
The Paxos Algorithm
or

How to Win a Turing Award

and

Why You Should Know Even if You’re not Going to Win One

Leslie Lamport
Microsoft Research

0

The Paxos Algorithm
or

How to Win a Turing Award

and

Why You Should Know Even if You’re not Going to Win One

Leslie Lamport
Microsoft Research

0

The Paxos Algorithm
or

How to Win a Turing Award

and

Why You Should Know Even if You’re not Going to Win One

Leslie Lamport
Microsoft Research

0

When I visit universities, young researchers ask me:

What’s the next big problem?

What should I work on?

My answer:

If I knew, I’d be working on it.

0

When I visit universities, young researchers ask me:

What’s the next big problem?

What should I work on?

My answer:

If I knew, I’d be working on it.

0

When I visit universities, young researchers ask me:

What’s the next big problem?

What should I work on?

My answer:

If I knew, I’d be working on it.

0

What they really want to ask:

How can I win a Turing award?

My answer:

Don’t worry about the “big problem”.

Learn how to think properly.

I learned to think properly by learning math.

0

What they really want to ask:

How can I win a Turing award?

My answer:

Don’t worry about the “big problem”.

Learn how to think properly.

I learned to think properly by learning math.

0

What they really want to ask:

How can I win a Turing award?

My answer:

Don’t worry about the “big problem”.

Learn how to think properly.

I learned to think properly by learning math.

0

What they really want to ask:

How can I win a Turing award?

My answer:

Don’t worry about the “big problem”.

Learn how to think properly.

I learned to think properly by learning math.

0

Mathematics

By the end of your first year at university you learned almost all
the math I’ve ever found useful.

What you probably didn’t learn is how to use that math outside
a math class.

This lecture is a lesson in how to do that.

0

Mathematics

By the end of your first year at university you learned almost all
the math I’ve ever found useful.

What you probably didn’t learn is how to use that math outside
a math class.

This lecture is a lesson in how to do that.

0

Mathematics

By the end of your first year at university you learned almost all
the math I’ve ever found useful.

What you probably didn’t learn is how to use that math outside
a math class.

This lecture is a lesson in how to do that.

0

Mathematics

By the end of your first year at university you learned almost all
the math I’ve ever found useful.

What you probably didn’t learn is how to use that math outside
a math class.

This lecture is a lesson in how to do that.

0

The heart of mathematics is abstraction — ignoring
uninteresting details and finding what’s important.

This might not lead to an important problem, but it will
keep you from wasting time on non-problems.

0

The heart of mathematics is abstraction — ignoring
uninteresting details and finding what’s important.

This might not lead to an important problem, but it will
keep you from wasting time on non-problems.

0

The heart of mathematics is abstraction — ignoring
uninteresting details and finding what’s important.

This might not lead to an important problem, but it will
keep you from wasting time on non-problems.

0

The heart of mathematics is abstraction — ignoring
uninteresting details and finding what’s important.

This might not lead to an important problem, but it will
keep you from wasting time on non-problems.

0

A Formal Language for Writing Math

You studied math in school without one.
Why use one now?

Because you can’t use math outside a math class
if only a math teacher can check your math.

You need to write math in a formal language
so tools can check it.

1

A Formal Language for Writing Math

You studied math in school without one.
Why use one now?

Because you can’t use math outside a math class
if only a math teacher can check your math.

You need to write math in a formal language
so tools can check it.

1

A Formal Language for Writing Math

You studied math in school without one.
Why use one now?

Because you can’t use math outside a math class
if only a math teacher can check your math.

You need to write math in a formal language
so tools can check it.

1

A Formal Language for Writing Math

You studied math in school without one.
Why use one now?

Because you can’t use math outside a math class
if only a math teacher can check your math.

You need to write math in a formal language
so tools can check it.

1

A Formal Language for Writing Math

You studied math in school without one.
Why use one now?

Because you can’t use math outside a math class
if only a math teacher can check your math.

You need to write math in a formal language
so tools can check it.

1

The formal language I’ll use is called TLA+.

It’s mostly a precise way to write the math you already know.

It introduces two concepts you haven’t seen before.

But they’re so simple you probably won’t notice
that they’re new.

2

The formal language I’ll use is called TLA+.
(Don’t worry why.)

It’s mostly a precise way to write the math you already know.

It introduces two concepts you haven’t seen before.

But they’re so simple you probably won’t notice
that they’re new.

2

The formal language I’ll use is called TLA+.

It’s mostly a precise way to write the math you already know.

It introduces two concepts you haven’t seen before.

But they’re so simple you probably won’t notice
that they’re new.

2

The formal language I’ll use is called TLA+.

It’s mostly a precise way to write the math you already know.

It introduces two concepts you haven’t seen before.

But they’re so simple you probably won’t notice
that they’re new.

2

The formal language I’ll use is called TLA+.

It’s mostly a precise way to write the math you already know.

It introduces two concepts you haven’t seen before.

But they’re so simple you probably won’t notice
that they’re new.

2

CONSENSUS

2

The Problem Solved by Paxos

Multiple clients can send requests to a system.

The system must choose in what order to handle them.

The system is implemented by multiple computers.

They must choose a single ordering even if some
computers fail.

Paxos solves this problem by running multiple solutions
to the following problem.

2

The Problem Solved by Paxos

Multiple clients can send requests to a system.

The system must choose in what order to handle them.

The system is implemented by multiple computers.

They must choose a single ordering even if some
computers fail.

Paxos solves this problem by running multiple solutions
to the following problem.

2

The Problem Solved by Paxos

Multiple clients can send requests to a system.

The system must choose in what order to handle them.

The system is implemented by multiple computers.

They must choose a single ordering even if some
computers fail.

Paxos solves this problem by running multiple solutions
to the following problem.

2

The Problem Solved by Paxos

Multiple clients can send requests to a system.

The system must choose in what order to handle them.

The system is implemented by multiple computers.

They must choose a single ordering even if some
computers fail.

Paxos solves this problem by running multiple solutions
to the following problem.

2

The Problem Solved by Paxos

Multiple clients can send requests to a system.

The system must choose in what order to handle them.

The system is implemented by multiple computers.

They must choose a single ordering even if some
computers fail.

Paxos solves this problem by running multiple solutions
to the following problem.

2

The Problem Solved by Paxos

Multiple clients can send requests to a system.

The system must choose in what order to handle them.

The system is implemented by multiple computers.

They must choose a single ordering even if some
computers fail.

Paxos solves this problem by running multiple solutions
to the following problem.

2

The Consensus Problem

Multiple clients can each send a request to a system.

The system must choose which one to handle next.

The system is implemented by multiple computers.

They must choose a single request even if some computers fail.

3

The Consensus Problem

Multiple clients can each send a request to a system.

The system must choose which one to handle next.

The system is implemented by multiple computers.

They must choose a single request even if some computers fail.

3

The Consensus Problem

Multiple clients can each send a request to a system.

The system must choose which one to handle next.

The system is implemented by multiple computers.

They must choose a single request even if some computers fail.

3

The Consensus Problem

Multiple clients can each send a request to a system.

The system must choose which one to handle next.

The system is implemented by multiple computers.

They must choose a single request even if some computers fail.

3

The Consensus Problem

Multiple clients can each send a request to a system.

The system must choose which one to handle next.

The system is implemented by multiple computers.

They must choose a single request even if some computers fail.

3

The Consensus Problem

Multiple clients can each send a request to a system.

The system must choose which one to handle next.

The system is implemented by multiple computers.

They must choose a single request even if some computers fail.

3

Paxos is efficient because it simultaneously executes
the first part of all the consensus solutions.

But we’re interested in why Paxos is correct,
not why it’s efficient.

So we abstract away such implementation details.

3

Paxos is efficient because it simultaneously executes
the first part of all the consensus solutions.

But we’re interested in why Paxos is correct,
not why it’s efficient.

So we abstract away such implementation details.

3

Paxos is efficient because it simultaneously executes
the first part of all the consensus solutions.

But we’re interested in why Paxos is correct,
not why it’s efficient.

So we abstract away such implementation details.

3

The Consensus Problem

Multiple clients can each send a request to a system.

The system must choose which one to handle next.

The system is implemented by multiple computers.

They must choose a single request even if some computers fail.

3

A More Abstract Consensus Problem

Multiple clients can each send a request to a system.

The system must choose which one to handle next.

The system is implemented by multiple computers.

They must choose a single request even if some computers fail.

The computers may choose any request in the set Value.

3

A More Abstract Consensus Problem

Forget about clients.

The system must choose which one to handle next.

The system is implemented by multiple computers.

They must choose a single request even if some computers fail.

The computers may choose any request in the set Value.

3

A More Abstract Consensus Problem

Forget about clients.

The system must choose which one to handle next.

The system is implemented by multiple computers.

They must choose a single request even if some computers fail.

The computers may choose any request in the set Value.

3

A More Abstract Consensus Problem

Forget about clients.

The system must choose which one to handle next.

The system is implemented by multiple computers.

They must choose a single request even if some computers fail.

The computers may choose any request in the set Value.

3

A More Abstract Consensus Problem

Forget about clients.

The system must choose which one to handle next.

The system is implemented by multiple computers.

They must choose a single value even if some computers fail.

The computers may choose any value in the set Value.

3

The Mathematical Model

An execution of the system is represented by a behavior.

A behavior is a sequence of states.

A state is an assignment of values to variables.

The system is described by a formula about behaviors that’s
true on behaviors that represent possible system executions.

I like this model because it’s simple, and it resembles
the way physics describes systems.

And years of experience has told me that it works well.

4

The Mathematical Model

An execution of the system is represented by a behavior.

A behavior is a sequence of states.

A state is an assignment of values to variables.

The system is described by a formula about behaviors that’s
true on behaviors that represent possible system executions.

I like this model because it’s simple, and it resembles
the way physics describes systems.

And years of experience has told me that it works well.

4

The Mathematical Model

An execution of the system is represented by a behavior.

A behavior is a sequence of states.

A state is an assignment of values to variables.

The system is described by a formula about behaviors that’s
true on behaviors that represent possible system executions.

I like this model because it’s simple, and it resembles
the way physics describes systems.

And years of experience has told me that it works well.

4

The Mathematical Model

An execution of the system is represented by a behavior.

A behavior is a sequence of states.

A state is an assignment of values to variables.

The system is described by a formula about behaviors that’s
true on behaviors that represent possible system executions.

I like this model because it’s simple, and it resembles
the way physics describes systems.

And years of experience has told me that it works well.

4

The Mathematical Model

An execution of the system is represented by a behavior.

A behavior is a sequence of states.

A state is an assignment of values to variables.

The system is described by a formula about behaviors that’s
true on behaviors that represent possible system executions.

I like this model because it’s simple, and it resembles
the way physics describes systems.

And years of experience has told me that it works well.

4

The Mathematical Model

An execution of the system is represented by a behavior.

A behavior is a sequence of states.

A state is an assignment of values to variables.

The system is described by a formula about behaviors that’s
true on behaviors that represent possible system executions.

I like this model because it’s simple, and it resembles
the way physics describes systems.

And years of experience has told me that it works well.

4

The Mathematical Model

An execution of the system is represented by a behavior.

A behavior is a sequence of states.

A state is an assignment of values to variables.

The system is described by a formula about behaviors that’s
true on behaviors that represent possible system executions.

I like this model because it’s simple, and it resembles
the way physics describes systems.

And years of experience has told me that it works well.

4

The Mathematical Model

An execution of the system is represented by a behavior.

A behavior is a sequence of states.

A state is an assignment of values to variables.

The system is described by a formula about behaviors that’s
true on behaviors that represent possible system executions.

I like this model because it’s simple, and it resembles
the way physics describes systems.

And years of experience has told me that it works well.

4

Writing Formulas that Describe Behaviors

I’ll write them in a real language with a grammar
and formal semantics.

Because otherwise computer people won’t believe
I’m doing something relevant to real systems.

Perhaps with good reason.

5

Writing Formulas that Describe Behaviors

I’ll write them in a real language with a grammar
and formal semantics.

Because otherwise computer people won’t believe
I’m doing something relevant to real systems.

Perhaps with good reason.

5

Writing Formulas that Describe Behaviors

I’ll write them in a real language with a grammar
and formal semantics.

Because otherwise computer people won’t believe
I’m doing something relevant to real systems.

Perhaps with good reason.

5

Writing Formulas that Describe Behaviors

I’ll write them in a real language with a grammar
and formal semantics.

Because otherwise computer people won’t believe
I’m doing something relevant to real systems.

Perhaps with good reason.

5

5

The specification appears in a module.

5

This is the pretty-printed version.
The actual spec is in ASCII.

5

Imports definitions from other modules.

5

Contains definitions of + , ∗ , etc.

5

Contains definitions of a couple of operators
for finite sets.

5

5

Declares a “variable” that remains constant
throughout a behavior.

5

Declares a variable whose value can differ
in different states of a behavior.

5

There are lots of ways to model choosing a value.

I decided to let chosen be the set of values that
have been chosen.

The spec should say that (in a correct behavior)
at most one value is chosen.

5

There are lots of ways to model choosing a value.

I decided to let chosen be the set of values that
have been chosen.

The spec should say that (in a correct behavior)
at most one value is chosen.

5

There are lots of ways to model choosing a value.

I decided to let chosen be the set of values that
have been chosen.

The spec should say that (in a correct behavior)
at most one value is chosen.

5

7

Defines TypeOK

7

Defines TypeOK to equal this.

7

This is usually written

7

This is usually written like this.

7

It’s a useful notation for writing large formulas.

7

Asserts that chosen is a set of values.

7

Asserts that it’s a finite set.

7

Asserts that it’s a finite set.
(There’s no reason Value can’t be infinite.)

7

Most mathematicians don’t talk about types.

In math, having a type just means belonging to some set.

TypeOK asserts that chosen is an element of the set
of all finite subsets of Value .

7

Most mathematicians don’t talk about types.

In math, having a type just means belonging to some set.

TypeOK asserts that chosen is an element of the set
of all finite subsets of Value .

7

Most mathematicians don’t talk about types.

In math, having a type just means belonging to some set.

TypeOK asserts that chosen is an element of the set
of all finite subsets of Value .

7

TypeOK should be an invariant of the spec,
meaning its true in every state of every behavior
satisfying the spec.

Defining a type invariant helps the reader
understand the spec.

7

TypeOK should be an invariant of the spec,
meaning its true in every state of every behavior
satisfying the spec.

Defining a type invariant helps the reader
understand the spec.

7

TypeOK should be an invariant of the spec,
meaning its true in every state of every behavior
satisfying the spec.

Defining a type invariant helps the reader
understand the spec.

7

Writing Comments

Formulas are not easy to understand.

People need prose explanations of them.

You should put those explanations in comments in the module.

I’m telling you the explanations.

The written versions of the specs have lots of comments.

8

Writing Comments

Formulas are not easy to understand.

People need prose explanations of them.

You should put those explanations in comments in the module.

I’m telling you the explanations.

The written versions of the specs have lots of comments.

8

Writing Comments

Formulas are not easy to understand.

People need prose explanations of them.

You should put those explanations in comments in the module.

I’m telling you the explanations.

The written versions of the specs have lots of comments.

8

Writing Comments

Formulas are not easy to understand.

People need prose explanations of them.

You should put those explanations in comments in the module.

I’m telling you the explanations.

The written versions of the specs have lots of comments.

8

Writing Comments

Formulas are not easy to understand.

People need prose explanations of them.

You should put those explanations in comments in the module.

I’m telling you the explanations.

The written versions of the specs have lots of comments.

8

Writing Comments

Formulas are not easy to understand.

People need prose explanations of them.

You should put those explanations in comments in the module.

I’m telling you the explanations.

The written versions of the specs have lots of comments.

8

The Spec Formula

Remember that I’m going to represent the system by a
mathematical formula.

The word spec is used to mean both that formula and the entire
module containing the formula.

For now, spec will mean the formula.

8

The Spec Formula

Remember that I’m going to represent the system by a
mathematical formula.

The word spec is used to mean both that formula and the entire
module containing the formula.

For now, spec will mean the formula.

8

The Spec Formula

Remember that I’m going to represent the system by a
mathematical formula.

The word spec is used to mean both that formula and the entire
module containing the formula.

For now, spec will mean the formula.

8

The Spec Formula

Remember that I’m going to represent the system by a
mathematical formula.

The word spec is used to mean both that formula and the entire
module containing the formula.

For now, spec will mean the formula.

8

The spec must describe a set of behaviors, where a behavior is
a sequence of states.

It does this with two formulas:

The Initial Formula

It describes all possible first states of a behavior.

The Next-State Formula

For any state in a behavior, it describes all
possible next states in the behavior.

9

The spec must describe a set of behaviors, where a behavior is
a sequence of states.

It does this with two formulas:

The Initial Formula

It describes all possible first states of a behavior.

The Next-State Formula

For any state in a behavior, it describes all
possible next states in the behavior.

9

The spec must describe a set of behaviors, where a behavior is
a sequence of states.

It does this with two formulas:

The Initial Formula

It describes all possible first states of a behavior.

The Next-State Formula

For any state in a behavior, it describes all
possible next states in the behavior.

9

The spec must describe a set of behaviors, where a behavior is
a sequence of states.

It does this with two formulas:

The Initial Formula

It describes all possible first states of a behavior.

The Next-State Formula

For any state in a behavior, it describes all
possible next states in the behavior.

9

The spec must describe a set of behaviors, where a behavior is
a sequence of states.

It does this with two formulas:

The Initial Formula

It describes all possible first states of a behavior.

The Next-State Formula

For any state in a behavior, it describes all
possible next states in the behavior.

9

The spec must describe a set of behaviors, where a behavior is
a sequence of states.

It does this with two formulas:

The Initial Formula

It describes all possible first states of a behavior.

The Next-State Formula

For any state in a behavior, it describes all
possible next states in the behavior.

9

The spec must describe a set of behaviors, where a behavior is
a sequence of states.

It does this with two formulas:

The Initial Formula

It describes all possible first states of a behavior.

The Next-State Formula

For any state in a behavior, it describes all
possible next states in the behavior.

9

The Initial Formula

9

The Initial Formula

We can call the formula anything,
but Init is the conventional name.

9

The Initial Formula

9

The Initial Formula

Asserts that the value of chosen in the state
is the empty set.

In the first state of the behavior, no value is chosen.

9

The Initial Formula

Asserts that the value of chosen in the state
is the empty set.

In the first state of the behavior, no value is chosen.

9

The Next-State Formula

10

The Next-State Formula

It’s conventional to call it Next .

10

The Next-State Formula

It equals the conjunction of two formulas.

10

The Next-State Formula

Asserts that in a state with chosen equal to
the empty set, there exists a value v in the
set Value such that the value of chosen

in the next state equals the set containing the
single element v .

10

The Next-State Formula

Asserts that in a state with chosen equal to
the empty set, there exists a value v in the
set Value such that the value of chosen

in the next state equals the set containing the
single element v .

10

The Next-State Formula

Asserts that in a state with chosen equal to
the empty set, there exists a value v in the
set Value such that the value of chosen

in the next state equals the set containing the
single element v .

10

The Next-State Formula

Asserts that in a state with chosen equal to
the empty set, there exists a value v in the
set Value such that the value of chosen

in the next state equals the set containing the
single element v .

10

The Next-State Formula

Asserts that in a state with chosen equal to
the empty set, there exists a value v in the
set Value such that the value of chosen

in the next state equals the set containing the
single element v .

′ (prime) means in the next state .

10

The Next-State Formula

Asserts that in a state with chosen equal to
the empty set, there exists a value v in the
set Value such that the value of chosen

in the next state equals the set containing the
single element v .

10

The Next-State Formula

Asserts that in a state with chosen equal to
the empty set, there exists a value v in the
set Value such that the value of chosen

in the next state equals the set containing the
single element v .

10

The Next-State Formula

Formula Next expresses a condition on a pair of states:

– A 1st state described by the unprimed variables.

– A 2nd state described by the primed variables.

11

The Next-State Formula

Formula Next expresses a condition on a pair of states:

– A 1st state described by the unprimed variables.

– A 2nd state described by the primed variables.

11

The Next-State Formula

Formula Next expresses a condition on a pair of states:

– A 1st state described by the unprimed variables.

– A 2nd state described by the primed variables.

11

The Next-State Formula

Formula Next expresses a condition on a pair of states:

– A 1st state described by the unprimed variables.

– A 2nd state described by the primed variables.

11

The Next-State Formula

Formula Next expresses a condition on a pair of states:

– A 1st state described by the unprimed variables.

– A 2nd state described by the primed variables.

Think of the pair as describing a step in which
the system goes from the 1st state to the 2nd state.

11

The Next-State Formula

Formula Next expresses a condition on a pair of states:

– A 1st state described by the unprimed variables.

– A 2nd state described by the primed variables.

11

The Next-State Formula

Formula Next expresses a condition on a pair of states:

– A current state described by the unprimed variables.

– A next state described by the primed variables.

11

The Next-State Formula

This formula has no primes, so it’s a condition on the
current state.

If it equals FALSE, then there is no next state for which
Next equals TRUE.

It’s an enabling condition for the step.

11

The Next-State Formula

This formula has no primes, so it’s a condition on the
current state.

If it equals FALSE, then there is no next state for which
Next equals TRUE.

It’s an enabling condition for the step.

11

The Next-State Formula

This formula has no primes, so it’s a condition on the
current state.

If it equals FALSE, then there is no next state for which
Next equals TRUE.

It’s an enabling condition for the step.

11

The Next-State Formula

This formula has no primes, so it’s a condition on the
current state.

If it equals FALSE, then there is no next state for which
Next equals TRUE.

It’s an enabling condition for the step.

11

I’ve described the possible behaviors with two formulas:

13

I’ve described the possible behaviors with two formulas:

A condition on the initial state of a behavior.

A condition on all the steps of the behavior.

13

I’ve described the possible behaviors with two formulas:

A condition on the initial state of a behavior.

A condition on all the steps of the behavior.

13

I’ve described the possible behaviors with two formulas:

Let’s construct a behavior satisfying these conditions.

13

I’ve described the possible behaviors with two formulas:

Let’s construct a behavior satisfying these conditions.[
chosen = { }

]
The is only one posible initial state.
Remember that a state is an assignment of a value to the one variable chosen .

13

I’ve described the possible behaviors with two formulas:

Let’s construct a behavior satisfying these conditions.[
chosen = { }

]
The is only one posible initial state.
Remember that a state is an assignment of a value to the one variable chosen .

13

I’ve described the possible behaviors with two formulas:

Let’s construct a behavior satisfying these conditions.[
chosen = { }

] [
chosen = {42}

]
A possible next state, if 42 ∈ Value .

The second condition is satisfied because chosen equals {42}
in the next state of the step.

13

I’ve described the possible behaviors with two formulas:

Let’s construct a behavior satisfying these conditions.[
chosen = { }

] [
chosen = {42}

]
A possible next state, if 42 ∈ Value .

The first condition is satisfied because chosen equals { }
in the current state of the step.

The second condition is satisfied because chosen equals {42}
in the next state of the step.

13

I’ve described the possible behaviors with two formulas:

Let’s construct a behavior satisfying these conditions.[
chosen = { }

] [
chosen = {42}

]
A possible next state, if 42 ∈ Value .

The first condition is satisfied because chosen equals { }
in the current state of the step.

The second condition is satisfied because chosen equals {42}
in the next state of the step.

13

I’ve described the possible behaviors with two formulas:

Let’s construct a behavior satisfying these conditions.[
chosen = { }

] [
chosen = {42}

]
A possible next state, if 42 ∈ Value .

The second condition is satisfied because chosen equals {42}
in the next state of the step.

13

I’ve described the possible behaviors with two formulas:

Let’s construct a behavior satisfying these conditions.[
chosen = { }

] [
chosen = {42}

]
A possible next state, if 42 ∈ Value .

The second condition is satisfied because chosen equals {42}
in the next state of the step.

13

I’ve described the possible behaviors with two formulas:

Let’s construct a behavior satisfying these conditions.[
chosen = { }

] [
chosen = {42}

]
A possible next state, if 42 ∈ Value .

The second condition is satisfied because chosen equals {42}
in the next state of the step.

13

I’ve described the possible behaviors with two formulas:

Let’s construct a behavior satisfying these conditions.[
chosen = { }

] [
chosen = {42}

]
There is no possible next state after this one because
the enabling condition equals FALSE , so
no next state can satisfy formula Next .

13

I’ve described the possible behaviors with two formulas:

Let’s construct a behavior satisfying these conditions.[
chosen = { }

] [
chosen = {42}

]
There is no possible next state after this one because
the enabling condition equals FALSE , so
no next state can satisfy formula Next .

13

I’ve described the possible behaviors with two formulas:

Let’s construct a behavior satisfying these conditions.[
chosen = { }

] [
chosen = {42}

]
There is no possible next state after this one because
the enabling condition equals FALSE , so
no next state can satisfy formula Next .

13

I’ve described the possible behaviors with two formulas:

Let’s construct a behavior satisfying these conditions.[
chosen = { }

] [
chosen = {42}

]
A behavior of the Consensus system can have only
two states.

13

I’ve described the possible behaviors with two formulas:

Let’s construct a behavior satisfying these conditions.[
chosen = { }

] [
chosen = {42}

]
-

I like to write behaviors like this.

13

I’ve described the possible behaviors with two formulas:

I’ll now combine them into a single formula that’s
a condition on behaviors.

15

I’ve described the possible behaviors with two formulas:

a condition on states

I’ll now combine them into a single formula that’s
a condition on behaviors.

15

I’ve described the possible behaviors with two formulas:

a condition on states

a condition on steps

I’ll now combine them into a single formula that’s
a condition on behaviors.

15

I’ve described the possible behaviors with two formulas:

a condition on states

a condition on steps

I’ll now combine them into a single formula that’s
a condition on behaviors.

15

I’ve described the possible behaviors with two formulas:

a condition on states

a condition on steps

I’ll now combine them into a single formula that’s
a condition on behaviors.

It’s a convention to call the formula Spec .

15

I’ve described the possible behaviors with two formulas:

a condition on states

a condition on steps

I’ll now combine them into a single formula that’s
a condition on behaviors.

A condition on states is interpreted as a condition on
the initial state of a behavior.

So Spec asserts that the initial state of the behavior satisfies Init .

15

I’ve described the possible behaviors with two formulas:

a condition on states

a condition on steps

I’ll now combine them into a single formula that’s
a condition on behaviors.

A condition on states is interpreted as a condition on
the initial state of a behavior.

So Spec asserts that the initial state of the behavior satisfies Init .

15

I’ve described the possible behaviors with two formulas:

a condition on states

a condition on steps

I’ll now combine them into a single formula that’s
a condition on behaviors.

and

15

I’ve described the possible behaviors with two formulas:

a condition on states

a condition on steps

I’ll now combine them into a single formula that’s
a condition on behaviors.

2 means “at all points in the behavior”

And 2Next asserts that all steps of the behavior satisfy Next .

15

I’ve described the possible behaviors with two formulas:

a condition on states

a condition on steps

I’ll now combine them into a single formula that’s
a condition on behaviors.

2 means “at all points in the behavior”

For example, 2TypeOK asserts that all states of the
behavior satisfy TypeOK .And 2Next asserts that all steps of the
behavior satisfy Next .

15

I’ve described the possible behaviors with two formulas:

a condition on states

a condition on steps

I’ll now combine them into a single formula that’s
a condition on behaviors.

2 means “at all points in the behavior”

And 2Next asserts that all steps of the behavior satisfy Next .

15

I’ve described the possible behaviors with two formulas:

a condition on states

a condition on steps

I’ll now combine them into a single formula that’s
a condition on behaviors.

So Spec is true of a behavior if and only if

15

I’ve described the possible behaviors with two formulas:

a condition on states

a condition on steps

I’ll now combine them into a single formula that’s
a condition on behaviors.

So Spec is true of a behavior if and only if
the behavior’s first state satisfies Init

15

I’ve described the possible behaviors with two formulas:

a condition on states

a condition on steps

I’ll now combine them into a single formula that’s
a condition on behaviors.

So Spec is true of a behavior if and only if
the behavior’s first state satisfies Init

and every step in the behavior satisfies Next .

15

I’ve described the possible behaviors with two formulas:

a condition on states

a condition on steps

I’ll now combine them into a single formula that’s
a condition on behaviors.

Spec is our specification of the Consensus system

15

I’ve described the possible behaviors with two formulas:

a condition on states

a condition on steps

I’ll now combine them into a single formula that’s
a condition on behaviors.

Spec is our specification of the Consensus system
except this is its actual definition.

15

I’ve described the possible behaviors with two formulas:

a condition on states

a condition on steps

I’ll now combine them into a single formula that’s
a condition on behaviors.

Don’t worry about this stuff; I’ll explain it later.

For now pretend it’s not there.

15

I’ve described the possible behaviors with two formulas:

a condition on states

a condition on steps

I’ll now combine them into a single formula that’s
a condition on behaviors.

Don’t worry about this stuff; I’ll explain it later.

For now pretend it’s not there.

15

I’ve described the possible behaviors with two formulas:

a condition on states

a condition on steps

I’ll now combine them into a single formula that’s
a condition on behaviors.

Don’t worry about this stuff; I’ll explain it later.

For now pretend it’s not there.

15

Checking the Spec

Our specification is a formula that is true for some behaviors
and false for others.

There’s no mathematical sense in which such a formula is
correct or incorrect.

Our spec is correct if it means what we want it to mean, and
wanting is not a mathematical concept.

So, how do we check that our spec is correct?

15

Checking the Spec

Our specification is a formula that is true for some behaviors
and false for others.

There’s no mathematical sense in which such a formula is
correct or incorrect.

Our spec is correct if it means what we want it to mean, and
wanting is not a mathematical concept.

So, how do we check that our spec is correct?

15

Checking the Spec

Our specification is a formula that is true for some behaviors
and false for others.

There’s no mathematical sense in which such a formula is
correct or incorrect.

Our spec is correct if it means what we want it to mean, and
wanting is not a mathematical concept.

So, how do we check that our spec is correct?

15

Checking the Spec

Our specification is a formula that is true for some behaviors
and false for others.

There’s no mathematical sense in which such a formula is
correct or incorrect.

Our spec is correct if it means what we want it to mean, and
wanting is not a mathematical concept.

So, how do we check that our spec is correct?

15

Checking the Spec

Our specification is a formula that is true for some behaviors
and false for others.

There’s no mathematical sense in which such a formula is
correct or incorrect.

Our spec is correct if it means what we want it to mean, and
wanting is not a mathematical concept.

So, how do we check that our spec is correct?

15

Checking the Spec

Our specification is a formula that is true for some behaviors
and false for others.

There’s no mathematical sense in which such a formula is
correct or incorrect.

Our spec is correct if it means what we want it to mean, and
wanting is not a mathematical concept.

So, how do we check that our spec is correct?

15

We check our spec by checking that it satisfies properties that it
should satisfy. For example, it should be type correct.

Type correctness of Spec means:
In every behavior that satisfies Spec ,
every state of that behavior satisfies TypeOK .

In other words:
Every behavior that satisfies Spec satisfies 2TypeOK .

In other words:
Every behavior satisfies Spec ⇒ 2TypeOK .

We write this:
THEOREM Spec ⇒ 2TypeOK

17

We check our spec by checking that it satisfies properties that it
should satisfy. For example, it should be type correct.

Type correctness of Spec means:
In every behavior that satisfies Spec ,
every state of that behavior satisfies TypeOK .

In other words:
Every behavior that satisfies Spec satisfies 2TypeOK .

In other words:
Every behavior satisfies Spec ⇒ 2TypeOK .

We write this:
THEOREM Spec ⇒ 2TypeOK

17

We check our spec by checking that it satisfies properties that it
should satisfy. For example, it should be type correct.

Type correctness of Spec means:
In every behavior that satisfies Spec ,
every state of that behavior satisfies TypeOK .

In other words:
Every behavior that satisfies Spec satisfies 2TypeOK .

In other words:
Every behavior satisfies Spec ⇒ 2TypeOK .

We write this:
THEOREM Spec ⇒ 2TypeOK

17

We check our spec by checking that it satisfies properties that it
should satisfy. For example, it should be type correct.

Type correctness of Spec means:
In every behavior that satisfies Spec ,
every state of that behavior satisfies TypeOK .

In other words:
Every behavior that satisfies Spec satisfies 2TypeOK .

In other words:
Every behavior satisfies Spec ⇒ 2TypeOK .

We write this:
THEOREM Spec ⇒ 2TypeOK

17

We check our spec by checking that it satisfies properties that it
should satisfy. For example, it should be type correct.

Type correctness of Spec means:
In every behavior that satisfies Spec ,
every state of that behavior satisfies TypeOK .

In other words:
Every behavior that satisfies Spec satisfies 2TypeOK .

In other words:
Every behavior satisfies Spec ⇒ 2TypeOK .

We write this:
THEOREM Spec ⇒ 2TypeOK

17

We check our spec by checking that it satisfies properties that it
should satisfy. For example, it should be type correct.

Type correctness of Spec means:
In every behavior that satisfies Spec ,
every state of that behavior satisfies TypeOK .

In other words:
Every behavior that satisfies Spec satisfies 2TypeOK .

In other words:
Every behavior satisfies Spec ⇒ 2TypeOK .

A formula about behaviors that’s satisfied by all behaviors
is a theorem, so

We write this:
THEOREM Spec ⇒ 2TypeOK 17

We check our spec by checking that it satisfies properties that it
should satisfy. For example, it should be type correct.

Type correctness of Spec means:
In every behavior that satisfies Spec ,
every state of that behavior satisfies TypeOK .

In other words:
Every behavior that satisfies Spec satisfies 2TypeOK .

In other words:
Every behavior satisfies Spec ⇒ 2TypeOK .

We write this:
THEOREM Spec ⇒ 2TypeOK

17

For any formula F that expresses a condition on states,
if Spec ⇒ 2F is a theorem, then we say that F is an
invariant of Spec .

Recall that TypeOK is defined by:

The Consensus module defines this state condition that is
stronger than TypeOK , and asserts that it’s an invariant:

18

For any formula F that expresses a condition on states,
if Spec ⇒ 2F is a theorem, then we say that F is an
invariant of Spec .

Recall that TypeOK is defined by:

The Consensus module defines this state condition that is
stronger than TypeOK , and asserts that it’s an invariant:

18

For any formula F that expresses a condition on states,
if Spec ⇒ 2F is a theorem, then we say that F is an
invariant of Spec .

Recall that TypeOK is defined by:

The Consensus module defines this state condition that is
stronger than TypeOK , and asserts that it’s an invariant:

18

For any formula F that expresses a condition on states,
if Spec ⇒ 2F is a theorem, then we say that F is an
invariant of Spec .

Recall that TypeOK is defined by:

The Consensus module defines this state condition that is
stronger than TypeOK , and asserts that it’s an invariant:

18

For any formula F that expresses a condition on states,
if Spec ⇒ 2F is a theorem, then we say that F is an
invariant of Spec .

Recall that TypeOK is defined by:

The Consensus module defines this state condition that is
stronger than TypeOK , and asserts that it’s an invariant:

Defined in the FiniteSets module to be the
number of elements in a finite set.

18

For any formula F that expresses a condition on states,
if Spec ⇒ 2F is a theorem, then we say that F is an
invariant of Spec .

Recall that TypeOK is defined by:

The Consensus module defines this state condition that is
stronger than TypeOK , and asserts that it’s an invariant:

18

The invariance of Inv should be obvious.

Consensus should be obviously correct because we’ll use it
to define what correctness of the Paxos spec means.

We should check it for two reasons:

– To learn how, because we’ll need to check that our Paxos

spec correctly describes the Paxos algorithm.

– When you start writing specs, you can make mistakes
even in one as simple as Consensus .

The easy way to check a spec: use the TLC model checker.

Just tell TLC what set to use for Value .

TLC computes all possible executions and reports an error
if one doesn’t satisfy 2 Inv .

19

The invariance of Inv should be obvious.

Consensus should be obviously correct because we’ll use it
to define what correctness of the Paxos spec means.

We should check it for two reasons:

– To learn how, because we’ll need to check that our Paxos

spec correctly describes the Paxos algorithm.

– When you start writing specs, you can make mistakes
even in one as simple as Consensus .

The easy way to check a spec: use the TLC model checker.

Just tell TLC what set to use for Value .

TLC computes all possible executions and reports an error
if one doesn’t satisfy 2 Inv .

19

The invariance of Inv should be obvious.

Consensus should be obviously correct because we’ll use it
to define what correctness of the Paxos spec means.

We should check it for two reasons:

– To learn how, because we’ll need to check that our Paxos

spec correctly describes the Paxos algorithm.

– When you start writing specs, you can make mistakes
even in one as simple as Consensus .

The easy way to check a spec: use the TLC model checker.

Just tell TLC what set to use for Value .

TLC computes all possible executions and reports an error
if one doesn’t satisfy 2 Inv .

19

The invariance of Inv should be obvious.

Consensus should be obviously correct because we’ll use it
to define what correctness of the Paxos spec means.

We should check it for two reasons:

– To learn how, because we’ll need to check that our Paxos

spec correctly describes the Paxos algorithm.

– When you start writing specs, you can make mistakes
even in one as simple as Consensus .

The easy way to check a spec: use the TLC model checker.

Just tell TLC what set to use for Value .

TLC computes all possible executions and reports an error
if one doesn’t satisfy 2 Inv .

19

The invariance of Inv should be obvious.

Consensus should be obviously correct because we’ll use it
to define what correctness of the Paxos spec means.

We should check it for two reasons:

– To learn how, because we’ll need to check that our Paxos

spec correctly describes the Paxos algorithm.

– When you start writing specs, you can make mistakes
even in one as simple as Consensus .

The easy way to check a spec: use the TLC model checker.

Just tell TLC what set to use for Value .

TLC computes all possible executions and reports an error
if one doesn’t satisfy 2 Inv .

19

The invariance of Inv should be obvious.

Consensus should be obviously correct because we’ll use it
to define what correctness of the Paxos spec means.

We should check it for two reasons:

– To learn how, because we’ll need to check that our Paxos

spec correctly describes the Paxos algorithm.

– When you start writing specs, you can make mistakes
even in one as simple as Consensus .

The easy way to check a spec: use the TLC model checker.

Just tell TLC what set to use for Value .

TLC computes all possible executions and reports an error
if one doesn’t satisfy 2 Inv .

19

The invariance of Inv should be obvious.

Consensus should be obviously correct because we’ll use it
to define what correctness of the Paxos spec means.

We should check it for two reasons:

– To learn how, because we’ll need to check that our Paxos

spec correctly describes the Paxos algorithm.

– When you start writing specs, you can make mistakes
even in one as simple as Consensus .

The easy way to check a spec: use the TLC model checker.

Just tell TLC what set to use for Value .

TLC computes all possible executions and reports an error
if one doesn’t satisfy 2 Inv .

19

The invariance of Inv should be obvious.

Consensus should be obviously correct because we’ll use it
to define what correctness of the Paxos spec means.

We should check it for two reasons:

– To learn how, because we’ll need to check that our Paxos

spec correctly describes the Paxos algorithm.

– When you start writing specs, you can make mistakes
even in one as simple as Consensus .

The easy way to check a spec: use the TLC model checker.

Just tell TLC what set to use for Value .

TLC computes all possible executions and reports an error
if one doesn’t satisfy 2 Inv .

19

Proving Invariance

19

Proving Invariance

I’m not going to prove anything, but let’s see how it’s done.

19

Proving Invariance

The theorem asserting that Inv is an invariant of Spec .

This gives the theorem the name Invariance .

Let’s look at the proof.

19

Proving Invariance

The theorem asserting that Inv is an invariant of Spec .

This gives the theorem the name Invariance .

Let’s look at the proof.

19

Proving Invariance

The theorem asserting that Inv is an invariant of Spec .

This gives the theorem the name Invariance .

Let’s look at the proof.

19

Proving Invariance

The first step is a condition on states.

It says that every state satisfying Init satisfies Inv .

It implies Inv is satisfied by the initial state of any
behavior satisfying Spec .

19

Proving Invariance

The first step is a condition on states.

It says that every state satisfying Init satisfies Inv .

It implies Inv is satisfied by the initial state of any
behavior satisfying Spec .

19

Proving Invariance

The first step is a condition on states.

It says that every state satisfying Init satisfies Inv .

It implies Inv is satisfied by the initial state of any
behavior satisfying Spec .

19

Proving Invariance

Here’s the next step, with this mysterious stuff.

Which we ignore.

19

Proving Invariance

Here’s the next step, with this mysterious stuff.

Which we ignore.

19

Proving Invariance

Here’s the next step, with this mysterious stuff.

Which we ignore.

19

Proving Invariance

The second proof step is a condition on steps.

It asserts that if the current state satisfies Inv

and the step satisfies formula Next

then the next state satisfies Inv .

This condition is satisfied by every step of every behavior (sequence
of states).

20

Proving Invariance

The second proof step is a condition on steps.

It asserts that if the current state satisfies Inv

and the step satisfies formula Next

then the next state satisfies Inv .

This condition is satisfied by every step of every behavior (sequence
of states).

20

Proving Invariance

The second proof step is a condition on steps.

It asserts that if the current state satisfies Inv

and the step satisfies formula Next

then the next state satisfies Inv .

This condition is satisfied by every step of every behavior (sequence
of states).

20

Proving Invariance

The second proof step is a condition on steps.

It asserts that if the current state satisfies Inv

and the step satisfies formula Next

then the next state satisfies Inv .

This condition is satisfied by every step of every behavior (sequence
of states).

20

Proving Invariance

The second proof step is a condition on steps.

It asserts that if the current state satisfies Inv

and the step satisfies formula Next

then the next state satisfies Inv .

This condition is satisfied by every step of every behavior (sequence
of states).

20

Proving Invariance

The second proof step is a condition on steps.

It asserts that if the current state satisfies Inv

and the step satisfies formula Next

then the next state satisfies Inv .

This condition is satisfied by every step of every behavior (sequence
of states).

20

Proving Invariance

The second proof step is a condition on steps.

It asserts that if the current state satisfies Inv

and the step satisfies formula Next

then the next state satisfies Inv .

This condition is satisfied by every step of every behavior (sequence
of states).

20

Proving Invariance

The last step of a proof is a QED step

It asserts that the preceding steps prove the theorem.

23

Proving Invariance

The last step of a proof is a QED step

It asserts that the preceding steps prove the theorem.

23

Proving Invariance

Here’s its proof which says that the theorem follows from
steps 〈1〉1 and 〈1〉2 and the definition of Spec .

23

Proving Invariance

Here’s its proof which says that the theorem follows from
steps 〈1〉1 and 〈1〉2 and the definition of Spec .

23

Proving Invariance

The proof is correct because if a behavior satisfies Spec then

1. Its initial state satisfies Inv .

2. If any of its states satisfies Inv then so does its next state.

3. All of its states satisfy Inv .

4. The behavior satisfies 2 Inv .

23

Proving Invariance

The proof is correct because if a behavior satisfies Spec then

1. Its initial state satisfies Inv .

2. If any of its states satisfies Inv then so does its next state.

3. All of its states satisfy Inv .

4. The behavior satisfies 2 Inv .

23

Proving Invariance

The proof is correct because if a behavior satisfies Spec then

1. Its initial state satisfies Inv .
Because it satisfies Init

2. If any of its states satisfies Inv then so does its next state.

3. All of its states satisfy Inv .

4. The behavior satisfies 2 Inv .

23

Proving Invariance

The proof is correct because if a behavior satisfies Spec then

1. Its initial state satisfies Inv .
Because it satisfies Init (by definition of Spec)

2. If any of its states satisfies Inv then so does its next state.

3. All of its states satisfy Inv .

4. The behavior satisfies 2 Inv .

23

Proving Invariance

The proof is correct because if a behavior satisfies Spec then

1. Its initial state satisfies Inv .
Because it satisfies Init so by 〈1〉1 it satisfies Inv .

2. If any of its states satisfies Inv then so does its next state.

3. All of its states satisfy Inv .

4. The behavior satisfies 2 Inv .

23

Proving Invariance

The proof is correct because if a behavior satisfies Spec then

1. Its initial state satisfies Inv .

2. If any of its states satisfies Inv then so does its next state.

3. All of its states satisfy Inv .

4. The behavior satisfies 2 Inv .

23

Proving Invariance

The proof is correct because if a behavior satisfies Spec then

1. Its initial state satisfies Inv .

2. If any of its states satisfies Inv then so does its next state.
Because the step to the next state satisfies Next

3. All of its states satisfy Inv .

4. The behavior satisfies 2 Inv .

23

Proving Invariance

The proof is correct because if a behavior satisfies Spec then

1. Its initial state satisfies Inv .

2. If any of its states satisfies Inv then so does its next state.
Because the step to the next state satisfies Next (by definition of Spec)

3. All of its states satisfy Inv .

4. The behavior satisfies 2 Inv .

23

Proving Invariance

The proof is correct because if a behavior satisfies Spec then

1. Its initial state satisfies Inv .

2. If any of its states satisfies Inv then so does its next state.
Because the step to the next state satisfies Next so by 〈1〉2 its
next state satisfies Inv .

3. All of its states satisfy Inv .

4. The behavior satisfies 2 Inv .

23

Proving Invariance

The proof is correct because if a behavior satisfies Spec then

1. Its initial state satisfies Inv .

2. If any of its states satisfies Inv then so does its next state.

3. All of its states satisfy Inv .

4. The behavior satisfies 2 Inv .

23

Proving Invariance

The proof is correct because if a behavior satisfies Spec then

1. Its initial state satisfies Inv .

2. If any of its states satisfies Inv then so does its next state.

3. All of its states satisfy Inv .
By 1 , 2 , and mathematical induction.

4. The behavior satisfies 2 Inv .

23

Proving Invariance

The proof is correct because if a behavior satisfies Spec then

1. Its initial state satisfies Inv .

2. If any of its states satisfies Inv then so does its next state.

3. All of its states satisfy Inv .

4. The behavior satisfies 2 Inv .

23

Proving Invariance

The proof is correct because if a behavior satisfies Spec then

1. Its initial state satisfies Inv .

2. If any of its states satisfies Inv then so does its next state.

3. All of its states satisfy Inv .

4. The behavior satisfies 2 Inv .
By 3 , and the meaning of 2 .

23

Proving Invariance

The proof is correct because if a behavior satisfies Spec then

1. Its initial state satisfies Inv .

2. If any of its states satisfies Inv then so does its next state.

3. All of its states satisfy Inv .

4. The behavior satisfies 2 Inv .

23

Proving Invariance

The proof is correct because if a behavior satisfies Spec then

1. Its initial state satisfies Inv .

2. If any of its states satisfies Inv then so does its next state.

3. All of its states satisfy Inv .

4. The behavior satisfies 2 Inv .

This proves the theorem.

23

Here’s the proof.

A complete proof would have proofs of the other two steps, each
proof being either

– A BY statement, or
– A sequence of steps 〈2〉1, 〈2〉2, . . . with their proofs, each proof being either

– A BY statement, or

– A sequence of steps 〈3〉1, 〈3〉2, . . . with their proofs, each proof being either

...

23

Here’s the proof (with the mysterious stuff added back).

A complete proof would have proofs of the other two steps, each
proof being either

– A BY statement, or
– A sequence of steps 〈2〉1, 〈2〉2, . . . with their proofs, each proof being either

– A BY statement, or

– A sequence of steps 〈3〉1, 〈3〉2, . . . with their proofs, each proof being either

...

23

The TLA+ proof system can check this proof.

A complete proof would have proofs of the other two steps, each
proof being either

– A BY statement, or
– A sequence of steps 〈2〉1, 〈2〉2, . . . with their proofs, each proof being either

– A BY statement, or

– A sequence of steps 〈3〉1, 〈3〉2, . . . with their proofs, each proof being either

...

23

A complete proof would have proofs of the other two steps, each
proof being either

– A BY statement, or
– A sequence of steps 〈2〉1, 〈2〉2, . . . with their proofs, each proof being either

– A BY statement, or

– A sequence of steps 〈3〉1, 〈3〉2, . . . with their proofs, each proof being either

...

23

A complete proof would have proofs of the other two steps, each
proof being either

– A BY statement, or
– A sequence of steps 〈2〉1, 〈2〉2, . . . with their proofs, each proof being either

– A BY statement, or

– A sequence of steps 〈3〉1, 〈3〉2, . . . with their proofs, each proof being either

...

23

A complete proof would have proofs of the other two steps, each
proof being either

– A BY statement, or
– A sequence of steps 〈2〉1, 〈2〉2, . . . with their proofs, each proof being either

– A BY statement, or

– A sequence of steps 〈3〉1, 〈3〉2, . . . with their proofs, each proof being either

...

23

A complete proof would have proofs of the other two steps, each
proof being either

– A BY statement, or
– A sequence of steps 〈2〉1, 〈2〉2, . . . with their proofs, each proof being either

– A BY statement, or

– A sequence of steps 〈3〉1, 〈3〉2, . . . with their proofs, each proof being either

...

23

A complete proof would have proofs of the other two steps, each
proof being either

– A BY statement, or
– A sequence of steps 〈2〉1, 〈2〉2, . . . with their proofs, each proof being either

– A BY statement, or

– A sequence of steps 〈3〉1, 〈3〉2, . . . with their proofs, each proof being either

...

23

A complete proof would have proofs of the other two steps, each
proof being either

– A BY statement, or
– A sequence of steps 〈2〉1, 〈2〉2, . . . with their proofs, each proof being either

– A BY statement, or

– A sequence of steps 〈3〉1, 〈3〉2, . . . with their proofs, each proof being either

...

23

A complete proof would have proofs of the other two steps, each
proof being either

– A BY statement, or
– A sequence of steps 〈2〉1, 〈2〉2, . . . with their proofs, each proof being either

– A BY statement, or

– A sequence of steps 〈3〉1, 〈3〉2, . . . with their proofs, each proof being either

...

23

An invariant satisfying this condition is called an inductive invariant.

Not all invariants are inductive.

To prove a non-inductive invariant, you must find an
inductive invariant that implies it.

24

An invariant satisfying this condition is called an inductive invariant.

Not all invariants are inductive.

To prove a non-inductive invariant, you must find an
inductive invariant that implies it.

24

An invariant satisfying this condition is called an inductive invariant.

Not all invariants are inductive.

To prove a non-inductive invariant, you must find an
inductive invariant that implies it.

24

What a system does next depends only on its current state, not
what it did before.

It always does the right thing because it satisfies some
inductive invariant.

To understand why the system works right, you need to find
that inductive invariant.

24

What a system does next depends only on its current state, not
what it did before.

It always does the right thing because it satisfies some
inductive invariant.

To understand why the system works right, you need to find
that inductive invariant.

24

What a system does next depends only on its current state, not
what it did before.

It always does the right thing because it satisfies some
inductive invariant.

To understand why the system works right, you need to find
that inductive invariant.

24

What a system does next depends only on its current state, not
what it did before.

It always does the right thing because it satisfies some
inductive invariant.

To understand why the system works right, you need to find
that inductive invariant.

24

THE VOTING ALGORITHM

24

How I Discovered Paxos

Some people in the lab had built a distributed file system.

I thought what they claimed it accomplished was impossible.

I tried to prove it was impossible; instead I discovered
the Paxos algorithm.

25

How I Discovered Paxos

Some people in the lab had built a distributed file system.

I thought what they claimed it accomplished was impossible.

I tried to prove it was impossible; instead I discovered
the Paxos algorithm.

25

How I Discovered Paxos

Some people in the lab had built a distributed file system.

I thought what they claimed it accomplished was impossible.

I tried to prove it was impossible; instead I discovered
the Paxos algorithm.

25

How I Discovered Paxos

Some people in the lab had built a distributed file system.

I thought what they claimed it accomplished was impossible.

I tried to prove it was impossible; instead I discovered
the Paxos algorithm.

25

I don’t remember the thought process that led me to Paxos.

But I knew that execution on computers sending messages
to one another was an irrelevant detail.

I was thinking only about a set of processes and
what they needed to know about one another.

How they could get that information from messages
was the easy part that came later.

What I had first was what, many years later, I described
as the Voting algorithm that I’ll show you next.

But first . . .

25

I don’t remember the thought process that led me to Paxos.

But I knew that execution on computers sending messages
to one another was an irrelevant detail.

I was thinking only about a set of processes and
what they needed to know about one another.

How they could get that information from messages
was the easy part that came later.

What I had first was what, many years later, I described
as the Voting algorithm that I’ll show you next.

But first . . .

25

I don’t remember the thought process that led me to Paxos.

But I knew that execution on computers sending messages
to one another was an irrelevant detail.

I was thinking only about a set of processes and
what they needed to know about one another.

How they could get that information from messages
was the easy part that came later.

What I had first was what, many years later, I described
as the Voting algorithm that I’ll show you next.

But first . . .

25

I don’t remember the thought process that led me to Paxos.

But I knew that execution on computers sending messages
to one another was an irrelevant detail.

I was thinking only about a set of processes and
what they needed to know about one another.

How they could get that information from messages
was the easy part that came later.

What I had first was what, many years later, I described
as the Voting algorithm that I’ll show you next.

But first . . .

25

I don’t remember the thought process that led me to Paxos.

But I knew that execution on computers sending messages
to one another was an irrelevant detail.

I was thinking only about a set of processes and
what they needed to know about one another.

How they could get that information from messages
was the easy part that came later.

What I had first was what, many years later, I described
as the Voting algorithm that I’ll show you next.

But first . . .

25

I don’t remember the thought process that led me to Paxos.

But I knew that execution on computers sending messages
to one another was an irrelevant detail.

I was thinking only about a set of processes and
what they needed to know about one another.

How they could get that information from messages
was the easy part that came later.

What I had first was what, many years later, I described
as the Voting algorithm that I’ll show you next.

But first . . .

25

How to Write an Algorithm Today

1. Think up the algorithm.

2. Formally specify it.
If you can’t, go to 1.

3. Model check it.
If model checking finds an error, go to 1 or 2.
If you’re sufficiently convinced it’s correct
and you’re not going to publish it, then stop.

4. Write a rigorous correctness proof & keep model checking.
If you or the model checker find an error, go to 1 or 2.

Probably not machine checked.
See How to Write a 21st Century Proof .

27

How to Write an Algorithm Today

1. Think up the algorithm.

2. Formally specify it.
If you can’t, go to 1.

3. Model check it.
If model checking finds an error, go to 1 or 2.
If you’re sufficiently convinced it’s correct
and you’re not going to publish it, then stop.

4. Write a rigorous correctness proof & keep model checking.
If you or the model checker find an error, go to 1 or 2.

Probably not machine checked.
See How to Write a 21st Century Proof .

27

How to Write an Algorithm Today

1. Think up the algorithm.

2. Formally specify it.
If you can’t, go to 1.

3. Model check it.
If model checking finds an error, go to 1 or 2.
If you’re sufficiently convinced it’s correct
and you’re not going to publish it, then stop.

4. Write a rigorous correctness proof & keep model checking.
If you or the model checker find an error, go to 1 or 2.

Probably not machine checked.
See How to Write a 21st Century Proof .

27

How to Write an Algorithm Today

1. Think up the algorithm.

2. Formally specify it.
If you can’t, go to 1.

3. Model check it.
If model checking finds an error, go to 1 or 2.
If you’re sufficiently convinced it’s correct
and you’re not going to publish it, then stop.

4. Write a rigorous correctness proof & keep model checking.
If you or the model checker find an error, go to 1 or 2.

Probably not machine checked.
See How to Write a 21st Century Proof .

27

How to Write an Algorithm Today

1. Think up the algorithm.

2. Formally specify it.
If you can’t, go to 1.

3. Model check it.
If model checking finds an error, go to 1 or 2.
If you’re sufficiently convinced it’s correct
and you’re not going to publish it, then stop.

4. Write a rigorous correctness proof & keep model checking.
If you or the model checker find an error, go to 1 or 2.

Probably not machine checked.
See How to Write a 21st Century Proof .

27

How to Write an Algorithm Today

1. Think up the algorithm.

2. Formally specify it.
If you can’t, go to 1.

3. Model check it.
If model checking finds an error, go to 1 or 2.
If you’re sufficiently convinced it’s correct
and you’re not going to publish it, then stop.

4. Write a rigorous correctness proof & keep model checking.
If you or the model checker find an error, go to 1 or 2.

Probably not machine checked.
See How to Write a 21st Century Proof .

27

How to Write an Algorithm Today

1. Think up the algorithm.

2. Formally specify it.
If you can’t, go to 1.

3. Model check it.
If model checking finds an error, go to 1 or 2.
If you’re sufficiently convinced it’s correct
and you’re not going to publish it, then stop.

4. Write a rigorous correctness proof & keep model checking.
If you or the model checker find an error, go to 1 or 2.

Probably not machine checked.
See How to Write a 21st Century Proof .

27

How to Write an Algorithm Today

1. Think up the algorithm.

2. Formally specify it.
If you can’t, go to 1.

3. Model check it.
If model checking finds an error, go to 1 or 2.
If you’re sufficiently convinced it’s correct
and you’re not going to publish it, then stop.

4. Write a rigorous correctness proof & keep model checking.
If you or the model checker find an error, go to 1 or 2.

Probably not machine checked.
See How to Write a 21st Century Proof .

27

How to Write an Algorithm Today

1. Think up the algorithm.

2. Formally specify it.
If you can’t, go to 1.

3. Model check it.
If model checking finds an error, go to 1 or 2.
If you’re sufficiently convinced it’s correct
and you’re not going to publish it, then stop.

4. Write a rigorous correctness proof & keep model checking.
If you or the model checker find an error, go to 1 or 2.

Probably not machine checked.
See How to Write a 21st Century Proof .

27

How to Write an Algorithm Today

1. Think up the algorithm.

2. Formally specify it.
If you can’t, go to 1.

3. Model check it.
If model checking finds an error, go to 1 or 2.
If you’re sufficiently convinced it’s correct
and you’re not going to publish it, then stop.

4. Write a rigorous correctness proof & keep model checking.
If you or the model checker find an error, go to 1 or 2.

Probably not machine checked.
See How to Write a 21st Century Proof .

27

How to Write an Algorithm Today

1. Think up the algorithm.

2. Formally specify it.
If you can’t, go to 1.

3. Model check it.
If model checking finds an error, go to 1 or 2.
If you’re sufficiently convinced it’s correct
and you’re not going to publish it, then stop.

4. Write a rigorous correctness proof & keep model checking.
If you or the model checker find an error, go to 1 or 2.

Probably not machine checked.
See How to Write a 21st Century Proof .

27

How to Write an Algorithm Today

1. Think up the algorithm.

2. Formally specify it.
If you can’t, go to 1.

3. Model check it.
If model checking finds an error, go to 1 or 2.
If you’re sufficiently convinced it’s correct
and you’re not going to publish it, then stop.

4. Write a rigorous correctness proof & keep model checking.
If you or the model checker find an error, go to 1 or 2.

Probably not machine checked.
See How to Write a 21st Century Proof .

27

The Informal Idea Behind the Algorithm

The algorithm is executed by a set of processes.

An obvious approach:
Acceptors vote on which value to choose.
A value is chosen if a majority of acceptors vote for it.

An obvious problem with this obvious approach:
Assume 2N + 1 acceptors.
N vote for v1 . N vote for v2 .
The other acceptor votes and then fails.

There’s no way to tell if v1 was chosen, or v2 was chosen,
or neither was chosen.

28

The Informal Idea Behind the Algorithm

The algorithm is executed by a set of processes.

An obvious approach:
Acceptors vote on which value to choose.
A value is chosen if a majority of acceptors vote for it.

An obvious problem with this obvious approach:
Assume 2N + 1 acceptors.
N vote for v1 . N vote for v2 .
The other acceptor votes and then fails.

There’s no way to tell if v1 was chosen, or v2 was chosen,
or neither was chosen.

28

The Informal Idea Behind the Algorithm

The algorithm is executed by a set of acceptors.

An obvious approach:
Acceptors vote on which value to choose.
A value is chosen if a majority of acceptors vote for it.

An obvious problem with this obvious approach:
Assume 2N + 1 acceptors.
N vote for v1 . N vote for v2 .
The other acceptor votes and then fails.

There’s no way to tell if v1 was chosen, or v2 was chosen,
or neither was chosen.

28

The Informal Idea Behind the Algorithm

The algorithm is executed by a set of acceptors.

An obvious approach:
Acceptors vote on which value to choose.
A value is chosen if a majority of acceptors vote for it.

An obvious problem with this obvious approach:
Assume 2N + 1 acceptors.
N vote for v1 . N vote for v2 .
The other acceptor votes and then fails.

There’s no way to tell if v1 was chosen, or v2 was chosen,
or neither was chosen.

28

The Informal Idea Behind the Algorithm

The algorithm is executed by a set of acceptors.

An obvious approach:
Acceptors vote on which value to choose.
A value is chosen if a majority of acceptors vote for it.

An obvious problem with this obvious approach:
Assume 2N + 1 acceptors.
N vote for v1 . N vote for v2 .
The other acceptor votes and then fails.

There’s no way to tell if v1 was chosen, or v2 was chosen,
or neither was chosen.

28

The Informal Idea Behind the Algorithm

The algorithm is executed by a set of acceptors.

An obvious approach:
Acceptors vote on which value to choose.
A value is chosen if a majority of acceptors vote for it.

An obvious problem with this obvious approach:
Assume 2N + 1 acceptors.
N vote for v1 . N vote for v2 .
The other acceptor votes and then fails.

There’s no way to tell if v1 was chosen, or v2 was chosen,
or neither was chosen.

28

The Informal Idea Behind the Algorithm

The algorithm is executed by a set of acceptors.

An obvious approach:
Acceptors vote on which value to choose.
A value is chosen if a majority of acceptors vote for it.

An obvious problem with this obvious approach:
Assume 2N + 1 acceptors.
N vote for v1 . N vote for v2 .
The other acceptor votes and then fails.

There’s no way to tell if v1 was chosen, or v2 was chosen,
or neither was chosen.

28

The Informal Idea Behind the Algorithm

The algorithm is executed by a set of acceptors.

An obvious approach:
Acceptors vote on which value to choose.
A value is chosen if a majority of acceptors vote for it.

An obvious problem with this obvious approach:
Assume 2N + 1 acceptors.
N vote for v1 . N vote for v2 .
The other acceptor votes and then fails.

There’s no way to tell if v1 was chosen, or v2 was chosen,
or neither was chosen.

28

The Informal Idea Behind the Algorithm

The algorithm is executed by a set of acceptors.

An obvious approach:
Acceptors vote on which value to choose.
A value is chosen if a majority of acceptors vote for it.

An obvious problem with this obvious approach:
Assume 2N + 1 acceptors.
N vote for v1 . N vote for v2 .
The other acceptor votes and then fails.

There’s no way to tell if v1 was chosen, or v2 was chosen,
or neither was chosen.

28

The Informal Idea Behind the Algorithm

The algorithm is executed by a set of acceptors.

An obvious approach:
Acceptors vote on which value to choose.
A value is chosen if a majority of acceptors vote for it.

An obvious problem with this obvious approach:
Assume 2N + 1 acceptors.
N vote for v1 . N vote for v2 .
The other acceptor votes and then fails.

There’s no way to tell if v1 was chosen, or v2 was chosen,
or neither was chosen.

28

The Informal Idea Behind the Algorithm

The algorithm is executed by a set of acceptors.

An obvious approach:
Acceptors vote on which value to choose.
A value is chosen if a majority of acceptors vote for it.

An obvious problem with this obvious approach:
Assume 2N + 1 acceptors.
N vote for v1 . N vote for v2 .
The other acceptor votes and then fails.

There’s no way to tell if v1 was chosen, or v2 was chosen,
or neither was chosen.

28

The Informal Idea Behind the Algorithm

The algorithm is executed by a set of acceptors.

An obvious approach:
Acceptors vote on which value to choose.
A value is chosen if a majority of acceptors vote for it.

An obvious problem with this obvious approach:
Assume 2N + 1 acceptors.
N vote for v1 . N vote for v2 .
The other acceptor votes and then fails.

There’s no way to tell if v1 was chosen, or v2 was chosen,
or neither was chosen.

28

The Informal Idea Behind the Algorithm

The algorithm is executed by a set of acceptors.

An obvious approach:
Acceptors vote on which value to choose.
A value is chosen if a majority of acceptors vote for it.

An obvious problem with this obvious approach:
Assume 2N + 1 acceptors.
N vote for v1 . N vote for v2 .
The other acceptor votes and then fails.

There’s no way to tell if v1 was chosen, or v2 was chosen,
or neither was chosen.

28

The Informal Idea Behind the Algorithm

The algorithm is executed by a set of acceptors.

An obvious approach:
Acceptors vote on which value to choose.
A value is chosen if a majority of acceptors vote for it.

An obvious problem with this obvious approach:
Assume 2N + 1 acceptors.
N vote for v1 . N vote for v2 .
The other acceptor votes and then fails.

There’s no way to tell if v1 was chosen, or v2 was chosen,
or neither was chosen.

28

The Informal Idea Behind the Algorithm

The algorithm is executed by a set of acceptors.

An obvious approach:
Acceptors vote on which value to choose.
A value is chosen if a majority of acceptors vote for it.

An obvious problem with this obvious approach:
Assume 2N + 1 acceptors.
N vote for v1 . N vote for v2 .
The other acceptor votes and then fails.

There’s no way to tell if v1 was chosen, or v2 was chosen,
or neither was chosen.

28

Here’s the solution to this problem:
Acceptors vote in a sequence of ballots.
A value is chosen if a majority of acceptors vote for it in any ballot.
Don’t allow different acceptors to vote for different values
in the same ballot.

29

Here’s the solution to this problem:
Acceptors vote in a sequence of ballots.
A value is chosen if a majority of acceptors vote for it in any ballot.
Don’t allow different acceptors to vote for different values
in the same ballot.

29

Here’s the solution to this problem:
Acceptors vote in a sequence of ballots.
A value is chosen if a majority of acceptors vote for it in any ballot.
Don’t allow different acceptors to vote for different values
in the same ballot.

29

Here’s the solution to this problem:
Acceptors vote in a sequence of ballots.
A value is chosen if a majority of acceptors vote for it in any ballot.
Don’t allow different acceptors to vote for different values
in the same ballot.

29

Here’s the solution to this problem:
Acceptors vote in a sequence of ballots.
A value is chosen if a majority of acceptors vote for it in any ballot.
Don’t allow different acceptors to vote for different values
in the same ballot.

But getting acceptors to agree on a single value
is the problem we’re trying to solve!

In Paxos, that will be done by having a leader
tell them what value to vote for.

But what if the leader fails?

There’ll be multiple leaders, with
a single leader for each ballot.

29

Here’s the solution to this problem:
Acceptors vote in a sequence of ballots.
A value is chosen if a majority of acceptors vote for it in any ballot.
Don’t allow different acceptors to vote for different values
in the same ballot.

But getting acceptors to agree on a single value
is the problem we’re trying to solve!

In Paxos, that will be done by having a leader
tell them what value to vote for.

But what if the leader fails?

There’ll be multiple leaders, with
a single leader for each ballot.

29

Here’s the solution to this problem:
Acceptors vote in a sequence of ballots.
A value is chosen if a majority of acceptors vote for it in any ballot.
Don’t allow different acceptors to vote for different values
in the same ballot.

But getting acceptors to agree on a single value
is the problem we’re trying to solve!

In Paxos, that will be done by having a leader
tell them what value to vote for.

But what if the leader fails?

There’ll be multiple leaders, with
a single leader for each ballot.

29

Here’s the solution to this problem:
Acceptors vote in a sequence of ballots.
A value is chosen if a majority of acceptors vote for it in any ballot.
Don’t allow different acceptors to vote for different values
in the same ballot.

But getting acceptors to agree on a single value
is the problem we’re trying to solve!

In Paxos, that will be done by having a leader
tell them what value to vote for.

But what if the leader fails?

There’ll be multiple leaders, with
a single leader for each ballot.

29

Here’s the solution to this problem:
Acceptors vote in a sequence of ballots.
A value is chosen if a majority of acceptors vote for it in any ballot.
Don’t allow different acceptors to vote for different values
in the same ballot.

But there’s still this obvious problem:
N acceptors vote for v1 in one ballot.
N acceptors vote for v2 in another ballot.
The last acceptor votes and then fails.

Here’s the very non-obvious solution:
Allow an acceptor to vote for value v in ballot b only if
no value other than v has been or ever will be chosen
in any ballot numbered less than b .

29

Here’s the solution to this problem:
Acceptors vote in a sequence of ballots.
A value is chosen if a majority of acceptors vote for it in any ballot.
Don’t allow different acceptors to vote for different values
in the same ballot.

But there’s still this obvious problem:
N acceptors vote for v1 in one ballot.
N acceptors vote for v2 in another ballot.
The last acceptor votes and then fails.

Here’s the very non-obvious solution:
Allow an acceptor to vote for value v in ballot b only if
no value other than v has been or ever will be chosen
in any ballot numbered less than b .

29

Here’s the solution to this problem:
Acceptors vote in a sequence of ballots.
A value is chosen if a majority of acceptors vote for it in any ballot.
Don’t allow different acceptors to vote for different values
in the same ballot.

But there’s still this obvious problem:
N acceptors vote for v1 in one ballot.
N acceptors vote for v2 in another ballot.
The last acceptor votes and then fails.

Here’s the very non-obvious solution:
Allow an acceptor to vote for value v in ballot b only if
no value other than v has been or ever will be chosen
in any ballot numbered less than b .

29

Here’s the solution to this problem:
Acceptors vote in a sequence of ballots.
A value is chosen if a majority of acceptors vote for it in any ballot.
Don’t allow different acceptors to vote for different values
in the same ballot.

But there’s still this obvious problem:
N acceptors vote for v1 in one ballot.
N acceptors vote for v2 in another ballot.
The last acceptor votes and then fails.

Here’s the very non-obvious solution:
Allow an acceptor to vote for value v in ballot b only if
no value other than v has been or ever will be chosen
in any ballot numbered less than b .

29

Here’s the solution to this problem:
Acceptors vote in a sequence of ballots.
A value is chosen if a majority of acceptors vote for it in any ballot.
Don’t allow different acceptors to vote for different values
in the same ballot.

But there’s still this obvious problem:
N acceptors vote for v1 in one ballot.
N acceptors vote for v2 in another ballot.
The last acceptor votes and then fails.

Here’s the very non-obvious solution:
Allow an acceptor to vote for value v in ballot b only if
no value other than v has been or ever will be chosen
in any ballot numbered less than b .

29

Here’s the solution to this problem:
Acceptors vote in a sequence of ballots.
A value is chosen if a majority of acceptors vote for it in any ballot.
Don’t allow different acceptors to vote for different values
in the same ballot.

But there’s still this obvious problem:
N acceptors vote for v1 in one ballot.
N acceptors vote for v2 in another ballot.
The last acceptor votes and then fails.

Here’s the very non-obvious solution:
Allow an acceptor to vote for value v in ballot b only if
no value other than v has been or ever will be chosen
in any ballot numbered less than b .

29

Here’s the solution to this problem:
Acceptors vote in a sequence of ballots.
A value is chosen if a majority of acceptors vote for it in any ballot.
Don’t allow different acceptors to vote for different values
in the same ballot.

But there’s still this obvious problem:
N acceptors vote for v1 in one ballot.
N acceptors vote for v2 in another ballot.
The last acceptor votes and then fails.

Here’s the very non-obvious solution:
Allow an acceptor to vote for value v in ballot b only if
no value other than v has been or ever will be chosen
in any ballot numbered less than b .

29

Here’s the solution to this problem:
Acceptors vote in a sequence of ballots.
A value is chosen if a majority of acceptors vote for it in any ballot.
Don’t allow different acceptors to vote for different values
in the same ballot.

But there’s still this obvious problem:
N acceptors vote for v1 in one ballot.
N acceptors vote for v2 in another ballot.
The last acceptor votes and then fails.

Here’s the very non-obvious solution:
Allow an acceptor to vote for value v in ballot b only if
no value other than v has been or ever will be chosen
in any ballot numbered less than b .

29

Here’s the solution to this problem:
Acceptors vote in a sequence of ballots.
A value is chosen if a majority of acceptors vote for it in any ballot.
Don’t allow different acceptors to vote for different values
in the same ballot.

But there’s still this obvious problem:
N acceptors vote for v1 in one ballot.
N acceptors vote for v2 in another ballot.
The last acceptor votes and then fails.

Here’s the very non-obvious solution:
Allow an acceptor to vote for value v in ballot b only if
no value other than v has been or ever will be chosen
in any ballot numbered less than b .

29

Allow an acceptor to vote for value v in ballot b only if
no value other than v has been or ever will be chosen
in any ballot numbered less than b .

31

Allow an acceptor to vote for value v in ballot b only if
no value other than v has been or ever will be chosen
in any ballot numbered less than b .

31

Allow an acceptor to vote for value v in ballot b only if
no value other than v has been or ever will be chosen
in any ballot numbered less than b .

31

Allow an acceptor to vote for value v in ballot b only if
no value other than v has been or ever will be chosen
in any ballot numbered less than b .

31

Allow an acceptor to vote for value v in ballot b only if
no value other than v has been or ever will be chosen
in any ballot numbered less than b .

31

Allow an acceptor to vote for value v in ballot b only if
no value other than v has been or ever will be chosen
in any ballot numbered less than b .

How do we determine this?

Especially this?

If it was obvious, I wouldn’t have won a Turing award.

Don’t worry about it now.

31

Allow an acceptor to vote for value v in ballot b only if
no value other than v has been or ever will be chosen
in any ballot numbered less than b .

How do we determine this?

Especially this?

If it was obvious, I wouldn’t have won a Turing award.

Don’t worry about it now.

31

Allow an acceptor to vote for value v in ballot b only if
no value other than v has been or ever will be chosen
in any ballot numbered less than b .

How do we determine this?

Especially this?

If it was obvious, I wouldn’t have won a Turing award.

Don’t worry about it now.

31

Allow an acceptor to vote for value v in ballot b only if
no value other than v has been or ever will be chosen
in any ballot numbered less than b .

How do we determine this?

Especially this?

If it was obvious, I wouldn’t have won a Turing award.

Don’t worry about it now.

31

Allow an acceptor to vote for value v in ballot b only if
no value other than v has been or ever will be chosen
in any ballot numbered less than b .

Define v safe at b to mean this.

31

Allow an acceptor to vote for value v in ballot b only if
v is safe at b .has been or ever will be chosen
in any ballot numbered less than b .

31

Allow an acceptor to vote for value v in ballot b only if
v is safe at b .has been or ever will be chosen
in any ballot numbered less than b .Where v safe at b means:

No value other than v has been or ever will be chosen
in any ballot numbered less than b .

31

Allow an acceptor to vote for value v in ballot b only if
v is safe at b .has been or ever will be chosen
in any ballot numbered less than b .Where v safe at b means:

No value other than v has been or ever will be chosen
in any ballot numbered less than b .

31

Don’t allow different acceptors to vote for different values
in the same ballot.

Allow an acceptor to vote for value v in ballot b only if
v is safe at b .has been or ever will be chosen
in any ballot numbered less than b .Where v safe at b means:

No value other than v has been or ever will be chosen
in any ballot numbered less than b .

31

Don’t allow different acceptors to vote for different values
in the same ballot.

Allow an acceptor to vote for value v in ballot b only if
v is safe at b .has been or ever will be chosen
in any ballot numbered less than b .Where v safe at b means:

No value other than v has been or ever will be chosen
in any ballot numbered less than b .

31

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in ballot b only if
v is safe at b .

Where v safe at b means:
No value other than v has been or ever will be chosen
in any ballot numbered less than b .

Theorem: These conditions imply at most one value can be chosen.
Proof: Suppose v1 is chosen in ballot b1 , and v2 is chosen in ballot b2 .

Case b1 = b2: Condition 1 implies v1 = v2 .

Case b1 6= b2: Condition 2 for b the larger of b1 and b2 implies no acceptor
could have voted in that ballot unless v1 = v2 .

32

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in ballot b only if
v is safe at b .

Where v safe at b means:
No value other than v has been or ever will be chosen
in any ballot numbered less than b .

Theorem: These conditions imply at most one value can be chosen.
Proof: Suppose v1 is chosen in ballot b1 , and v2 is chosen in ballot b2 .

Case b1 = b2: Condition 1 implies v1 = v2 .

Case b1 6= b2: Condition 2 for b the larger of b1 and b2 implies no acceptor
could have voted in that ballot unless v1 = v2 .

32

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in ballot b only if
v is safe at b .

Where v safe at b means:
No value other than v has been or ever will be chosen
in any ballot numbered less than b .

Theorem: These conditions imply at most one value can be chosen.
Proof: Suppose v1 is chosen in ballot b1 , and v2 is chosen in ballot b2 .

Case b1 = b2: Condition 1 implies v1 = v2 .

Case b1 6= b2: Condition 2 for b the larger of b1 and b2 implies no acceptor
could have voted in that ballot unless v1 = v2 .

32

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in ballot b only if
v is safe at b .

Where v safe at b means:
No value other than v has been or ever will be chosen
in any ballot numbered less than b .

Theorem: These conditions imply at most one value can be chosen.
Proof: Suppose v1 is chosen in ballot b1 , and v2 is chosen in ballot b2 .

Case b1 = b2: Condition 1 implies v1 = v2 .

Case b1 6= b2: Condition 2 for b the larger of b1 and b2 implies no acceptor
could have voted in that ballot unless v1 = v2 .

32

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in ballot b only if
v is safe at b .

Where v safe at b means:
No value other than v has been or ever will be chosen
in any ballot numbered less than b .

Theorem: These conditions imply at most one value can be chosen.
Proof: Suppose v1 is chosen in ballot b1 , and v2 is chosen in ballot b2 .

Case b1 = b2: Condition 1 implies v1 = v2 .

Case b1 6= b2: Condition 2 for b the larger of b1 and b2 implies no acceptor
could have voted in that ballot unless v1 = v2 .

32

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in ballot b only if
v is safe at b .

Where v safe at b means:
No value other than v has been or ever will be chosen
in any ballot numbered less than b .

Theorem: These conditions imply at most one value can be chosen.
Proof: Suppose v1 is chosen in ballot b1 , and v2 is chosen in ballot b2 .

Case b1 = b2: Condition 1 implies v1 = v2 .

Case b1 6= b2: Condition 2 for b the larger of b1 and b2 implies no acceptor
could have voted in that ballot unless v1 = v2 .

32

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in ballot b only if
v is safe at b .

Where v safe at b means:
No value other than v has been or ever will be chosen
in any ballot numbered less than b .

Theorem: These conditions imply at most one value can be chosen.
Proof: Suppose v1 is chosen in ballot b1 , and v2 is chosen in ballot b2 .

Case b1 = b2: Condition 1 implies v1 = v2 .

Case b1 6= b2: Condition 2 for b the larger of b1 and b2 implies no acceptor
could have voted in that ballot unless v1 = v2 .

32

34

34

34

the set of acceptors

34

a set of quorums

34

What’s a quorum?

34

Every element of Quorum is a subset of Acceptor .

Every quorum is a set of acceptors.

34

Every element of Quorum is a subset of Acceptor .

Every quorum is a set of acceptors.

34

34

Any two quorums have at least one common element.

Example: Acceptor = {a1, a2, a3, a4}
Quorum = {{a1, a2, a3}, {a1, a2, a4},

{a1, a3, a4}, {a2, a3, a4}}

34

Any two quorums have at least one common element.

Example: Acceptor = {a1, a2, a3, a4}
Quorum = {{a1, a2, a3}, {a1, a2, a4},

{a1, a3, a4}, {a2, a3, a4}}

34

Any two quorums have at least one common element.

Example: Acceptor = {a1, a2, a3, a4}
Quorum = {{a1, a2, a3}, {a1, a2, a4},

{a1, a3, a4}, {a2, a3, a4}}
all majorities of acceptors

34

Any two quorums have at least one common element.

Example: Acceptor = {a1, a2, a3, a4}
Quorum = {{a1, a2, a3}, {a1, a2, a4},

{a1, a3, a4}, {a2, a3, a4}}
all majorities of acceptors

34

Any two quorums have at least one common element.

Example: Acceptor = {a1, a2, a3, a4}
Quorum = {{a1, a2, a3}, {a1, a2, a4},

{a1, a3, a4}, {a2, a3, a4}}

34

Any two quorums have at least one common element.

Example: Acceptor = {a1, a2, a3, a4}
Quorum = {{a1, a2}, {a1, a2, a4},

{a1, a3}, {a2, a3, a4}}

34

The set of all ballot numbers.

“Ballot” is easier to say than “natural number”.

34

The set of all ballot numbers.

“Ballot” is easier to say than “natural number”.

34

Describes what votes have been cast.

The value of votes is an array indexed by acceptors.

votes[a] is the set of votes cast by acceptor a .

〈b, v〉 ∈ votes[a] means a voted for value v in ballot b .

37

Describes what votes have been cast.

The value of votes is an array indexed by acceptors.

votes[a] is the set of votes cast by acceptor a .

〈b, v〉 ∈ votes[a] means a voted for value v in ballot b .

37

Describes what votes have been cast.

The value of votes is an array indexed by acceptors.

votes[a] is the set of votes cast by acceptor a .

〈b, v〉 ∈ votes[a] means a voted for value v in ballot b .

37

Describes what votes have been cast.

The value of votes is an array indexed by acceptors.

votes[a] is the set of votes cast by acceptor a .

〈b, v〉 ∈ votes[a] means a voted for value v in ballot b .

37

Describes what votes have been cast.

The value of votes is an array indexed by acceptors.

votes[a] is the set of votes cast by acceptor a .

〈b, v〉 ∈ votes[a] means a voted for value v in ballot b .

37

Describes what votes have been cast.

The value of votes is an array indexed by acceptors
a function with domain Acceptor

.

votes[a] is the set of votes cast by acceptor a .

〈b, v〉 ∈ votes[a] means a voted for value v in ballot b .

37

S

[Acceptor → S] is the set of all functions with
domain Acceptor and values in S .

37

T

SUBSET T is the set of all subsets of T .

37

Ballot ×Value is the set of
all 〈ballot, value〉 pairs.

37

37

37

Acceptor a will never vote in any ballot < maxBal [a] .

37

Some more definitions.

38

38

asserts that accepter a voted
for value v in ballot b.

38

38

asserts that every acceptor in some quorum
voted for value v in ballot b .

38

38

defines the set of all chosen values

38

38

asserts that a did not vote in ballot b

38

The crucial definition.

41

41

An acceptor will vote for value v in ballot b only if
this formula is true for some quorum Q .

41

41

from now on, a can never vote
in any ballot c < maxBal [a]

41

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

41

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

41

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

41

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

41

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

41

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

41

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

41

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

42

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

42

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

42

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

Claim: If this is true for some quorum Q ,
then v is safe at b .

42

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

42

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in ballot b only if
v is safe at b .

42

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in ballot b only if
v is safe at b .

Where v safe at b means:
No value other than v has been or ever will be chosen
in any ballot numbered less than b .

42

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

42

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

42

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

42

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

We now assume Q is a quorum and prove v is safe at b .

42

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

44

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

The Proof

44

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

〈1〉2. If c 6= −1 then no value other than v has been or will be
chosen at d for d < c .

〈1〉3. If c 6= −1 then no value other than v has been or will be chosen at c .

〈1〉4. QED
Proof: No value other than v has been or can be chosen for any d < b

by 〈1〉1 if c < d < b , by 〈1〉3 if d = c , and by 〈1〉2 if d < c .
By definition, this proves v is safe at b .

44

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

〈1〉2. If c 6= −1 then no value other than v has been or will be
chosen at d for d < c .

〈1〉3. If c 6= −1 then no value other than v has been or will be chosen at c .

〈1〉4. QED
Proof: No value other than v has been or can be chosen for any d < b

by 〈1〉1 if c < d < b , by 〈1〉3 if d = c , and by 〈1〉2 if d < c .
By definition, this proves v is safe at b .

44

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

〈1〉2. If c 6= −1 then no value other than v has been or will be
chosen at d for d < c .

〈1〉3. If c 6= −1 then no value other than v has been or will be chosen at c .

〈1〉4. QED
Proof: No value other than v has been or can be chosen for any d < b

by 〈1〉1 if c < d < b , by 〈1〉3 if d = c , and by 〈1〉2 if d < c .
By definition, this proves v is safe at b .

44

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

〈1〉2. If c 6= −1 then no value other than v has been or will be
chosen at d for d < c .

〈1〉3. If c 6= −1 then no value other than v has been or will be chosen at c .

〈1〉4. QED
Proof: No value other than v has been or can be chosen for any d < b

by 〈1〉1 if c < d < b , by 〈1〉3 if d = c , and by 〈1〉2 if d < c .
By definition, this proves v is safe at b .

44

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

〈1〉2. If c 6= −1 then no value other than v has been or will be
chosen at d for d < c .

〈1〉3. If c 6= −1 then no value other than v has been or will be chosen at c .

〈1〉4. QED
Proof: No value other than v has been or can be chosen for any d < b

by 〈1〉1 if c < d < b , by 〈1〉3 if d = c , and by 〈1〉2 if d < c .
By definition, this proves v is safe at b .

44

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

〈1〉2. If c 6= −1 then no value other than v has been or will be
chosen at d for d < c .

〈1〉3. If c 6= −1 then no value other than v has been or will be chosen at c .

〈1〉4. QED
Proof: No value other than v has been or can be chosen for any d < b

by 〈1〉1 if c < d < b , by 〈1〉3 if d = c , and by 〈1〉2 if d < c .
By definition, this proves v is safe at b .

44

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

〈1〉2. If c 6= −1 then no value other than v has been or will be
chosen at d for d < c .

〈1〉3. If c 6= −1 then no value other than v has been or will be chosen at c .

〈1〉4. QED
Proof: No value other than v has been or can be chosen for any d < b

by 〈1〉1 if c < d < b , by 〈1〉3 if d = c , and by 〈1〉2 if d < c .
By definition, this proves v is safe at b .

44

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

〈1〉2. If c 6= −1 then no value other than v has been or will be
chosen at d for d < c .

〈1〉3. If c 6= −1 then no value other than v has been or will be chosen at c .

〈1〉4. QED
Proof: No value other than v has been or can be chosen for any d < b

by 〈1〉1 if c < d < b , by 〈1〉3 if d = c , and by 〈1〉2 if d < c .
By definition, this proves v is safe at b .

44

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

〈1〉2. If c 6= −1 then no value other than v has been or will be
chosen at d for d < c .

〈1〉3. If c 6= −1 then no value other than v has been or will be chosen at c .

〈1〉4. QED
Proof: No value other than v has been or can be chosen for any d < b

by 〈1〉1 if c < d < b , by 〈1〉3 if d = c , and by 〈1〉2 if d < c .
By definition, this proves v is safe at b .

44

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

〈1〉2. If c 6= −1 then no value other than v has been or will be
chosen at d for d < c .

〈1〉3. If c 6= −1 then no value other than v has been or will be chosen at c .

〈1〉4. QED
Proof: No value other than v has been or can be chosen for any d < b

by 〈1〉1 if c < d < b , by 〈1〉3 if d = c , and by 〈1〉2 if d < c .
By definition, this proves v is safe at b .

Where v safe at b means:
No value other than v has been or ever will be chosen
in any ballot numbered less than b .

44

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

45

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

Proof: No acceptor in Q has voted in ballot d .

45

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

Proof: No acceptor in Q has voted in ballot d .

45

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

Proof: No acceptor in Q has voted or can ever vote in ballot d .

45

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

Proof: No acceptor in Q has voted or can ever vote in ballot d .

45

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

Proof: No acceptor in Q has voted or can ever vote in ballot d .
A value can be chosen at d only if a quorum votes for it at d

45

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

Proof: No acceptor in Q has voted or can ever vote in ballot d .
A value can be chosen at d only if a quorum votes for it at d ,
which is impossible.

45

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

Proof: No acceptor in Q has voted or can ever vote in ballot d .
A value can be chosen at d only if a quorum votes for it at d ,
which is impossible.

45

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

〈1〉2. If c 6= −1 then no value other than v has been or will be
chosen at d for d < c .

46

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

〈1〉2. If c 6= −1 then no value other than v has been or will be
chosen at d for d < c .

Proof: An acceptor voted for v in ballot c ,

46

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

〈1〉2. If c 6= −1 then no value other than v has been or will be
chosen at d for d < c .

Proof: An acceptor voted for v in ballot c ,

46

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

〈1〉2. If c 6= −1 then no value other than v has been or will be
chosen at d for d < c .

Proof: An acceptor voted for v in ballot c , so v is safe at c .

46

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

〈1〉2. If c 6= −1 then no value other than v has been or will be
chosen at d for d < c .

Proof: An acceptor voted for v in ballot c , so v is safe at c .

46

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

〈1〉2. If c 6= −1 then no value other than v has been or will be
chosen at d for d < c .

Proof: An acceptor voted for v in ballot c , so v is safe at c .
So 〈1〉2 follows from the definition of safe at.

46

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

〈1〉2. If c 6= −1 then no value other than v has been or will be
chosen at d for d < c .

Proof: An acceptor voted for v in ballot c , so v is safe at c .
So 〈1〉2 follows from the definition of safe at.

Where v safe at c means:
No value other than v has been or ever will be chosen
in any ballot numbered less than c .

46

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

〈1〉2. If c 6= −1 then no value other than v has been or will be
chosen at d for d < c .

〈1〉3. If c 6= −1 then no value other than v has been or will be chosen at c .

47

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

〈1〉2. If c 6= −1 then no value other than v has been or will be
chosen at d for d < c .

〈1〉3. If c 6= −1 then no value other than v has been or will be chosen at c .

Proof: An acceptor voted for v in ballot c ,

47

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

〈1〉2. If c 6= −1 then no value other than v has been or will be
chosen at d for d < c .

〈1〉3. If c 6= −1 then no value other than v has been or will be chosen at c .

Proof: An acceptor voted for v in ballot c ,

47

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

〈1〉2. If c 6= −1 then no value other than v has been or will be
chosen at d for d < c .

〈1〉3. If c 6= −1 then no value other than v has been or will be chosen at c .

Proof: An acceptor voted for v in ballot c , so no acceptor has voted
or will vote for any value other than v in ballot c,

47

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

〈1〉2. If c 6= −1 then no value other than v has been or will be
chosen at d for d < c .

〈1〉3. If c 6= −1 then no value other than v has been or will be chosen at c .

Proof: An acceptor voted for v in ballot c , so no acceptor has voted
or will vote for any value other than v in ballot c,

47

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

〈1〉2. If c 6= −1 then no value other than v has been or will be
chosen at d for d < c .

〈1〉3. If c 6= −1 then no value other than v has been or will be chosen at c .

Proof: An acceptor voted for v in ballot c , so no acceptor has voted
or will vote for any value other than v in ballot c, proving 〈1〉3 .

47

From now on, no acceptor in Q can ever vote in any ballot < b .

For some c with either c = −1 or c is a ballot number < b :

Either c = −1 or some acceptor in Q voted for v in ballot c .

No acceptor in Q voted in any ballot d with c < d < b .

1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in any ballot d only if
v is safe at d .

Any two quorums have at least one common element.

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

〈1〉2. If c 6= −1 then no value other than v has been or will be
chosen at d for d < c .

〈1〉3. If c 6= −1 then no value other than v has been or will be chosen at c .

〈1〉4. QED

48

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

〈1〉2. If c 6= −1 then no value other than v has been or will be
chosen at d for d < c .

〈1〉3. If c 6= −1 then no value other than v has been or will be chosen at c .

〈1〉4. QED

This completes the proof that:

ShowsSafeAt(Q , b, v) for a quorum Q implies
v is safe at b .

48

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

〈1〉2. If c 6= −1 then no value other than v has been or will be
chosen at d for d < c .

〈1〉3. If c 6= −1 then no value other than v has been or will be chosen at c .

〈1〉4. QED

This completes the proof that:

ShowsSafeAt(Q , b, v) for a quorum Q implies
v is safe at b .

48

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

〈1〉2. If c 6= −1 then no value other than v has been or will be
chosen at d for d < c .

〈1〉3. If c 6= −1 then no value other than v has been or will be chosen at c .

〈1〉4. QED

This completes the proof that:

ShowsSafeAt(Q , b, v) for a quorum Q implies
v is safe at b .

48

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

〈1〉2. If c 6= −1 then no value other than v has been or will be
chosen at d for d < c .

〈1〉3. If c 6= −1 then no value other than v has been or will be chosen at c .

〈1〉4. QED

This completes the proof that:

ShowsSafeAt(Q , b, v) for a quorum Q implies
v is safe at b .

Which is the heart of the Paxos algorithm.

48

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

〈1〉2. If c 6= −1 then no value other than v has been or will be
chosen at d for d < c .

〈1〉3. If c 6= −1 then no value other than v has been or will be chosen at c .

〈1〉4. QED

This completes the proof that:

ShowsSafeAt(Q , b, v) for a quorum Q implies
v is safe at b .

48

〈1〉1. No value has been or ever will be chosen at d if c < d < b .

〈1〉2. If c 6= −1 then no value other than v has been or will be
chosen at d for d < c .

〈1〉3. If c 6= −1 then no value other than v has been or will be chosen at c .

〈1〉4. QED

This completes the proof that:

ShowsSafeAt(Q , b, v) for a quorum Q implies
v is safe at b .

The Voting module contains a theorem that is
a precise statement of this result.

48

The Spec

49

The Spec

49

The Spec

49

The Spec

49

The Spec

[x ∈ S 7→ exp(x)] is the function f with domain S

such that f [x] = exp(x) for all x ∈ S .

So initially, votes[a] = {} for every acceptor a .

49

The Spec

[x ∈ S 7→ exp(x)] is the function f with domain S

such that f [x] = exp(x) for all x ∈ S .

So initially, votes[a] = {} for every acceptor a .

49

The Spec

Initially, maxBal [a] = −1 for every acceptor a .

49

· · ·

51

· · ·
Describes a step in which acceptor a

increases the value of maxBal [a] to b .

51

· · ·

51

· · ·

· · ·

51

· · ·

· · ·
Describes a step in which acceptor a

votes for v in ballot b .

51

· · ·

· · ·

51

· · ·

· · ·

The condition any step of the algorithm
must satisfy.

51

· · ·

· · ·

51

· · ·

· · ·

For some acceptor a and some ballot b :

51

· · ·

· · ·

51

· · ·

· · ·

either a increases maxBal [a] to b

51

· · ·

· · ·

51

· · ·

· · ·

or a votes for some value v in ballot b .

51

· · ·

· · ·

51

54

Describes a step in which acceptor a

increases the value of maxBal [a] to b .

54

54

54

b > current value of maxBal [a]

(an enabling condition)

54

b > current value of maxBal [a]

(an enabling condition)

54

54

∧ maxBal [a]′ = b

54

∧ maxBal [a]′ = b

and the value of maxBal [a]

in the next state is b .

54

∧ maxBal [a]′ = b

54

∧ maxBal [a]′ = b

an abbreviation for votes ′ = votes

54

∧ maxBal [a]′ = b

and the value of votes is unchanged.

54

∧ maxBal [a]′ = b

54

∧ maxBal [a]′ = b

What’s wrong with this?

54

∧ maxBal [a]′ = b

54

∧ maxBal [a]′ = b

and the value of maxBal [a]

in the next state is b .

What about the value of maxBal [a2]
in the next state for an acceptor a2 6= a ?

What about the domain of maxBal in the next state?

54

∧ maxBal [a]′ = b

and the value of maxBal [a]

in the next state is b .

What about the value of maxBal [a2]
in the next state for an acceptor a2 6= a ?

What about the domain of maxBal in the next state?

54

∧ maxBal [a]′ = b

and the value of maxBal [a]

in the next state is b .

What about the value of maxBal [a2]
in the next state for an acceptor a2 6= a ?

What about the domain of maxBal in the next state?

54

∧ maxBal [a]′ = b

and the value of maxBal [a]

in the next state is b .

What about the value of maxBal [a2]
in the next state for an acceptor a2 6= a ?

What about the domain of maxBal in the next state?

This is all it says.

54

∧ maxBal [a]′ = b

54

54

[x ∈ Acceptor 7→

54

[x ∈ Acceptor 7→
IF x = a THEN b ELSE maxBal [x]]

54

[x ∈ Acceptor 7→
IF x = a THEN b ELSE maxBal [x]]

An expression like this will appear whenever
a step changes “one element of an array”.

So we want an abbreviation for it.

54

[x ∈ Acceptor 7→
IF x = a THEN b ELSE maxBal [x]]

An expression like this will appear whenever
a step changes “one element of an array”.

So we want an abbreviation for it.

54

54

It’s a terrible notation.

But it’s better than any other that I’ve seen.

54

It’s a terrible notation.

But it’s better than any other that I’ve seen.

54

54

54

58

Describes a step in which acceptor a votes
for v in ballot b .

58

58

Enabling condition that assures a doesn’t vote
in a ballot b < maxBal [a] .

58

58

58

A set of 〈ballot , value〉 pairs.

A pair is a function, with 〈x , y〉[1] = x .

Asserts that a hasn’t already voted in ballot b .

58

A set of 〈ballot , value〉 pairs.

A pair is a function, with 〈x , y〉[1] = x .

Asserts that a hasn’t already voted in ballot b .

58

A set of 〈ballot , value〉 pairs.

A pair is a function, with 〈x , y〉[1] = x .

Asserts that a hasn’t already voted in ballot b .

58

58

58

For every acceptor c different from a

and for every vote vt of c , if vt is a vote in ballot b
then vt is a vote for v .

58

For every acceptor c different from a

and for every vote vt of c , if vt is a vote in ballot b
then vt is a vote for v .

58

For every acceptor c different from a

and for every vote vt of c , if vt is a vote in ballot b
then vt is a vote for v .

58

For every acceptor c different from a

and for every vote vt of c , if vt is a vote in ballot b
then vt is a vote for v .

58

For every acceptor c different from a

and for every vote vt of c , if vt is a vote in ballot b
then vt is a vote for v .

58

For every acceptor c different from a

and for every vote vt of c , if vt is a vote in ballot b
then vt is a vote for v .

58

For every acceptor c different from a

and for every vote vt of c , if vt is a vote in ballot b
then vt is a vote for v .

58

Any vote already cast in ballot b is for value v .

58

58

58

ShowsSafeAt(Q , b, v) is true for some quorum Q ,
which implies v is safe at b .

58

ShowsSafeAt(Q , b, v) is true for some quorum Q ,
which implies v is safe at b .

58

58

58

votes[a] is set to votes[a] ∪ {〈b, v〉} ,
meaning a votes for v in ballot b .

58

votes[a] is set to votes[a] ∪ {〈b, v〉} ,
meaning a votes for v in ballot b .

58

58

58

maxBal [a] is set to b ,
announcing that a will never again vote in a ballot < b .

58

maxBal [a] is set to b ,
announcing that a will never again vote in a ballot < b .

58

58

The Complete Definition of Spec

59

The Complete Definition of Spec

· · ·

59

The Complete Definition of Spec

· · ·

· · ·

59

The Complete Definition of Spec

· · ·

· · ·

· · ·

59

The Complete Definition of Spec

· · ·

· · ·

· · ·

59

The Complete Definition of Spec

· · ·

· · ·

· · ·

59

The Complete Definition of Spec

· · ·

· · ·

· · ·

59

