
Securing Kubernetes
Container Platforms in 2021
NSA/CISA Kubernetes Hardening Guidance & Beyond

 November 10, 2021

Lars Larsson, PhD

$ kubectl whoami
● Lars Larsson 󰐴
● Cloud computing since 2008
● PhD in Computer Science
● Many years of experience in software

engineering and DevOps
● Senior Cloud Architect and Expert DevOps

Engineer at Elastisys, makers of Compliant
Kubernetes

● Connect with me on LinkedIn 😊

https://elastisys.com/
https://compliantkubernetes.io/
https://compliantkubernetes.io/
https://www.linkedin.com/in/llarsson/

Uncomfortable question

What permissions have you given me in your
Kubernetes cluster or cloud infrastructure if I
manage to hack into your application?

● Threats

● NSA/CISA Kubernetes Hardening
Guidance: summarized and explained

● Beyond the NSA/CISA recommendations

Outline

Threats ● Supply chain risks
○ Hardware and software supplied by third parties

● Malicious threat actors
○ Outside threats, e.g., hackers or automated attacks

● Insider threats
○ Internal users with legitimate permissions

to access systems
○ Can be intentionally malicious or coerced

by outsiders
○ 2/3 of all insider incidents are due to negligence

https://techjury.net/blog/insider-threat-statistics/

NSA/CISA Kubernetes
Hardening Guidance

NSA/CISA Kubernetes Hardening Guidance

59-page tech report published publicly
in August 2021

● Focused on Kubernetes itself
○ Detailed discussion of

security-related
configuration

○ Example code

● Mentions other security software
in passing

● Focuses mainly on hardening,
not security as a process

What is it?

https://www.nsa.gov/News-Features/Feature-Stories/Article-View/Article/2716980/nsa-cisa-release-kubernetes-hardening-guidance/
https://www.nsa.gov/News-Features/Feature-Stories/Article-View/Article/2716980/nsa-cisa-release-kubernetes-hardening-guidance/

1. Scan containers and
Pods for vulnerabilities
or misconfigurations

● Container images are immutable
○ Insecure code stays in time capsule

● Component stability: infrequent
updates → worse security

● Scan images for known
vulnerabilities
○ Report: using an Admission

Controller
○ My take: daily scan all images that

are in active use

2. Run containers and Pods
with the least privileges possible

● Containers run as “root” by
default

● Container file systems:
read-only until need arises

● Use most restrictive Pod
Security Policies (<= v1.21) or
Pod Security Standard (>=
1.22)

● Avoid handing Default Service
Account to Pods

● My take: Also encode your
policies for automatic
enforcement via Open Policy
Agent

https://www.openpolicyagent.org/
https://www.openpolicyagent.org/

3. Use network
separation to control
the amount of damage
a compromise can cause.

● Default settings allow all
Pods to network with all other
Pods
○ Security is only as strong as the

weakest point

● Network Policies are
Kubernetes-aware firewall
rules
○ Specify rules for IP blocks or

Kubernetes objects
○ Allow only “backend” to connect

to “database” -- nothing else

4. Use firewalls to limit
unneeded network connectivity
and encryption to protect
confidentiality.

● Restrict access to
Kubernetes core
components
○ API server
○ etcd
○ Controller Managers

● Network traffic in
Kubernetes clusters is
unencrypted by default

● My take: Use a
networking provider with
transparent encryption,
e.g., Calico with
WireGuard support

https://docs.projectcalico.org/security/encrypt-cluster-pod-traffic
https://docs.projectcalico.org/security/encrypt-cluster-pod-traffic

5. Use strong
authentication and
authorization to limit
user and administrator
access as well as to limit
the attack surface.

● Authentication on an opt-in
basis
○ OpenID Connect and other options

available

● Authorization on an opt-in
basis
○ Role-Based Access Control (RBAC)

● My take:
○ Disable the perpetual admin token

created during installation
○ OpenID Connect for user and group

membership
○ Disable anonymous access
○ Enable RBAC
○ Restrict permissions as much as

possible with RBAC

6. Use log auditing so that
administrators can monitor
activity and be alerted to
potential malicious activity.

● All API calls can be
logged for auditing
purposes
○ Creates a huge amount of

logs!

● Use an automated
system for processing
audit logs

● My take:
○ Falco can act as a simple

Security Incident and
Event Management (SIEM)
system together with
centralized logging, e.g.,
Elasticsearch

https://falco.org/
https://falco.org/blog/detect-malicious-behaviour-on-kubernetes-api-server-through-gathering-audit-logs-by-using-fluentbit-part-2/
https://falco.org/blog/detect-malicious-behaviour-on-kubernetes-api-server-through-gathering-audit-logs-by-using-fluentbit-part-2/
https://falco.org/blog/detect-malicious-behaviour-on-kubernetes-api-server-through-gathering-audit-logs-by-using-fluentbit-part-2/

7. Periodically review all
Kubernetes settings and
use vulnerability scans
to help ensure risks are
appropriately accounted
for and security patches
are applied.

● Kubernetes has a new release
~3 times per year
○ N-3 security updates support

(current and the two previous ones)

● Security features are typically
opt-in, rather than opt-out
○ You need to opt-in as soon as

possible

● Automated testing can help find
insecure (default) settings

But: Are automated
vulnerability tools sufficient?

● Kubescape
○ Relies on what it can determine

via Kubernetes API calls

● kube-bench
○ Connects deeply into control

plane host
■ Can inspect more than

Kubescape

● Low-hanging fruit of
vulnerability scanning
○ My take: you must do this to not

scream “insecure cluster over
here!”

● Beware: limited in what they
can investigate
○ Encryption at rest storage, firewall

rules, security policies encoded in
other systems than Kubernetes,
underlying operating system,
third-party software...

https://github.com/armosec/kubescape
https://github.com/aquasecurity/kube-bench

Beyond the NSA/CISA
recommendations

1. Prevent
misconfiguration,
don’t just check
for it.

● 2/3 of all insider incidents are due to
negligence

● RBAC is great, but limited in what it can
express:
○ “Lars” allowed to “modify

configuration” in the “production”
environment

○ ...but is he allowed to make any
configuration change he pleases?

● Open Policy Agent to the rescue (again!)
○ Library and other third-party rules as

inspiration

https://techjury.net/blog/insider-threat-statistics/
https://techjury.net/blog/insider-threat-statistics/
https://www.openpolicyagent.org/
https://github.com/open-policy-agent/library
https://github.com/anderseknert/awesome-opa

2. Beware: any
permission given
to an application
is also given to
bad actors.

● Hacked applications have all
permissions and credentials the
application usually has
○ Third-party SaaS

integrations
○ VPN-connected back-office

locations
○ Databases

● Always restrict your app
components as much as possible
○ Why would a REST API

component ever get to do
more than take in requests,
process them, and send back
responses?

3. Keep cloud
resources,
specifically,
in mind, too.

Various Controllers and Operators in the
community offer cloud integrations.

● How seriously do they take cloud
security?

● Reject ones without configurable and
restrictive permissions on what they
manage

● ...and ones that fail to list exactly what
permissions they need (and why!)

4. Does your app
unintentionally have
permissions in your
cloud?

● Beware of “instance profiles” that
your cluster VMs may have ability to
modify
○ DNS records,
○ autoscaling groups,
○ load balancers…

● ...because all applications can also
get those permissions!
○ Just call the cloud’s metadata

service and get a token with
permissions

○ Applications are also “the VM”
to the cloud

5. Regularly scan
all your deployed
container images,
not just when they
are new.

● Re-iteration of a point from before!

● To get up to date security scans, you just
need to:
○ loop through all your Pods that are

deployed,
○ determine which container images are

in active use, and
○ scan those images.

● Do this daily!

● More secure than “scan on push” or “scan on
deployment”

6. Regularly have
your own staff
security test your
entire system.

● Building is hard, breaking is easy
(and fun!)

● Your engineers have access to
source code, hacker’s don’t

● Let your engineers try to break your
application
○ Better if they find errors, than

if hackers do!

● Foster a security-first mindset

7. Have a Disaster
Recovery (DR)
plan, and actually
practice it.

● Disaster Recovery != “backups”

● Disaster could be “entire cloud region
outage”...
○ ...or “we need to go back in time to five

hours ago, before this attack started”

● How quickly can you destroy your entire
infrastructure and get it back again?

● How quickly can you rotate credentials in all
your systems?

8. Use an Intrusion
Detection System
(IDS) and a Security
Information and
Event Management
(SIEM) system.

● Intrusion Detection System (IDS)
verifies that applications behave
“normally”

● Security Information and Event
Management (SIEM) searches through
logging systems to find and flag
abnormal events
○ Could be false positives, but

could also be indications of
incidents!

● Falco is an IDS and can also be a
simple SIEM

https://falco.org/

Summary

Kubernetes is neither safe by default, nor by itself.
● Restrict access (network, users, machines) and privileges
● Periodically use tools to assess current security practices
● Prevent misconfiguration, don’t just check after the fact
● Cloud resources and permissions: be mindful!
● Security-conscious engineering culture
● Disaster Recovery applies also to security breaches

Uncomfortable question

What permissions have you given me in your
Kubernetes cluster or cloud infrastructure if I
manage to hack into your application?

Uncomfortable question: appropriately answered

No more than absolutely needed! And you will see that
I am there, because you have automated systems that
both limit what I can do, and raise an alert when I
make the application behave in ways it doesn’t
normally do.

Questions for me?

Do you have any questions for me?

Q/A session right after this talk or via
lars.larsson@elastisys.com or
linkedin.com/in/llarsson/

mailto:lars.larsson@elastisys.com
https://linkedin.com/in/llarsson/

