
Logging in the age of

@axelfontaine

Cloud

Microservices

and the



POLL:
what type of infrastructure are you running on?

• On Premise

• Colocation

• Root Server

• Cloud



The (good) old days of logging …



LOG 
file

ssh me@myserver

tail -f server.log



Looks great!



Thanks !

@axelfontaine

boxfuse.com



LOG 
file

ssh me@myserver

tail -f server.log



Times have changed …



The new reality

Cloud

Microservices



Cloud



moving to the cloud



lift & shift
(= the naïve approach)



Congratulations! You now have:

• Lots of (too much?) trust in your cloud provider
+ legal trouble due to data privacy laws

• A more expense Hetzner/OVH

• Potential data loss when auto-scaling

lift & shift
(= the naïve approach)



1. Security

2. Cost-driven

3. Auto-scaling

Fundamental changes



1. Security



understanding the cloud



regions



availability zones

<<IMAGE GERMANY + two small clouds with racks>>



building blocks

http://en.wikipedia.org/wiki/Lego#/media/File:Lego_Color_Bricks.jpg



building blocks

Security

Storage NetworkCompute





The hard Truth about Security

1. Always breakable with infinite time & resources

2. Must make it more complicated/expensive to break
than it’s worth (use defense in depth!)

3. Has a usability cost

4. Almost always about the data



the 3 states of data

Data at Rest Data in MotionData in Use



Trusting your neighbors 
is good. But it’s even 
better to put a good 
lock on the door.

Werner Vogels
CTO of a large online book shop

http://en.wikipedia.org/wiki/Werner_Vogels#/media/File:Wernervogels_ddp.jpg



Data in Motion

TLS / SSL

No excuse in 2017!

100% free and automated
With Let’s Encrypt and 

AWS Certificate Manager



Data in Use & at Rest

Client-side 
encryption



2. Cost-driven



Compute



Spare Capacity = Wasted Money

(paying for something you don’t use)



Scaling
=

Adjusting capacity
in response to a metric
exceeding a threshold



Scaling
=

Corrective action
in response to

an alarm



scaling metrics for different types of services

sync
=> CPU load

async
=> queue depth

cron
=> time



scaling

up

down

in out



3. Auto-scaling



Auto-Scaling
=

automated alarms
+ automated corrective actions

(scaling in or out)



Load 
Balancer

ssh me@myserver1
tail -f server.log

ssh me@myserver2
tail -f server.log

ssh me@myserver3
tail -f server.log

LOG 
file

LOG 
file

LOG 
file

CPU Load

Scale Out

Scale In



Load 
Balancer

ssh me@myserver1
tail -f server.log

ssh me@myserver2
tail -f server.log

ssh me@myserver3
tail -f server.log

ssh me@myserver4
tail -f server.log

LOG 
file

LOG 
file

LOG 
file

LOG 
file

Scale Out

Scale In

CPU Load



Load 
Balancer

ssh me@myserver1
tail -f server.log

ssh me@myserver2
tail -f server.log

ssh me@myserver3
tail -f server.log

ssh me@myserver4
tail -f server.log

LOG 
file

LOG 
file

LOG 
file

LOG 
file

Scale Out

Scale In

CPU Load



Load 
Balancer

ssh me@myserver1
tail -f server.log

ssh me@myserver3
tail -f server.log

ssh me@myserver4
tail -f server.log

LOG 
file

LOG 
file

LOG 
file

LOG 
file

Scale Out

Scale In

CPU Load

ssh me@myserver2
tail -f server.log



Load 
Balancer

ssh me@myserver1
tail -f server.log

DATA LOSS

ssh me@myserver3
tail -f server.log

ssh me@myserver4
tail -f server.log

LOG 
file

LOG 
file

LOG 
file

LOG 
file

Scale Out

Scale In

CPU Load



Load 
Balancer

LOG 
file

LOG 
file

LOG 
file

log server

where logs can be
✓ aggregated
✓ stored and backuped
✓ indexed
✓ searched



log server

where logs can be
✓ aggregated
✓ stored and backuped
✓ indexed
✓ searched

Many options:
• Logstash (ELK)
• AWS CloudWatch Logs
• Loggly
• Papertrail
• …



Microservices



POLL:
what type of architecture does your software have?

• Integrated (Monolith)

• Distributed (Microservices)



Why are we logging?

Postmortem analysis of
user activity and programming errors

Powerful debugging tool

Should contain answers to 
important questions:

What? Who? Where? When?



What?

Who?

Where?

When?



What? Message, Code, Severity

Who?

Where?

When?



What? Message, Code, Severity

Who? Account, User, Session, Request

Where?

When?



What? Message, Code, Severity

Who? Account, User, Session, Request

Where? App, Module, Class

When?



What? Message, Code, Severity

Who? Account, User, Session, Request

Where? App, Module, Class

When? Timestamp, Hostname, PID, Thread

How can these
questions be asked?

How can all this 
information be captured?



Capturing log info



Logging framework architecture

Your 
Code

Logger

Appender
A

Appender
B

Storage 
B

Storage 
A



Logging framework architecture

Your 
Code

Logger

File 
Appender

Log Server 
Appender

Log 
Server

Text 
File(s)



logger.info(“my log message”);

What? Message, Code, Severity

Who? Account, User, Session, Request

Where? App, Module, Class

When? Timestamp, Hostname, PID, Thread



logger.info(“my log message”);

What? Message, Code, Severity

Who? Account, User, Session, Request

Where? App, Module, Class

When? Timestamp, Hostname, PID, Thread



logger.info(“my log message”);

What? Message, Code, Severity

Who? Account, User, Session, Request

Where? App, Module, Class

When? Timestamp, Hostname, PID, Thread



Your 
Code

Logger

Appender
A

Appender
B

Storage 
B

Storage
A

MDC

Mapped Diagnostic Context
(Thread-local temporary key-value store)



MDC.put(“account”, “company ABC”);
MDC.put(“user”, “user123”);

What? Message, Code, Severity

Who? Account, User, Session, Request

Where? App, Module, Class

When? Timestamp, Hostname, PID, Thread



MDC.put(“account”, “company ABC”);
MDC.put(“user”, “user123”);
…
logger.info(“my log message”);

What? Message, Code, Severity

Who? Account, User, Session, Request

Where? App, Module, Class

When? Timestamp, Hostname, PID, Thread



MDC.put(“account”, “company ABC”);
MDC.put(“user”, “user123”);

Populate when:
✓ a request enters the application
✓ a message is received from a queue
✓ an async or cron task starts

And don’t forget the clear when done!
(Threadpools reuse threads!)



Querying the logs



grep?



Truncation!
Compression! Single line messages!

No MDC info!



Decoupling log storage from log representation



Your 
Code

Logger

Appender
Storage

(formatted)

MDC

Log 
Viewer

FORMAT

READ



Your 
Code

Logger

Appender
Storage

(raw)

MDC

Log 
Viewer

READ
&

FORMAT



Structured logging



{
"account": "axelfontaine",
"image": "axelfontaine/xyz:543",
"instance": "i-0d843d5af9b366a69",
"level": "INFO",
"logger": "com.myapp.task.TaskService",
"message": "Successfully killed axelfontaine/demo in prod",
"request": "crq-7R2CVPUMKREUFLMQUE3XB7JWCX",
"session": "cli-CRFM2IPABRFUJD7KTDYVDVXABX",
"thread": "Thread-18710",
"timestamp": "2017-05-12T10:20:30.444" 

}



Machine-readable logs



Machine-queryable logs

What? Message, Code, Severity

Who? Account, User, Session, Request

Where? App, Module, Class

When? Timestamp, Hostname, PID, Thread

Machine-readable logs



AWS CloudWatch Logs



{ $.account = “axelfontaine“ && $.request = “crq-12345678” }



log server



Querying across systems







Propagating MDC

A B C

Create MDC
(based on
session)
and assign
unique
request ID

Copy MDC
to HTTP(S)
headers

Read MDC
HTTP(S)
headers

Read MDC
HTTP(S)
headers

Copy MDC
to HTTP(S)
headers



Propagating MDC

A B C

Filter Decorator Filter FilterDecorator



Standardized keys



{
"account": "axelfontaine",
"image": "axelfontaine/xyz:543",
"instance": "i-0d843d5af9b366a69",
"level": "INFO",
"logger": "com.myapp.task.TaskService",
"message": "Successfully killed axelfontaine/demo in prod",
"request": "crq-7R2CVPUMKREUFLMQUE3XB7JWCX",
"session": "cli-CRFM2IPABRFUJD7KTDYVDVXABX",
"thread": "Thread-18710",
"timestamp": "2017-05-12T10:20:30.444"

}



Standardized values



{
"account": "axelfontaine",
"image": "axelfontaine/xyz:543",
"instance": "i-0d843d5af9b366a69",
"level": "INFO",
"logger": "com.myapp.task.TaskService",
"message": "Successfully killed axelfontaine/demo in prod",
"request": "crq-7R2CVPUMKREUFLMQUE3XB7JWCX",
"session": "cli-CRFM2IPABRFUJD7KTDYVDVXABX",
"thread": "Thread-18710",
"timestamp": "2017-05-12T10:20:30.444"

}



Summary
✓ Send your logs to a centralized service

✓ Ensure your logs are structured

✓Use and propagate MDC

✓ Standardize keys and values 

✓Query your logs to answer the

what, who, where, when questions



About Axel Fontaine

• Founder and CEO of Boxfuse

• Flyway creator

• Continuous Delivery &

Immutable Infrastructure expert

• Java Champion, JavaOne RockStar

@axelfontaine



flywaydb.org

• Evolve your relational database schema 
reliably across all your instances

• Supports all popular RDBMS

• Open-source
(with commercial support available)

• Millions of users



boxfuse.com

• Deploy JVM (Spring Boot, Dropwizard, Tomcat, 
TomEE, ...), Node.js and Go apps effortlessly to 
AWS

• Immutable infrastructure with minimal images 
just 1% of size of regular OS
(think Linux x64 kernel + your app)

• Zero downtime orchestration on AWS
(atomic blue/green deployments)

• First-class support for centralized, structure 
and standardized logging with AWS 
CloudWatch Logs



Thanks !

@axelfontaine boxfuse.com flywaydb.org


