Deploy your microservice using
AWS S3,
AWS APl Gateway,
AWS Lambda,
and
Couchbase

Arun Gupta, @arungupta

Docker Captain
Java Champion
JavaOne Rock Star (4 years)
NetBeans Dream [eam
Silicon Valley JUG Leader

Author
Runner

Lifelong learner

DEVOXO

KIDS

Q¢

§ USA

the microservice architectural style i1s an approacn to
developing a single application as a suite of small services,
each running in its own process and communicating with
lightweight mechanisms, often an HT TP resource API. These
services are built around business capabilities and
independently deployable by fully automated deployment
machinery. There is a bare minimum of centralized
management of these services, which may be written in
different programming languages and use different data
storage technologies

https://martinfowler.com/articles/microservices.html

View

Web Page
JavaScript
Web Page
JavaScript

Web Page

JavaScript

Web Page

Controller

Model

}

Database

Database

Database

Database

S3

index.html
JavaScript
create.html
JavaScript

update.html

JavaScript

delete.html

AP| Gateway Lambda

GET I

POST

PUT

DELETE .

N\ Ay /)

Couchbase

Serverless Computing

Typical Challenges with Server-based Computing

=\What size servers for budget/performance?
=Scale servers up/down’

=\What O/S?

=0/S settings?

=Patching?

=Control access to servers”?

=Deploy new code to server?

Unit of Scale

Abstraction

Packaging

Configure

Execution

Runtime

Unit of cost

Amazon

Virtual Machines

Machine

Hardware

AMI

Machine, storage,
networking, O/S

Multl-threaded,
multi-task

Hours to months

Per VM per hour

EC2

Containers

Application

Operating System

Container File

Run Servers, configure
applications, scaling

Multi-threaded, single task

Minutes to days

Per VM per hour

Docker, Kubernetes, ECS

Serverless

Function

Language Runtime

Code

Run code when needed

Single threaded, single
task

Microseconds to seconds

Per memory/second per
request

AWS Lambda

laaS CaaS PaaS FaaS

Customer
Managed

Customer

Managed Unit of
Scale

Vendor Managed

Applications Applications

Applications

Applications

Containers Containers Containers Containers

Operating Operating
System System

Operating
System

Operating
System

Virtualization Virtualization Virtualization Virtualization

Hardware Hardware Hardware Hardware

adrian cockcroft _
. Following
@adrianco

T your Paas can efficiently start instances in
20ms that run for halt a second, then call It
serverless.

Julz Friedman @doctor_julz

if you think serverless is different than PaaS then either you or | have misunderstood
what "serverless" or "PaaS" means

RETWEETS LIKES

158 207

6:43 AM - 28 May 2016

¥ 207

What is AWS Lambda?

Fully Managed Subsecond Metering Continuous Scaling

* No provisioning
e Java, Node, Charged for every
Python, C 100ms of execute
e Zero administration NO storage cost
* High avallability

e Automatically
e Scale up and down

Upload your code to AWS
Lambda

How it works?

https://aws.amazon.com/lambda/

12

AWS Lambda Pricing

«FREE tier

- 1M free requests per month
- 400k GB-seconds of compute time per month
- CPU and network allocated proportionately

Memory

=$0.20 per million requests thereafter "y~ Free tier seconds per monts

128
192
256
320
384
448

512

https://aws.amazon.com/lambda/pricing/

3,200,000

2,133,333

1,600,000

1,280,000

1,066,667

914,286

800,000

Price per 100ms ($)

0.000000208
0.000000313
0.000000417
0.000000521
0.000000625
0.000000729

0.000000834

Photograph
is taken

B

AWS Lambda Usecases

Example: Image Thumbnail Creation

Lambda is
triggered

’ i

r . /

A »

“ x5 4
1 [: / Lw U F

. ; A’ ‘

Y ¢ . | -

S ' 4 |

Photo is uploaded to Lambda runs image resizing code to generate
53 Bucket web, mobile, and tablet sizes

https://aws.amazon.com/lambda/

14

AWS Lambda Usecases

Example: Retail Data Warehouse ETL

Online order Lambda is

is placed triggered

E | @) — O
| S
~— S—

DYNAMODB REDSHIFT
Order data is stored Lambda runs data transformation code
in operational database and loads results into data warehouse

https://aws.amazon.com/lambda/

D

Analytics generated
from data

15

AWS Lambda Usecases

de.D>

—
S3

Front-end code for
weather app hosted in 53

Example: Weather Application

Lambda is
triggered
= § ©
H) lA
AP| GATEWAY
User clicks link to get local App makes REST AP
weather information call to endpoint

https://aws.amazon.com/lambda/

DYNAMODB

Lambda runs code to retrieve local weather
information and retums data back to user

10

Key Components of AWS Lambda

Language

public class HelloWorld implementsCRequestHandler<Request, Responseld {

@Override
1 ontext context

public Response handleRequest
String greeting =
String.format("Hello %$s %s.",/ reqg.firstName, req
return new Response(greeting);

.lastName) ;

}

} Lambda runtime

Data passed to function

Java + Lambda

Deploy First Java Lambda Function

<dependency>
<groupId>com.amazonaws</groupId>
<artifactId>aws-lambda-java-core</artifactId>
<version>1.1.0</version>

</dependency>

aws lambda create-function \

—--function-name HelloWorld \

—--role arn:aws:iam::598307997273:role/service-role/myLambdaRole \
--handler org.sample.serverless.aws.helloworld.HelloWorld \

--zip-file fileb:///Users/arungupta/workspaces/serverless/aws/helloworld/
helloworld/target/helloworld-1.0-SNAPSHOT. jar \

—-description "Java Hello World" \
-—-runtime java8 \

--region us-west-1 \

—--timeout 30 \

—--memory-size 1024 \

—-publish

aws lambda invoke \

—--function-name HelloWorld \

--region us-west-1 \

--payload '{ "firstName": "John", "lastName": "Smith" }' \
helloworld.out

19

BJ Services ~

AWS Lambda

Dashboard

| Functions

Resource Groups * Q arun.gupta@couchbase.com @ ... v N. California ~ Sup

Lambda > Functions

”

Your Lambda function "HelloWorld" was successfully deleted.

\

Create a Lambda function Actions ¥

= 50)

Function name v Description v Runtime v Code size ~ Last Modified
MicroservicePost Microservice HTTP Endpoint - Post Java 8 6.7 MB 3 months ago
MicroserviceGetAll Microservice HTTP Endpoint - Get All Java 8 6.7 MB 3 months ago
GetHelloWithName Returns {"Hello":", a user-provided string, and "} Node.js 4.3 303 bytes 3 months ago
GetHelloWorld Returns {"Hello":"World"} Node.js 4.3 262 bytes 3 months ago

hello-world-python A starter AWS Lambda function. Python 2.7 360 bytes 4 months ago

Couchbase

A\

Index Replication Analytics

Java + Lambda + Couchbase

E <—)
: [é

Q Couchbase

Java + Couchbase Lambda Function

<dependency>
<groupId>com.amazonaws</groupId>
1 <artifactId>aws-lambda-java-core</artifactId>
<version>1.1.0</version>

aws lambda create-function \

—-function-name HelloCouchbaseLambda \

—--role arn:aws:iam::598307997273:role/service-role/myLambdaRole \
--handler org.sample.serverless.aws.couchbase.HelloCouchbaseLambda \

-—zip-file fileb:///Users/arungupta/workspaces/serverless/aws/hellocouchbase/hellocouchbase/
target/hellocouchbase-1.0-SNAPSHOT. jar \

—-—-description "Java Hello Couchbase" \

--runtime java8 \

--region us-west-2 \

——timeout 30 \

—--memory-size 1024 \

——publish

—-—function-name HelloWorld \

:3 --region us-west-1 \
--payload '{ "firstName": "John", "lastName": "Smith" }' \
helloworld.out

nbase
Couc

| ambda +

Java +

o] +

——*: chbase
‘(‘{) Q Cou

: ~—

AWS AP| Gateway

AWS AP| Gateway

=Create, publish, maintain, monitor and secure RESTful APIs

«Manage multiple stages and version: Iterate, test and release new
versions, with backwards compatibiluity

=Operations monitoring: Integrated with CloudWatch

= _ow cost and efficient: Only pay for the calls made to APIs and data
transter out

AWS AP| Gateway

= [raffic management: Set throttle rules

= Authorization and access control: Integrated with AWS |IAM and AWS
Cognito
«SDK generation

- Javascript

- i0S

- Android

API| Call Flow
1 &

J

@ MONITORING ;
MOBILEAPPS ~ : AMAZON
. ' EC2
- . .
i \ .
- M
” e |
’ '
WEBSITES L’ INTERNET @ AMAZONAP . AWS LAMBDA
v GATEWAY ,
-~ ’ .
=4 “ [
| ,D
L
Q00
AP GATEWAY ANY OTHER PUBLICLY
@ WEB SERVICES CACHE ACCESSIBLE ENDPOINT

29

hitps://aws.amazon.com/api-gateway/details/

\'_ﬁ‘ﬁl Services Resource Groups * [\ arun.gupta@couchb

}1} Amazon API| Gateway APls > Book (Ib2qguijjif > Resources > /books (vrpkod)

APls , Resources Actions- @ /books Methods
Book v/
. © PoST
Resources v /books
Stages GET arn:aws:lambda:us-west-1:598307997273:functi... arn:aws:lambda:us-west-1:598307997273:functi...
Authorizers POST
Authorization None Authorization None
Models
APl Key Not required APl Key Not required
Documentation
Binary Support
Dashboard
Usage Plans
API Keys

Custom Domain Names
Client Certificates

Settings

Java + Lambda + Couchbase + API

>

API Gateway

https://blog.couchbase.com/microservice-aws-api-gateway-lambda-couchbase/

start
here

Typical development workflow

Create/Update & Connect/Update
Deploy REST API API to Lambda
Function

Write/Update &
Deploy Lambda
Function

Invoke API

Test & Debug

32

AWS Serverless Application Model

=Standard application model (SAM) for serverless applications

=Extends CloudFormation
- New resource types

— AWS: :Serverless: :Function
— AWS::Serverless::Apil

— AWS::Serverless::SimpleTable
- New event source types: S3, Api, Schedule, ...

- New property types: environment, event source, ...

AWSTemplateFormatVersion : '2010-09-09'
Transtorm: AWS::Serverless-2016-10-31

Description: Microservice using API Gateway, Lambda and Couchbase

Resources:
MicroserviceGetAll:
Type: AWS::Serverless::Function
Properties:
Handler: org.sample.serverless.aws.couchbase.BucketGetAll
Runtime: java8
CodeUri: s3://serverless-microservice/microservice-http-endpoint-1.0-SNAPSHOT. jar
Timeout: 30
MemorySize: 1024
Environment:
Variables:
COUCHBASE HOST: ec2-35-163-21-104.us-west-2.compute.amazonaws.com

Role: arn:aws:iam: :598307997273:role/microserviceRole

34

https://github.com/arun-gupta/serverless/blob/master/aws/microservice/template.yml

MicroserviceGetAllGateway:

Type: AWS::Serverless::Function

Properties:
Handler: org.sample.serverless.aws.couchbase.gateway.BucketGetAll
Runtime: java8
CodeUri: s3://serverless-microservice/microservice-http-endpoint-1.0-SNAPSHOT. jar
Timeout: 30
MemorySize: 1024
Environment:

Variables:
COUCHBASE HOST: ec2-35-163-21-104.us-west-2.compute.amazonaws.com

Role: arn:aws:iam: :598307997273:role/microserviceRole

Events:
GetResource:
Type: Api

Properties:
Path: /books
Method: get

AWS 53 Basics

=Simple: Console, REST APl and AWS SDKs
=Durable: 99.999999999%

=Scalable: Gigabytes -> Exabytes
- Store/retrieve data, any time, anywhere

=Access control: type of access (e.g. READ and WRITE)
= Authentication: verity identity of the user

AWS 53 Concepts

Bucket

Object

‘ Amazon S3 > serverless-microservice

Versioning

Keep multiple versions of an object in
the same bucket.

Learn more

Advanced settings

Tags

Use tags to track your cost against
projects or other criteria.

Learn more

Logging

Set up access log records that provide
details about access requests.

Learn more

Static website hosting

Host a static website, which does not
require server-side technologies.

Learn more

Cross-region replication

Automate copying objects across
different AWS Regions.

Learn more

Transfer acceleration

Enable fast, easy and secure transfers of
files to and from your bucket.

Learn more

Events

Receive notifications when specific
events occur in your bucket.

Learn more

Hosting Static Websites on S3

Static website hosting

Endpoint : http://serverless-microservice.s3-website-us-west-
2.amazonaws.com

@ Use this bucket to host a website & Learn more

Index document €@

index.html

Emor document €)

emor.html

Redirection rules (optional) €

V.

Q Redirect requests @ Learn more

O Disable website hosting

Cancel

39

Microservice Deployment Architecture

‘ /’E s3://www.microservice.arungupta.me
—_—

HTTP(s Cloud et M\E s3://microservice.arungupta.me E

/books
REST GET

) POST
DELETE
- IJU
L Pl
| API Gateway

s3://microservice.arungupta.me
s3://www.microservice.arungupta.me

the microservice architectural style i1s an approacn to
developing a single application as a suite of small services,
each running in its own process and communicating with
lightweight mechanisms, often an HT TP resource API. These
services are built around business capabilities and
independently deployable by fully automated deployment
machinery. There is a bare minimum of centralized
management of these services, which may be written in
different programming languages and use different data
storage technologies

https://martinfowler.com/articles/microservices.html

References

sAmazon Web Services: aws.amazon.com

=Couchbase: couchbase.com
=Slides + Code: github.com/arun-gupta/serverless

http://aws.amazon.com
http://couchbase.com
http://github.com/arun-gupta/serverless

