such that f [x ] = exp(x ) for all x ∈ S .

So initially, votes[a] = {} for every acceptor a .
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The Spec

Initially, maxBal [a] = −1 for every acceptor a .
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Describes a step in which acceptor a

increases the value of maxBal [a] to b .
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Describes a step in which acceptor a

votes for v in ballot b .
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The condition any step of the algorithm
must satisfy.
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either a increases maxBal [a] to b
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or a votes for some value v in ballot b .

51



· · ·

· · ·

51



54



Describes a step in which acceptor a

increases the value of maxBal [a] to b .
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b > current value of maxBal [a]

(an enabling condition)
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∧ maxBal [a]′ = b
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∧ maxBal [a]′ = b

and the value of maxBal [a]

in the next state is b .
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∧ maxBal [a]′ = b

an abbreviation for votes ′ = votes
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∧ maxBal [a]′ = b

and the value of votes is unchanged.
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∧ maxBal [a]′ = b

What’s wrong with this?
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and the value of maxBal [a]

in the next state is b .

What about the value of maxBal [a2]
in the next state for an acceptor a2 6= a ?

What about the domain of maxBal in the next state?
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∧ maxBal [a]′ = b

and the value of maxBal [a]

in the next state is b .

What about the value of maxBal [a2]
in the next state for an acceptor a2 6= a ?

What about the domain of maxBal in the next state?

This is all it says.
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a step changes “one element of an array”.

So we want an abbreviation for it.
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Describes a step in which acceptor a votes
for v in ballot b .
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Enabling condition that assures a doesn’t vote
in a ballot b < maxBal [a] .
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A set of 〈ballot , value〉 pairs.

A pair is a function, with 〈x , y〉[1] = x .

Asserts that a hasn’t already voted in ballot b .
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which implies v is safe at b .
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meaning a votes for v in ballot b .
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