9 Cockroach Labs

The Hitchhiker’'s Guide to Distributed
Transactions

@irfansharifm

Abstract @’

Recent years have seen a flurry of research, both from academia and industry,
enabling distributed transactions while minimizing the performance overhead.
There are various proposals afoot; some systems constrain the transaction
model, others will trade-off behavior under contention. Some systems sacrifice
isolation guarantees, others will incur higher read latencies.

This talk is a survey of the various approaches that academic (Carousel, MDCC,
SLOG, TAPIR) and industrial (Spanner, CockroachDB, OceanVista) systems use to
achieve atomicity in their transactions. We'll define a shared terminology
(ranges, replicas, txn records, etc.) and use it to explore how system

unique compose their transaction models with the underlying replication
protocol to achieve the theoretical minimum latency for atomic commitment:
one round-trip between data centers.

Agenda

1. Foundations
2. Transactions
3. Implementations

Agenda . Keyspace and Sharding
|. Replication and Fault Tolerance

lll. APls

1. Foundations
2. Transactions
3. Implementations

Agendq |. ACID & Isolation Levels
|. Transaction Basics
|. Unpipelined Transactions

1. Foundations
2. Transactions
3. Implementations

Agenda

1.

Foundations

2. Transactions

3.

Implementations

|. Spanner/Pipelined Transactions
Il. Parallel Commits
lll. Replicated Commit

IV. Carousel

V. MDCC

VI. SLOG/OceanVista
VIl. TAPIR

Agendq . Keyspace and Sharding

1. Foundations
2. Transactions
3. Implementations

Monolithic, sorted,
logical key space

We’re ignoring non-ordered databases
(think consistent hashing), though most of
the same principles will apply

Ranges

Each Range (think “shards”) holds a
contiguous span of the key-space

@-lem

apricot
banana
blueberry
cherry

grape

lem-pea

lemon
lime

melon

orange

pea-«

peach

pineapple
raspberry

strawberry

Indexes

We could use indexing structures to locate
shards/ranges

Index
[[Z-lem] [lem-pea] [pea-«]]
¥ \J N\
@-lem lem-pea pea--

oran

Range scans

Ordered keys makes range scans efficient

fruits >= “cherry” AND <= “mango”

Index
[[Z-lem] [lem-pea] [pea-«]]
¥ \J N\
@-lem lem-pea pea--

apricot

banana

blueberry

cherry

grape

lemon

melon

mango

orange

peach

pineapple

raspberry

strawberry

Range splits/merges

Could split ranges when they get too large,
merge when they get too small

We want range sizes to be:
a. small enough to be moved quickly
b. large enough to amortize indexing
overhead

Index

Z-lem][lem-pea][pea-str][str-«

S

-

\

Z-lem
apricot
banana
blueberry

cherry

grape

N

lem-pea

lemon
lime

melon

orange

N

pea-str

peach

pineapple

raspberry

/

str-«

strawberry

tamarillo

tamarind

[)

Other systems Bigtable calls these tablets, Hbase calls these regions, CRDB calls
these ranges. Similar structures found in Spanner, YugaByte, SLOG,
etc.

Agenda

Il. Replication and Fault Tolerance

1. Foundations
2. Transactions
3. Implementations

Consensus replication

Ranges are the unit of replication, each
copy is a Replica. A single node could hold
one or more replicas.

Consensus replication

There are several variants we could use,
leader-based (raft, multi-paxos) and
leaderless (epaxos) ones

NB: A replication factor of 2 doesn’t make sense for us (but is
somewhat akin to primary/secondary replication)

leader

apricot

banana

blueberry

grape

Q00
Q00

follower

follower

apricot

apricot

banana

banana

blueberry

blueberry

grape

grape

Leader-based consensus

READ [carl]

carl
dagne
figment

jack

lady
lula
muddy
peetey

pinetop
sooshi
stella

#Z2@

\

N2 N3

N1 N4

leader

Single distinguished leader replica

l.
Il.
II.
V.
V.

Coordinates writes (proposal, key locking)
Linearizable reads w/o consensus

Client to leader hop to be considered
Leader node failures can cause blips
Disproportionate load on leader

Leaderless consensus

o N2 N3
READ [carl] car
dagne

N1 N4

figment

jack R

lady
lula
muddy
peetey

pinetop No distinguished leader replicas

tella I. Proneto collisions (optimistic CC)
seo Il. Linearizable reads need consensus
lIl. Avoids client to leader hop
IV. No blips caused by node failures
V. More evenly distributed load on nodes

sooshi

Consensus replication
(Writes)

leader
Replicate N-way, committed when acked
by a quorum of replicas

follower

follower

Consensus replication
(Writes)

Put
“cherry”

Replicate N-way, committed when acked
by a quorum of replicas

leader

follower

follower

Consensus replication
(Writes)

Put
“cherry”

Replicate N-way, committed when acked
by a quorum of replicas

leader

aaaaa

S ——

follower follower
apricot apricot
banana banana

blueberry blueberry

Consensus replication
(Writes)

Need ack from just one other node

Put
“cherry”

aaaaa

follower follower
apricot apricot
banana banana

blueberry blueberry

Consensus replication
(Writes)

Need ack from just one other node

Put
“cherry”

leader

aaaaa

——**==ll:;; """"""""""""" ~

follower follower
apricot apricot
banana banana

blueberry blueberry

Consensus replication
(Writes)

Need ack from just one other node

Put
“cherry”

leader

aaaaa

apricot apricot
banana banana
blueberry blueberry

Consensus replication
(Writes)

Need ack from just one other node

Put

“cherry”

leader

Consensus replication
(Reads)

Read

—_— leader
“cherry”
apricot
Only data written to a quorum is — [oo follower foltowes
- apricot apricot

considered present [] []
- banana banana

Consensus replication

Consensus provides “durable, atomic
replication” of commands

Agenda

lll. APls

1. Foundations
2. Transactions
3. Implementations

Data Mapping: SQL

CREATE TABLE inventory (
id INT PRIMARY KEY,
name STRING,

price FLOAT /<table>/<index>/<key>

)
ID Name Price Key Value
1 Bat 1.11 /<Table>/<Index>/1 “Bat”,1.11
2 Ball 2.22 /<Table>/<Index>/2 “Ball”,2.22

3 Glove 3.33 /<Table>/<Index>/3 “Glove”,3.33

Data Mapping: SQL

CREATE TABLE inventory (
id INT PRIMARY KEY,
name STRING,

price FLOAT /<table>/<index>/<key>

)
ID Name Price Key Value
1 Bat 1.11 /inventory/primary/1 “Bat”,1.11
2 Ball 2.22 /inventory/primary/2 “Ball”,2.22

3 Glove 3.33 /inventory/primary/3 “Glove™,3.33

Agendq |. ACID & Isolation Levels
|. Transaction Basics
|. Unpipelined Transactions

1. Foundations
2. Transactions
3. Implementations

Agendq |. ACID & Isolation Levels

1. Foundations
2. Transactions
3. Implementations

ACID

l. Atomicity (“all or nothing”; achieved using staged writes and txn records)

ACID

Il. Consistency (“db is internally consistent”)

ACID

lll. Isolation (“effects of concurrent txns on each other”; determined by locks)

ACID

IV. Durability (“don't lose committed data”; determined by synced writes)

Isolation

Isolation Level (“effects of concurrent txns on one another”; determined by locking
granularity)

.
1.
I1.
V.
V.

read uncommitted (could read ongoing-but-uncommitted writes)
read committed (could read different values in the same txn)
repeatable read (could range-read different values in the same txn)
snapshot isolation (could make write decisions based on stale reads)
serializable (none of the above, as if run in serial order)

Agenda

[I. Transaction Basics

1. Foundations
2. Transactions
3. Implementations

Single-node
transactions

Memory

bbbbbbbb
Disk

Single-node
transactions w

@—oo Memory

txn-1

Single-node
transactions

BEGIN TXN;

PUT “cherry”;

aaaaa

Single-node
transactions w

aaaaa

BEGIN TXN ; blueberry
PUT “cherry”; o

PUT “grape”; o

Single-node
transactions .

@—oo Memory

BEGIN TXN;

PUT “cherry”; ey

PUT “grape”; omeee l comnfin

COMMIT;

Single-node
transactions w

@—oo Memory

BEGIN TXN; blueberry
-
PUT “cherry”;

PUT “grape”; i T =)

COMMIT;
-- clean-up txn record

Single-node (unreplicated) transactions [

Atomicity and durability are achieved by bootstrapping off a lower-level atomic/durable
primitive: disk writes (fsync)

e PENDING transaction record, with transaction ID
e Staged (in-memory) writes, tagged with transaction ID
e Durably persist COMMITTED transaction record and staged writes, atomically

Multi-node (replicated) transactions [

Atomicity and durability are achieved by bootstrapping off a lower-level atomic/durable
primitive: consensus writes (RTT + fsync)

e PENDING transaction record, with transaction ID
e Staged (consensus) writes, tagged with transaction 1D
e Durably persist COMMITTED transaction record, atomically

Multi-node
transactions

N1-N3 N4-N6

@-lem lem-~

Disk Disk

Multi-node
transactions

N1-N3 N4-N6
@-lem lem-
apricot lemon
S A [e]
=
Disk Disk

txn-1
PENDING

Multi-node
transactions

N1-N3 N4-N6
Z-lem lem-~
apricot lemon

BEGIN TXN;
PUT “cherry”;

grape mango

cherry

(txn-1) Disk Disk

txn-1
PENDING

cccccc

Multi-node
transactions

— N4-N6
@-lem Lo
BEGIN TXN;
“ch ” . -
PUT “cherry”;
(txn-1)
PUT “orange";

Disk ozaoge i
(TTTT T T BN
txn-1 I .
o]

Multi-node
transactions

N1-N3 e
@-lem -
apricot —
BEGIN TXN;
PUT “cherry”;
(txn-1)
PUT “orangell ;

Disk (txn-1) Disk
[
txn-1
=

Multi-node

transactions
@-lem lem-«

BEGIN TXN;

=
PUT “cherry”;

PUT “orange”;
COMMIT;) ==

cherry [| orange

-- clean-up staged writes

Multi-node
transactions

N1-N3 N4-N6

@-lem lem-~

apricot lemon

BEGIN TXN;
PUT “cherry”;
PUT “orange”;

grape mango

COMMIT;
-- clean-up staged writes

cherry

-- clean-up txn record

Agenda

lll. Unpipelined Transactions

1. Foundations
2. Transactions
3. Implementations

Unpipelined Transactions

BEGIN;
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

carl
dagne
figment

Jack

lady
lula

muddy

peetey

lady
lula
muddy
peetey

carl
dagne
figment

jack

lady
lula
muddy
peetey

carl
dagne
figment
Jjack

Unpipelined Transactions [*)

BEGIN;

INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

BEGIN TXN1
e ad WRITE [sunny]

GATEWAY

Unpipelined Transactions

BEGIN;

INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

BEGIN TXN1
e ad WRITE [sunny]

transactions

GATEWAY TXN1: PENDING

Unpipelined Transactions

BEGIN;

INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

transactions
TXN1: PENDING

transactions
TXN1: PENDING

BEGIN TXN1
e ad WRITE [sunny]

transactions
TXN1: PENDING

GATEWAY

t =% RTT

Unpipelined Transactions

BEGIN;

INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

transactions
TXN1: PENDING

transactions
TXN1: PENDING

BEGIN TXN1
e ad WRITE [sunny]

transactions
TXN1: PENDING

GATEWAY

Unpipelined Transactions

BEGIN;

INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

transactions
TXN1: PENDING

transactions
TXN1: PENDING

ACK
BEGIN TXN1 e -
e ad WRITE [sunny] ==

transactions
TXN1: PENDING

GATEWAY

Unpipelined Transactions

BEGIN;

INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

transactions
TXN1: PENDING

transactions
TXN1: PENDING

BEGIN TXN1
e ad WRITE [sunny]

transactions
TXN1: PENDING

GATEWAY

Unpipelined Transactions

lady
lula
muddy

BEGIN;
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

peetey

COMMIT ;
transactions

TXN1: PENDING
lady transactions

lula TXN1: PENDING

lady
lula

muddy

peetey
muddy

peetey

BEGIN TXN1

WRITE [sunny]
e e d WRITE [O0Zzzie]

transactions
TXN1: PENDING

GATEWAY

Unpipelined Transactions

lady
lula

BEGIN; muddy
INSERT INTO dogs VALUES (sunny) ; ozzie*
INSERT INTO dogs VALUES (ozzie);
COMMIT;

peetey

BEGIN TXN1
WRITE [sunny]
e e d WRITE [O0Zzzie]

transactions

GATEWAY TXN1: PENDING

transactions
TXN1: PENDING

transactions

lady TXN1: PENDING

lula
muddy
peetey

Unpipelined Transactions

lady
lula

BEGIN;
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

muddy
ozzie*

COMMIT ; peetey

transactions
TXN1: PENDING

transactions
TXN1: PENDING

lady
lula
muddy
ozzie*

peetey

BEGIN TXN1
WRITE [sunny]
e e d WRITE [O0Zzzie]

transactions

GATEWAY TXN1: PENDING

Unpipelined Transactions

lady
lula

BEGIN;
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

muddy
ozzie*

COMMIT ; peetey

transactions
TXN1: PENDING

transactions
TXN1: PENDING

lady
lula
muddy
ozzie*

peetey

BEGIN TXN1
WRITE [sunny]
e e d WRITE [O0Zzzie]

transactions

GATEWAY TXN1: PENDING

Unpipelined Transactions

lady
lula

BEGIN;
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

muddy
ozzie*

COMMIT ; peetey

transactions
TXN1: PENDING

transactions
TXN1: PENDING

7
04& , lady
?’ P s lula
/7 muddy
/)
/ ozzie*

peetey

BEGIN TXN1
WRITE [sunny] ¥
e e d WRITE [O0Zzzie]

transactions

GATEWAY TXN1: PENDING

Unpipelined Transactions

BEGIN;
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

lady
lula
muddy
ozzie*

peetey

BEGIN TXN1

WRITE [sunny]
e e d WRITE [O0Zzzie]

transactions
TXN1: PENDING

GATEWAY

lady
lula
muddy
ozzie*

peetey

transactions
TXN1: PENDING

lady
lula
muddy
ozzie*

peetey

transactions
TXN1: PENDING

Unpipelined Transactions

BEGIN;
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);
COMMIT;

BEGIN TXN1
WRITE [sunny]
WRITE [ozzie]

GATEWAY

lady
lula
muddy
ozzie*

peetey

transactions
TXN1: PENDING

lady
lula
muddy
ozzie*

peetey

transactions
TXN1: PENDING

lady
lula
muddy
ozzie*

peetey

transactions
TXN1: PENDING

Unpipelined Transactions

lady
lula
muddy

BEGIN;
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

ozzie*

COMMIT ; peetey

transactions
TXN1: PENDING

transactions
TXN1: PENDING

lady
lula

lady
lula

muddy

ozzie*

muddy

peetey .
peetey
BEGIN TXN1
WRITE [sunny]
WRITE [ozzie]
e & COMMIT transactions

GATEWAY TXN1: COMMITTED

Unpipelined Transactions [*)

lady
lula

BEGIN;
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

muddy
ozzie*

COMMIT ; peetey

transactions

TXN1: COMMITTED
lady transactions

lula TXN1: COMMITTED

muddy

lula

ozzie*

muddy

peetey
ozzie*

peetey

BEGIN TXN1
WRITE [sunny]
WRITE [ozzie]
e ad COMMIT transactions

GATEWAY TXN1: COMMITTED

Unpipelined Transactions [*)

lady
lula

BEGIN;
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

muddy
ozzie*

COMMIT ; peetey

transactions

TXN1: COMMITTED
lady transactions

lula TXN1: COMMITTED

muddy

lula

ozzie*

muddy

peetey
ozzie*

peetey

BEGIN TXN1
WRITE [sunny]
WRITE [ozzie]
e ad COMMIT transactions

GATEWAY TXN1: COMMITTED

Unpipelined Transactions [*)

lady
lula

BEGIN;
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

muddy
ozzie*

COMMIT ; peetey

transactions

TXN1: COMMITTED
lady transactions

lula TXN1: COMMITTED

muddy

lula

ozzie*

muddy

peetey
ozzie*

peetey

BEGIN TXN1
WRITE [sunny]
WRITE [ozzie]
e ad COMMIT transactions

GATEWAY TXN1: COMMITTED

Unpipelined Transactions

BEGIN;
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);
COMMIT;

BEGIN TXN1
WRITE [sunny]
WRITE [ozzie]

GATEWAY

lady
lula
muddy
ozzie*

peetey

transactions
TXN1: COMMITTED

lady
lula
muddy
ozzie*

peetey

transactions
TXN1: COMMITTED

lady
lula
muddy
ozzie*

peetey

transactions
TXN1: COMMITTED

Unpipelined Transactions

lady
lula

BEGIN;
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

muddy
ozzie*

COMMIT ; peetey

transactions
TXN1: COMMITTED

k lady transactions
1 lula L TXN1: COMMITTED
ady
1 muddy
ACK . lula
1 ozzie*
\ ——— muddy
\ ozzie*
\ peetey
\
\ BEGIN TXN1l1
\\ WRITE [sunny]
\

WRITE [ozzie]

transactions
TXN1: COMMITTED

GATEWAY

Unpipelined Transactions

lady
lula
muddy
ozzie*

peetey

transactions

TXN1: COMMITTED
lady transactions

lula) TXN1: COMMITTED
ady

muddy
X lula
ozziex*
muddy

peetey
ozzie*

peetey

transactions
TXN1: COMMITTED

Unpipelined Transactions

lady
lula
muddy
ozzie

peetey

transactions
TXN1: COMMITTED

lady
lula
muddy
ozzie

peetey

transactions
TXN1: COMMITTED

lady
lula
muddy
ozzie

peetey

transactions
TXN1: COMMITTED

Unpipelined Transactions

Timeline: Unpipelined Transactions

Unpipelined

Timeline: Unpipelined Transactions [

Unpipelined 1 WAN RTT

£xn:id (pending)

Timeline: Unpipelined Transactions [

Unpipelined 1 WAN RTT

txn:id (pending)

B sunny*
BEGIN »

WRITE[sunny] | L bl

Timeline: Unpipelined Transactions [

Unpipelined 1 WAN RTT

txn:id (pending)

Sunny*

BEGIN
WRITE[sunny]

WRITE[ozzie] “*‘

Timeline: Unpipelined Transactions [

Unpipelined 1 WAN RTT

txn:id (pending)

Sunny*
BEGIN
WRITE[sunny]
WRITE[ozzie] 0zzijex*
COMMIT

N+2 WAN RTTS

Agenda

1.

Foundations

2. Transactions

3.

Implementations

|. Spanner/Pipelined Transactions
Il. Parallel Commits
lll. Replicated Commit

IV. Carousel

V. MDCC

VI. SLOG/OceanVista
VIl. TAPIR

Agendq |. Spanner/Pipelined Transactions

1. Foundations
2. Transactions
3. Implementations

Timeline: Pipelined Transactions

Unpipelined Pipelined

Timeline: Pipelined Transactions [

Unpipelined Pipelined

£xn:id (pending) txn: id (pending), Sunny*

______ sunny*
BEGIN _

WRITE[sunny] | b

Timeline: Pipelined Transactions

Unpipelined Pipelined

txn: id (pending) txn:id (pending), sunny*

_—__——_—_——iziafl_____“‘———b-
Sunny*
WRITE[ozzie] "-————____25231__________—.-

BEGIN
WRITE[sunny]

Timeline: Pipelined Transactions

BEGIN
WRITE[sunny]

WRITE[ozzie]
COMMIT

Unpipelined

txn:id (pending)

=
— — -
— =
-
—

=
-
— —
== ==
-
-
-—

—
-
-
-
-
-
——
-
——

Pipelined
txn:ig (pending),

SUnny*

-
-
—
-
e =
= =
o= ==

Timeline: Pipelined Transactions

Unpipelined Pipelined
Lxn:id (pending) txn:id (pending), sunny*
0zzjie*
Sunny*
BEGIN
WRITE[sunny] W
WRITE[ozzie] 0zziex | ==
COMMIT «----""""

txn:id (committeq

Timeline: Pipelined Transactions

BEGIN
WRITE[sunny]

WRITE[ozzie]
COMMIT

Unpipelined

txn:id (pending)

Sunny*

0zzje*

txn:id (committeq ¢

N+2 WAN RTTS

Pipelined

txn:ig (pending),

0zzie*

sunny*

txn:id (committed)

Start committing record
after all intent writes
succeeds

2 WAN RTTS

Spanner

From Google, 2012. Spurred all the following
research/derivative systems.

M-

spanner-osdi2012.pdf

Spanner: Google’s Globally-Distributed Database

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, JJ Furman,
Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh,
Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura,
David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, Dale Woodford

Google, Inc.

Abstract

Spanner is Google’s scalable, multi-version, globally-
istril and i database. It is
the first system to distribute data at global scale and sup-
port i distributed it This
paper describes how Spanner is structured, its feature set,
the rationale underlying various design decisions, and a
novel time API that exposes clock uncertainty. This APT
and its i ion are critical to ing exter-
nal consistency and a variety of powerful features: non-
blocking reads in the past, lock-free read-only transac-
tions, and atomic schema changes, across all of Spanner.

1 Introduction

Spanner is a scalable, globally-distributed database de-
signed, built, and deployed at Google. At the high-
est level of abstraction, it is a database that shards data
across many sets of Paxos [21] state machines in data-
centers spread all over the world. Replication is used for
global availability and geographic locality; clients auto-

tency over higher availability, as long as they can survive
1 or 2 datacenter failures.

Spanner’s main focus is managing cross-datacenter
replicated data, but we have also spent a great deal of
time in designing and implementing important database
features on top of our distributed-systems infrastructure.
Even though many projects happily use Bigtable [9], we
have also consistently received complaints from users
that Bigtable can be difficult to use for some kinds of ap-
plications: those that have complex, evolving schemas,
or those that want strong consistency in the presence of
wide-area replication. (Similar claims have been made
by other authors [37].) Many applications at Google
have chosen to use Megastore [5] because of its semi-
relational data model and support for synchronous repli-
cation, despite its relatively poor write throughput. As a
consequence, Spanner has evolved from a Bigtable-like
versioned key-value store into a temporal multi-version
database. Data is stored in schematized semi-relational
tables; data is versioned, and each version is automati-
cally timestamped with its commit time; old versions of

Pipelined Transactions

BEGIN;
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

carl
dagne
figment

Jack

lady
lula

muddy

peetey

lady
lula
muddy
peetey

carl
dagne
figment

jack

lady
lula
muddy
peetey

carl
dagne
figment
Jjack

Pipelined Transactions

BEGIN;

INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

BEGIN TXN1
e ad WRITE [sunny]

GATEWAY

Pipelined Transactions

BEGIN;

INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

BEGIN TXN1
e ad WRITE [sunny]

transactions

GATEWAY TXN1: PENDING

Pipelined Transactions

lady
lula

BEGIN; muddy
INSERT INTO dogs VALUES (sunny) ; ozzie*
INSERT INTO dogs VALUES (ozzie);
COMMIT;

peetey

BEGIN TXN1
WRITE [sunny]
e e d WRITE [O0Zzzie]

transactions

GATEWAY TXN1: PENDING

Pipelined Transactions

lady

lula
BEGIN;

INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);
COMMIT ;

muddy
ozzie*

peetey

BEGIN TXN1
WRITE [sunny]
WRITE [ozzie]

transactions
TXN1: PENDING

GATEWAY

Pipelined Transactions

lady
lula

BEGIN; muddy

INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);
COMMIT ;

ozzie*

peetey

TXN1: PENDING

lady . transactions

‘ transactions

lula 3
V TXN1: PENDING
muddy =

ozzie* tula
mudd

peetey Y
ozzie*

peetey

BEGIN TXN1
WRITE [sunny]
WRITE [ozzie]

transactions

GATEWAY TXN1: PENDING

t =% RTT

Pipelined Transactions

lady
lula

BEGIN; muddy

INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);
COMMIT ;

ozzie*

peetey

transactions

TXN1: PENDING
lady transactions

lula) TXN1: PENDING
ady

lula

muddy

ozzie*
mudd
peetey H
ozzie*

peetey

BEGIN TXN1
WRITE [sunny]
WRITE [ozzie]

transactions
TXN1: PENDING

GATEWAY

Pipelined Transactions

lady
lula
muddy

BEGIN;
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

ozzie*

COMMIT ; peetey

transactions
TXN1: PENDING

lady transactions
// lula - TXN1: PENDING
, muddy lgia
7 ozzie*
7 muddy
/7 peetey
’ ozzie*
/ peetey
/
BEGIN TXN1 S -

WRITE [sunny] ¥
WRITE [ozzie]
e od COMMIT

transactions
TXN1: PENDING

GATEWAY

Pipelined Transactions

lady
lula
muddy

BEGIN;
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

ozzie*

COMMIT ; peetey

transactions
TXN1: PENDING

transactions
TXN1: PENDING

lady
lula

lady
lula

muddy

ozzie*

muddy

peetey .
peetey
BEGIN TXN1
WRITE [sunny]
WRITE [ozzie]
e & COMMIT transactions

GATEWAY TXN1: COMMITTED

Pipelined Transactions [

lady
lula

BEGIN;
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

muddy
ozzie*

COMMIT ; peetey

transactions

TXN1: COMMITTED
lady transactions

lula TXN1: COMMITTED

muddy

lula

ozzie*

muddy

peetey
ozzie*

peetey

BEGIN TXN1
WRITE [sunny]
WRITE [ozzie]
e ad COMMIT transactions

GATEWAY TXN1: COMMITTED

Pipelined Transactions [

lady
lula

BEGIN;
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

muddy
ozzie*

COMMIT ; peetey

transactions

TXN1: COMMITTED
lady transactions

lula TXN1: COMMITTED

muddy

lula

ozzie*

muddy

peetey
ozzie*

peetey

BEGIN TXN1
WRITE [sunny]
WRITE [ozzie]
e ad COMMIT transactions

GATEWAY TXN1: COMMITTED

Pipelined Transactions [

lady
lula

BEGIN;
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

muddy
ozzie*

COMMIT ; peetey

transactions

TXN1: COMMITTED
lady transactions

lula TXN1: COMMITTED

muddy

lula

ozzie*

muddy

peetey
ozzie*

peetey

BEGIN TXN1
WRITE [sunny]
WRITE [ozzie]
e ad COMMIT transactions

GATEWAY TXN1: COMMITTED

Pipelined Transactions

lady
lula

BEGIN; muddy

INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);
COMMIT ;

ozzie*

peetey

transactions

TXN1: COMMITTED
lady transactions

lula) TXN1: COMMITTED
ady

lula

muddy

ozzie*
mudd
peetey H
ozzie*

peetey

BEGIN TXN1
WRITE [sunny]
WRITE [ozzie]

transactions
TXN1: COMMITTED

GATEWAY

Pipelined Transactions

BEGIN;
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

k lady
1 lula
1 muddy
] ozzie*
1 peetey
\
\
\
\ BEGIN TXN1
\\ WRITE [sunny]
\\ WRITE [ozzie]

transactions
TXN1: COMMITTED

GATEWAY

lady
lula
muddy
ozzie*

peetey

transactions
TXN1: COMMITTED

lady
lula
muddy
ozzie*

peetey

transactions
TXN1: COMMITTED

Pipelined Transactions

lady
lula
muddy
ozzie*

peetey

transactions
TXN1: COMMITTED

lady
lula
muddy
ozzie*

peetey

transactions
TXN1: COMMITTED

lady
lula
muddy
ozzie*

peetey

transactions
TXN1: COMMITTED

Pipelined Transactions

lady
lula
muddy
ozzie

peetey

transactions
TXN1: COMMITTED

lady
lula
muddy
ozzie

peetey

transactions
TXN1: COMMITTED

lady
lula
muddy
ozzie

peetey

transactions
TXN1: COMMITTED

Pipelined Transactions

Agenda

II. Parallel Commits

1. Foundations
2. Transactions
3. Implementations

Timeline: Parallel Commits

Unpipelined Parallel Commits

Timeline: Parallel Commits ?6

Unpipelined Parallel Commits

txn:id (Pending) —————________Eﬂﬂﬂxi______—___-—__.>

= Sunny*
BEGIN

WRITE[sunny] | L bl

Timeline: Parallel Commits

Unpipelined Parallel Commits

txn:id (pending) Sunny*
--------- e
S sunny*
BEGIN

WRITE[sunny] | b

WRITE[ozzie] ‘“’

—
-
-
-
-
-
——
-
——

Timeline: Parallel Commits

Unpipelined Parallel Commits
txn:id (pending) Sunny*
0zzje*
sunny* tXn:id (sta
BEGIN W
WRITE[sunny]
WRITE[ozzie] 0zzie*

COMMIT

txn:ig (committed

Timeline: Parallel Commits

Unpipelined Parallel Commits
txn:id (pending) sunny*
0zzjiex*
Sunny* txn:id (st
BEGIN [Keys: iy, et
WRITE[sunny]
WRITE[ozzie] 0zzie* -

COMMIT

Committed once all

txn:j . t .
XN:1d (committeq operations complete

_________ X We replaced the
centralized commit marker
with a distributed one

- Proved using TLA+

Unpipelined

txn:id (committed)

N+2 WAN RTTS

Pipelined

txn:id (pending),

0zzie*

sunny*

txn:ig (committed)

Start committing record
after all intent writes
succeeds

2 WAN RTTS

Parallel Commits

Sunny*

0zzjie*

tXn:id (staged)

Lkeys: sunny, 0zzie]

Committed once all
operations complete

We replaced the

centralized commit marker
with a distributed one

1 WAN RTT

Parallel Commits

BEGIN;
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

carl
dagne
figment

Jack

lady
lula

muddy

peetey

lady
lula
muddy
peetey

carl
dagne
figment

jack

lady
lula
muddy
peetey

carl
dagne
figment
Jjack

Parallel Commits

BEGIN;

INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

BEGIN TXN1
e ad WRITE [sunny]

GATEWAY

Parallel Commits

BEGIN;

INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

BEGIN TXN1
e ad WRITE [sunny]

transactions

GATEWAY TXN1: STAGED

Parallel Commits

lady
lula

BEGIN; muddy
INSERT INTO dogs VALUES (sunny) ; ozzie*
INSERT INTO dogs VALUES (ozzie);
COMMIT;

peetey

BEGIN TXN1
WRITE [sunny]
e e d WRITE [O0Zzzie]

transactions

GATEWAY TXN1: STAGED

Parallel Commits

lady

lula
BEGIN;

INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);
COMMIT ;

muddy
ozzie*

peetey

BEGIN TXN1
WRITE [sunny]
WRITE [ozzie]

transactions
TXN1: STAGED

GATEWAY

Parallel Commits

BEGIN;

INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);
COMMIT;

lady
lula
muddy
ozzie*

peetey

BEGIN TXN1
WRITE [sunny]
WRITE [ozzie]

transactions

GATEWAY

t =% RTT

TXN1: STAGED

lady
lula
muddy
ozzie*

peetey

‘ transactions

TXN1: STAGED

\

lula

muddy
ozzie*

peetey

transactions

TXN1: STAGED

Parallel Commits

lady
lula

BEGIN; muddy

INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);
COMMIT ;

ozzie*

peetey

transactions

TXN1: STAGED
lady transactions

lula TXN1: STAGED

lady
lula

muddy

ozzie*
mudd
peetey Y
ozzie*

peetey

BEGIN TXN1
WRITE [sunny]
WRITE [ozzie]

transactions

GATEWAY TXN1: STAGED

Parallel Commits

lady
lula
muddy

BEGIN;
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

ozzie*

COMMIT ; peetey

transactions

TXN1: STAGED
lady transactions

lula TXN1: STAGED

lady
lula

muddy

ozzie*
mudd
peetey Y
ozzie*

/ peetey

BEGIN TXN1 /
‘4

WRITE [sunny] ¥

WRITE [ozzie]

e COMMIT

transactions
TXN1: STAGED

GATEWAY

Parallel Commits

lady
lula

BEGIN; muddy

INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);
COMMIT ;

ozzie*

peetey

transactions

TXN1: STAGED
lady transactions

lula TXN1: STAGED

lady
lula

muddy

ozzie*
mudd
peetey Y
ozzie*

peetey

BEGIN TXN1
WRITE [sunny]
WRITE [ozzie]

transactions

GATEWAY TXN1: STAGED

Parallel Commits

lady

BEGIN;

INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

lula

muddy
ozzie*
COMMIT; peetey

transactions

\ WRITE [sunny]
\\ WRITE [ozzie]

transactions
TXN1: STAGED

GATEWAY

TXN1: STAGED
k lady
1 lula
1 muddy tady
. lula
1 ozziex*
1 peetey muddy
\ ozzie*
\ peetey
\
\ BEGIN TXN1
\

transactions
TXN1: STAGED

Parallel Commits

lady
lula
muddy
ozzie*

peetey

transactions

TXN1: STAGED
lady transactions

lula) TXN1: STAGED
ady

muddy
. lula
ozziex*
muddy

peetey
ozzie*

peetey

transactions
TXN1: STAGED

Parallel Commits

lady
lula
muddy
ozzie

peetey

transactions

TXN1: STAGED

lady
lula
muddy
ozzie

peetey

transactions
TXN1: STAGED

lady
lula
muddy
ozzie

peetey

transactions

TXN1: STAGED

Parallel Commits

lady
lula

muddy

ozzie

peetey

lady
lula
muddy
ozzie

peetey

lady
lula
muddy
ozzie

peetey

Agenda

lll. Replicated Commit

1. Foundations
2. Transactions
3. Implementations

Replicated Commit

From UC Santa Barbara, 2013. Distinguishes
between intra-DC (10ms) and inter-DC
(100ms) latencies. Each DC contains replicas
of all ranges.

2013-03.pdf

Low-Latency Multi-Datacenter Databases using Replicated
Commits

Hatem A. Mahmoud, Alexander Pucher, Falsal Nawab,
Divyakant Agrawal Amr El Al
Universoty of California
Santa Barbara, CA, USA

{hatem,pucher,nawab,agrawal,amr}@cs.ucsb.edu

ABSTRACT

Web service providers have been using NoSQL datastores to pro-
vide scalability and availability for globally distributed data at the
cost of sacrificing transactional guarantees. Recently, major web
service providers like Google have moved towards building stor-
age systems that provide ACID transactional guarantees for glob-
ally distributed data. For example, the newly published system,
Spanner, uses Two-Phase Commit and Two-Phase Locking to pro-
vide atomicity and isolation for globally distributed data, running
on top of Paxos to provide fault-tolerant log replication. We show
in this paper that it is possible to provide the same ACID transac-
tional guarantees for multi-datacenter databases with fewer cross-
datacenter communication trips, compared to replicated logging,
by using a more efficient architecutre. Instead of replicating the
transactional log, we replicate the commit operation itself, by run-
ning Two-Phase Commit multiple times in different datacenters,
and use Paxos to reach consensus among datacenters as to whether
the transaction should commit. Doing so not only replaces several

trips with i commu-
nication trips, but also allows us to integrate atomic commitment
and isolation protocols with consistent replication protocols so as
to further reduce the number of cross-datacenter communication
trips needed for consistent replication; for example, by eliminating
the need for an election phase in Paxos.

1. INTRODUCTION

‘The rapid increase in the amount of data that is handled by web
services as well as the globally-distributed client base or those web
s a al S towards

cently, however, major web service providers have moved towards
building storage systems that provide unrestricted ACID transac-
tional guarantees. Google’s Spanner [8] is a prominent example of
such new trend. Spanner uses Two-Phase Commit and Two-Phase
Locking to provide atomicity and isolation, running on top of a
P plicated log to provide fault-tol replica-
tion across datacenters. The same architecture is also used in Scat-
ter [11], a distributed hashtable datastore that provides ACID trans-
actional guarantees for sharded, globally replicated data, through
a key-value interface. Such layered architecture, in which the
protocols that guarantee transactional atomicity and isolation are
separated from the prouxol that guarantees faull mleram rephcar
tion, has many uch
as modularity, and clarity of semamlcs.

We show in this paper that it is possible to provide ACID trans-
actional guarantees for cross-datacenter databases with a smaller
number of cross-datacenter roundtrips, compared to a system that
uses log replication, such as Spanner, by using a more efficient ar-
chitecutre. Instead of running Two-Phase Commit and Two-Phase
Locking on top of Paxos to replicate the transactional log, we run
Paxos on top of Two-Phase Commit and Two-Phase Locking to
replicate the commit operation itself. That is, we execute the Two-
Phase commit multiple time, once per datacenter, with each data-
center executing Two-Phase Commit and Two-Phase Locking in-
ternally, and we use Paxos to reach a consensus among datacenters
as to whether the transaction should eventually commit. We refer
to this approach as Replicated Commit, in contrast to the replicated
log approach.

Replicated Commit has the advantage of replacing several inter-
datacenter communication trips with_intra-datacenter communi-

Replicated Commit

Suggests running 2PC multiple times in
parallel in each DC, and using Paxos across
DCs to determine if txn should commit.

2013-03.pdf

Low-Latency Multi-Datacenter Databases using Replicated
Commits

Hatem A. Mahmoud, Alexander Pucher, Falsal Nawab,
Divyakant Agrawal Amr El Al
Universoty of California
Santa Barbara, CA, USA

{hatem,pucher,nawab,agrawal,amr}@cs.ucsb.edu

ABSTRACT

Web service providers have been using NoSQL datastores to pro-
vide scalability and availability for globally distributed data at the
cost of sacrificing transactional guarantees. Recently, major web
service providers like Google have moved towards building stor-
age systems that provide ACID transactional guarantees for glob-
ally distributed data. For example, the newly published system,
Spanner, uses Two-Phase Commit and Two-Phase Locking to pro-
vide atomicity and isolation for globally distributed data, running
on top of Paxos to provide fault-tolerant log replication. We show
in this paper that it is possible to provide the same ACID transac-
tional guarantees for multi-datacenter databases with fewer cross-
datacenter communication trips, compared to replicated logging,
by using a more efficient architecutre. Instead of replicating the
transactional log, we replicate the commit operation itself, by run-
ning Two-Phase Commit multiple times in different datacenters,
and use Paxos to reach consensus among datacenters as to whether
the transaction should commit. Doing so not only replaces several

trips with i commu-
nication trips, but also allows us to integrate atomic commitment
and isolation protocols with consistent replication protocols so as
to further reduce the number of cross-datacenter communication
trips needed for consistent replication; for example, by eliminating
the need for an election phase in Paxos.

1. INTRODUCTION

‘The rapid increase in the amount of data that is handled by web
services as well as the globally-distributed client base or those web
s al S towards

cently, however, major web service providers have moved towards
building storage systems that provide unrestricted ACID transac-
tional guarantees. Google’s Spanner [8] is a prominent example of
such new trend. Spanner uses Two-Phase Commit and Two-Phase
Locking to provide atomicity and isolation, running on top of a
P plicated log to provide fault-tol replica-
tion across datacenters. The same architecture is also used in Scat-
ter [11], a distributed hashtable datastore that provides ACID trans-
actional guarantees for sharded, globally replicated data, through
a key-value interface. Such layered architecture, in which the
protocols that guarantee transactional atomicity and isolation are
separated from the prouxol that guarantees faull mleram rephcar
tion, has many uch
as modularity, and clarity of semamlcs.

We show in this paper that it is possible to provide ACID trans-
actional guarantees for cross-datacenter databases with a smaller
number of cross-datacenter roundtrips, compared to a system that
uses log replication, such as Spanner, by using a more efficient ar-
chitecutre. Instead of running Two-Phase Commit and Two-Phase
Locking on top of Paxos to replicate the transactional log, we run
Paxos on top of Two-Phase Commit and Two-Phase Locking to
replicate the commit operation itself. That is, we execute the Two-
Phase commit multiple time, once per datacenter, with each data-
center executing Two-Phase Commit and Two-Phase Locking in-
ternally, and we use Paxos to reach a consensus among datacenters
as to whether the transaction should eventually commit. We refer
to this approach as Replicated Commit, in contrast to the replicated
log approach.

Replicated Commit has the advantage of replacing several inter-
datacenter communication trips with_intra-datacenter communi-

Replicated Commit

carl
dagne
figment

Jack

lady
lula
muddy
peetey

carl
dagne
figment

Jack

lady
lula
muddy
peetey

carl
dagne
figment

Jjack

lady
lula

muddy

peetey

Replicated Commit

BEGIN;
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

BEGIN TXN1
e WRITE [sunny]

GATEWAY

carl
dagne
figment

Jack

lady
lula

muddy

peetey

carl
dagne
figment

Jack

lady
lula
muddy
peetey

carl
dagne
figment

Jjack

lady
lula
muddy
peetey

Replicated Commit

carl carl carl

BEGIN;
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

dagne dagne dagne

figment

figment figment

COMMIT;
. Jack Jack Jjack

lady
lula

lady
lula

lady
lula

muddy

muddy muddy

peetey peetey

’:I

peetey

BEGIN TXN1
e WRITE [sunny]

transactions transactions transactions
GATEWAY TXN1: PENDING TXN1: PENDING TXN1: PENDING

Replicated Commit

BEGIN;
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

carl carl carl

dagne dagne

dagne

figment figment figment

Jack Jack Jjack

lady
lula

lady
lula

muddy muddy

ozzie* ozzie*

peetey peetey

BEGIN TXN1
WRITE [sunny]

e e WRITE [O0Zzzie]

transactions transactions transactions
GATEWAY TXN1: PENDING TXN1: PENDING TXN1: PENDING

Replicated Commit

BEGIN; carl carl carl

INSERT INTO dogs VALUES (sunny) ; dagne dagne
INSERT INTO dogs VALUES (ozzie);
COMMIT ;

dagne
figment figment figment

Jack Jack Jjack

lady lady
lula lula

lady
lula
muddy muddy muddy
ozzie* ozzie* ozzie*

peetey peetey peetey

BEGIN TXN1
WRITE [sunny]
WRITE [ozzie]

transactions
TXN1: PENDING

transactions transactions
GATEWAY TXN1: PENDING TXN1: PENDING

Replicated Commit

carl carl carl

BEGIN;
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

dagne dagne dagne

figment figment figment
COMMIT;

Jack Jack Jjack

lady
lula

lady lady
lula lula
muddy muddy muddy
ozzie* ozzie* ozzie*

peetey peetey peetey

BEGIN TXN1l1
WRITE [sunny]
WRITE [ozzie]
e ad COMMIT transactions

transactions transactions

GATEWAY TXN1: COMMITTED TXN1: PENDING TXN1: PENDING

Replicated Commit

BEGIN;
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

BEGIN TXN1

WRITE [sunny]

WRITE [ozzie]
e d COMMIT

GATEWAY

carl carl carl

dagne dagne dagne

figment figment figment

Jack Jack Jjack

lady
lula

lady
lula

lady
lula

muddy muddy muddy

ozzie* ozzie* ozzie*

peetey peetey peetey

(zee]

transactions transactions transactions
TXN1: COMMITTED TXN1: COMMITTED TXN1: COMMITTED

t

1 LAN + 7% WAN

Replicated Commit

BEGIN;
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

BEGIN TXN1

WRITE [sunny]

WRITE [ozzie]
e d COMMIT

GATEWAY

carl carl carl

dagne dagne dagne

figment figment figment

Jack Jack Jjack

lady
lula

lady
lula

lady
lula

muddy muddy muddy

ozzie* ozzie* ozzie*

peetey peetey peetey

(zee]

transactions transactions transactions
TXN1: COMMITTED TXN1: COMMITTED TXN1: COMMITTED

1 LAN + 1 WAN

Replicated Commit

BEGIN;
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

BEGIN TXN1

WRITE [sunny]

WRITE [ozzie]
e d COMMIT

GATEWAY

carl carl carl

dagne dagne dagne

figment figment figment

Jack Jack Jjack

lady
lula

lady
lula

lady
lula

muddy muddy muddy

ozzie* ozzie* ozzie*

peetey peetey peetey

(zee]

transactions transactions transactions
TXN1: COMMITTED TXN1: COMMITTED TXN1: COMMITTED

1 LAN + 1 WAN

Replicated Commit

carl carl carl

BEGIN;
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

dagne dagne dagne

figment figment figment
COMMIT;

Jack Jack Jjack

lady
lula

lady lady
lula lula
muddy muddy muddy

ozzie* ozzie* ozzie*

e ——— 4

peetey peetey peetey

BEGIN TXN1
WRITE [sunny]
WRITE [ozzie]

transactions
TXN1: COMMITTED

transactions transactions

GATEWAY TXN1: COMMITTED TXN1: COMMITTED

t =1 LAN + 1 WAN

Replicated Commit

carl carl

dagne dagne
figment figment

jack jack

lady
lula

lady lady
lula lula
muddy muddy muddy
ozzie* ozzie* ozzie*

peetey peetey peetey

transactions transactions
TXN1: COMMITTED TXN1: COMMITTED

transactions
TXN1: COMMITTED

t =1 LAN + 1 WAN

Replicated Commit

carl carl

dagne dagne
figment figment

jack jack

lady
lula

lady lady
lula lula
muddy muddy muddy
ozzie ozzie ozzie

peetey peetey peetey

transactions transactions
TXN1: COMMITTED TXN1: COMMITTED

transactions
TXN1: COMMITTED

t =1 LAN + 1 WAN

Replicated Commit

carl carl

dagne dagne
figment figment

jack jack

lady
lula

lady lady
lula lula

muddy muddy muddy

ozzie ozzie ozzie

peetey peetey peetey

t =1 LAN + 1 WAN

Replicated Commit (reads)

carl carl carl

BEGIN;
READ (sunny) FROM dogs;
COMMIT ;

dagne dagne dagne

figment figment figment

Jack Jack Jjack

lady
lula

lady lady
lula lula

muddy muddy muddy

ozzie ozzie ozzie

peetey peetey peetey

BEGIN TXN1
e d READ [sunny]
COMMIT

GATEWAY

Replicated Commit (reads) %)

carl carl carl

BEGIN;
READ (sunny) FROM dogs;
COMMIT ;

dagne dagne dagne

figment figment figment

Jack Jack Jjack

lady
lula

lady
lula

lady
lula

muddy muddy muddy

ozzie ozzie ozzie

peetey peetey peetey

BEGIN TXN1
e d READ [sunny]
COMMIT

GATEWAY

t = % WAN

Replicated Commit (reads)

carl

BEGIN;
READ (sunny) FROM dogs;
COMMIT ;

dagne
figment

Jack

lady
lula

muddy

ozzie

peetey

BEGIN TXN1
e d READ [sunny]
COMMIT

GATEWAY

carl
dagne
figment

Jack

lady
lula

muddy

ozzie

peetey

carl
dagne
figment

Jjack

lady
lula
muddy
ozzie

peetey

Agenda

1. Foundations
2. Transactions
3. Implementations

IV. Carousel

Carousel

From Waterloo, 2018. Limits transaction
model to 2FI (2-fixed set interactive): a round
of reads followed by round of writes, with all
keys declared in advance. Write values can
depend on reads, but keys written to/read
from cannot.

Uses Fast Paxos to replicate to all replicas
directly, avoiding the leader hop. Retries on
conflict, given it's optimistic.

carousel-sigmod-2018.pdf
P

Carousel: Low-Latency Transaction Processing for
Globally-Distributed Data

Xinan Yan Linguan Yang
University of Waterloo

University of Waterloo

Hongbo Zhang
University of Waterloo

ca hongbo.zt

xinan.yan@uwaterloo.ca g

Xiayue Charles Lin Bernard Wong
University of Waterloo
bernard@uwaterloo.ca

University of Waterloo
xy3lin@uwaterloo.ca

Kenneth Salem
University of Waterloo
kmsalem@uwaterloo.ca

Tim Brecht
University of Waterloo
brecht@uwaterloo.ca

ABSTRACT

KEYWORDS

‘The trend towards global d services h: d an in-
creasing demand for transaction processing on globally-distributed
data. Many database systems, such as Spanner and CockroachDB,
support distributed transactions but require a large number of wide-
area network roundtrips to commit each transaction and ensure
the transaction’s state is durably replicated across multiple datacen-
ters. This can i increase i ion time,
resulting in devel replacing database-level fons with
their own error-prone application-level solutions.

This paper introduces Carousel, a distributed database system

globally-distributed data; di

ACM Reference Format:

Xinan Yan, Linguan Yang, Hongbo Zhang, Xiayue Charles Lin, Bernard
‘Wong, Kenneth Salem, and Tim Brecht. 2018. Carousel: Low-Latency Trans-
action Processing for Globally-Distributed Data. In Proceedings of 2018
International Conference on Management of Data (SIGMOD'18). ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3183713.3196912

1 INTRODUCTION

G i i database systems have become part of

that provides | ion processing for multi-p:

globally-distributed transactions. Carousel shortens transaction
processing time by reducing the number of sequential wide-area
network roundtrips required to commit a transaction and replicate
its results while maintaining serializability. This is possible in part
by using information about a transaction’s potential write set to
enable transaction processing, including any necessary remote read
operations, to overlap with 2PC and state replication. Carousel
further reduces i ion time by i ing a con-
sensus protocol that can perform state replication in parallel with
2PC. For a multi-partition 2-round Fixed-set Interactive (2FI) trans-

the critical infrastructure for organizations that operate in more
than one geographic location. Two prominent examples of ge-
ographically distributed database systems are Spanner [11] and
CockroachDB [8]. These systems partition their data and store each
partition at the datacenter where it will most frequently be used.
They also use a consensus protocol, such as Paxos [25] or Raft [40],
to replicate each partition to enough additional datacenters to meet
their users’ fault tolerance requirements.

Although most transactions for these systems are designed to

Carousel

lady
lula

muddy

peetey

lady
lula
muddy
peetey

lady
lula
muddy
peetey

Carousel

BEGIN FOR (sunny, ozzie);
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

lady lady lady
lula lula lula

muddy muddy muddy

peetey peetey peetey

e BEGIN[sunny,ozzie]

GATEWAY

Carousel

BEGIN FOR (sunny, ozzie);
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

lady
lula

lady
lula

lady
lula
muddy

muddy muddy

peetey peetey peetey

N BEGIN[sunny,ozzie]

GATEWAY

Carousel

BEGIN FOR (sunny, ozzie);
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

lady
lula

lady
lula

muddy muddy
oZzie* ozzie*
peetey

peetey

N BEGIN[sunny, ozzie]

GATEWAY

Carousel

BEGIN FOR (sunny, ozzie);
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

lady lady lady
lula lula lula

muddy muddy muddy

ozzie* ozzie* ozzie*

peetey peetey peetey

BEGIN|[sunny,ozzie]
e WRITE [sunny]

GATEWAY

Carousel

BEGIN FOR (sunny, ozzie);
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

lady lady lady
lula lula lula

muddy muddy muddy

ozzie* ozzie* ozzie*

peetey peetey peetey

BEGIN|[sunny,ozzie]

WRITE [sunny]
T WRITE [ozzie]

GATEWAY

Carousel

BEGIN FOR (sunny, ozzie);
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

BEGIN|[sunny,ozzie]
WRITE [sunny]

WRITE [ozzie]
e a COMMIT

GATEWAY

lady
lula

muddy

ozzie*

peetey

lady
lula

muddy

ozzie*

peetey

lady
lula
muddy
ozzie*

peetey

Carousel ?6

BEGIN FOR (sunny, ozzie);
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

lady
lula

lady
lula

lady
lula

muddy muddy muddy

ozzie* ozzie* ozzie*

peetey peetey peetey

BEGIN|[sunny,ozzie]
WRITE [sunny]

WRITE [ozzie]
e a COMMIT

GATEWAY

t =% RTT

Carousel

BEGIN FOR (sunny, ozzie);
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

lady lady
lula lula

lady
lula

muddy muddy

muddy

ozzie* ozzie* ozzie*

peetey peetey peetey

BEGIN|[sunny,ozzie]
WRITE [sunny]

WRITE [ozzie]
e a COMMIT

GATEWAY

Carousel

BEGIN FOR (sunny, ozzie);
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

lady ¥l lady
lula lula
muddy muddy
ozzie* i ozzie*

peetey peetey

BEGIN|[sunny,ozzie]
WRITE [sunny]

WRITE [ozzie]
e a COMMIT

GATEWAY

Carousel

BEGIN FOR (sunny, ozzie);
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

lady lady lady
lula lula lula
muddy myddy muddy

ozzie* ozzﬁ.e{ ozzie*

peetey peetey R peetey

BEGIN|[sunny,ozzie]
WRITE [sunny]

WRITE [ozzie]
e a COMMIT

GATEWAY

Carousel

BEGIN FOR (sunny, ozzie);

INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);
COMMIT;

lady lady lady
lula lula lula
muddy muddy muddy
ozzie* ozzie* ozzie*

peetey peetey peetey

BEGIN|[sunny,ozzie]
WRITE [sunny]
WRITE [ozzie]

GATEWAY

Carousel

BEGIN FOR (sunny, ozzie);
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

lady lady lady

) lula lula lula

1 muddy muddy muddy

\ ozzie* ozzie* ozzie*

\ peetey peetey peetey

\
\
\
\\ BEGIN|[sunny,ozzie]

\ WRITE [sunny]
\\ WRITE [ozzie]
e g COMMIT

GATEWAY

Carousel

lady
lula

muddy

ozzie*

peetey

lady
lula
muddy
ozzie*

peetey

lady
lula
muddy
ozzie*

peetey

Carousel

lady
lula

muddy

ozzie

peetey

lady
lula
muddy
ozzie

peetey

lady
lula
muddy
ozzie

peetey

Carousel

lady
lula

muddy

ozzie

peetey

lady
lula
muddy
ozzie

peetey

lady
lula
muddy
ozzie

peetey

Agenda

1. Foundations
2. Transactions
3. Implementations

V. MDCC

MDCC

2013, from Berkeley. The closest one to
Parallel Commits. Replicates “options”
instead of update values directly, options
record the full set of keys written to in the
txn. Client can be notified of commit once all
options are replicated.

Uses fast paxos to avoid leader hop,
generalized paxos to reason about
commutative operations. Supports only
upto read-committed isolation.

. mdcc.pdf
BOf e

MDCC: Multi-Data Center Consistency

Tim Kraska ~ Gene Pang Michael J. Franklin ~ Samuel Madden® Alan Fekete'

University of California, Berkeley

MMIT TUniversity of Sydney
il.mit.edu alan .edu.au

{kraska, gpang, franklin}@cs.berkeley.edu

Abstract

Replicating data across multiple data centers allows using
data closer to the client, reducing latency for applications,
and increases the availability in the event of a data cen-
ter failure. MDCC (Multi-Data Center Consistency) is an
optimistic commit protocol for geo-replicated transactions,
that does not require a master or static partitioning, and is
strongly consistent at a cost similar to eventually consis-
tent protocols. MDCC takes advantage of Generalized Paxos
for i ing and exploits ive updates
with value constraints in a quorum-based system. Our exper-
iments show that MDCC outperforms existing synchronous
transactional replication protocols, such as Megastore, by re-
quiring only a single message round-trip in the normal oper-
ational case independent of the master-location and by scal-
ing linearly with the number of machines as long as transac-
tion conflict rates permit.

1. Introduction

Tolerance to the outage of a single data center is now consid-
ered essential for many online services. Achieving this for a

taken between data centers, and desirable to avoid waiting
for the slowest data center to respond.

For database-backed applications, it is a very valuable
feature when the system supports transactions: multiple op-
erations (such as individual reads and writes) grouped to-
gether, with the system ensuring at least atomicity so that all
changes made within the transaction are eventually persisted
or none. The traditi ism for ions that are
distributed across databases is two-phase commit (2PC), but
this has serious drawbacks in a geo-replicated system. 2PC
depends on a reliable coordinator to determine the outcome
of a transaction, so it will block for the duration of a coordi-
nator failure, and (even worse) the blocked transaction will
be holding locks that prevent other transactions from making
progress until the recovery is completed."

In deployed highly-available databases, asynchronous
replication is often used where all update transactions must
be sent to a single master site, and then the updates are prop-
agated asynchronously to other sites which can be used for
reading (somewhat stale) data. Other common approaches
give up some of the usual guarantees or generality of trans-
actions. Some systems achieve only eventual consistency by

MDCC

lady
lula
carl muddy
dagne peetey
figment
Jack

carl lady
dagne lula
lady

lula

figment muddy carl

dagne

jack peetey
muddy

figment
peetey

Jjack

NB: with fast paxos we need at least
't = 0 4 replicas, not shown here

MDCC

[)

BEGIN;

INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

s ad BEGIN

GATEWAY

MDCC

BEGIN;

INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

mmmeen d WRITE [sunny]

GATEWAY

MDCC

BEGIN;

INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

BEGIN

WRITE [sunny]
Y WRITE[ozzie]

GATEWAY

MDCC

BEGIN;

INSERT INTO dogs VALUES (sunny) ;

INSERT INTO dogs VALUES (ozzie);
COMMIT ;

keys: [sunny,ozzie]

keys: [sunny,ozzie]

BEGIN

WRITE [sunny]
WRITE [ozzie]

keys: [sunny,ozzie]

GATEWAY

t =% RTT

MDCC

lady
lula

BEGIN;
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

muddy
ozzie*
COMMIT ; peetey

[sunny,ozzie] : [sunny,ozzie]

keys: [sunny,ozzie]

lula
muddy
ozzie*
peetey

: [sunny,ozzie]

BEGIN

WRITE [sunny]
WRITE [ozzie]
_> COMMIT 4 [sunny,ozzie]

GATEWAY

t =% RTT

MDCC

BEGIN;

INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);
COMMIT ;

BEGIN
WRITE [sunny]
WRITE [ozzie]

GATEWAY

keys:

lady
lula
muddy
ozzie*

peetey

[sunny,ozzie]

lady
lula
muddy
ozzie*
peetey

[sunny,ozzie]

ozzie*

peetey

: [sunny,ozzie]

[sunny,ozzie]

MDCC

lady
lula

BEGIN; muddy
INSERT INTO dogs VALUES (sunny) ; ozzie*
INSERT INTO dogs VALUES (ozzie);

COMMIT ; peetey

: [sunny,ozzie] : [sunny,ozzie]

keys: [sunny,ozzie]

lula
muddy
ozzie*
peetey

: [sunny,ozzie]

BEGIN
WRITE [sunny]
WRITE [ozzie]

keys: [sunny,ozzie]

GATEWAY

MDCC

lady
lula
muddy

BEGIN;
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

ozzie*

COMMIT ; peetey

[sunny,ozzie]

lady

I lula
| muddy
\ ozzie*

\ peetey keys:
\

\

\

\ BEGIN

N WRITE [sunny]

\\ WRITE [ozzie]
e o COMMIT

keys: [sunny,ozzie]

GATEWAY

[sunny,ozzie]

lula

muddy

ozzie*
peetey

[sunny,ozzie]

keys:

[sunny,ozzie]

MDCC

keys:

lady
lula

muddy

ozzie*

peetey

[sunny,ozzie]

lady
lula
muddy
ozzie*
peetey

[sunny,ozzie]

[sunny,ozzie]

lady
lula
muddy
ozzie*
peetey

[sunny,ozzie]

keys:

[sunny,ozzie]

MDCC

lady
lula
muddy
ozzie

peetey

lady
lula

muddy

ozzie

peetey

lady
lula
muddy
ozzie

peetey

Agenda

1. Foundations
2. Transactions
3. Implementations

VI. SLOG/OceanVista

SLOG/OceanVista

2019, from University of Maryland. Fully
deterministic transactions, with read and
write sets pre-declared. Lets it avoid 2PC;
replicates the txn code itself.

Ditto for OceanVista. 2019, from University
of Waterloo. Though SLOG provides local
latencies for single-region transactions.

. P1747-ren.pdf
@D~ Begeror

SLOG: Serializable, Low-latency, Geo-replicated
Transactions

Kun Ren

kuren@ebay.com

= p1471-fan.pdf
@~ Pegerotra

Dennis Li Daniel J. Abadi
eBay Inc UMD College Park

dli12348@umd.edu

UMD College Park
abadi@cs.umd.edu

Ocean Vista: Gossip-Based Visibility Control for Speedy
Geo-Distributed Transactions

Hua Fan
Alibaba Group
Hangzhou, China

guanming.fh@alibaba-inc.com

ABSTRACT

Providing ACID transactions under conflicts across glob-
ally distributed data is the Everest of transaction processing
protocols. Transaction processing in this scenario is par-
ticularly costly due to the high latency of cross-continent
network links, which inflates concurrency control and data
replication overheads. To mitigate the problem, we intro-
duce Ocean Vista — a novel distributed protocol that guar-
antees strict serializability. We observe that concurrency
control and replication address different aspects of resolv-
ing the visibility of transactions, and we address both con-
cerns using a multi-version protocol that tracks visibility
using version watermarks and arrives at correct visibility

*

Wojciech Golab

University of Waterloo
Waterloo, Canada

wgolab@uwaterloo.ca

1. INTRODUCTION

Cloud providers make it easier to deploy applications and
data across i istri d for fault-
tolerance, clastic scalability, service localization, and cost
efficiency. With such infrastructures, medium and small en-
terprises can also build globally distributed storage systems
to serve customers around the world. Distributed transac-
tions in geographically distributed database systems, while
being convenient to applications thanks to ACID semantics,
are notorious for their high overhead, especially for high con-
tention workloads and globally distributed data.

The overhead of geo-distributed transactions arises not
only from the i i and concurrency con-

OceanVista

lady
lula

muddy

peetey

lady
lula
muddy
peetey

lady
lula
muddy
peetey

OceanVista

BEGIN FOR (sunny, ozzie);
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

e BEGIN[sunny,ozzie]
WRITE [sunny]
WRITE [ozzie]

COMMIT

lady
lula

muddy

peetey

lady
lula
muddy
peetey

lady
lula
muddy
peetey

OceanVista

BEGIN FOR (sunny, ozzie);
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

e BEGIN[sunny,ozzie]
WRITE [sunny]
WRITE [ozzie]

COMMIT

lady
lula
muddy
peetey

lady
lula

muddy

peetey

lady
lula
muddy
peetey

OceanVista

BEGIN FOR (sunny, ozzie);
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

lady
lula

lady
lula

lady
lula

muddy muddy muddy

peetey peetey peetey

e BEGIN[sunny,ozzie]
WRITE [sunny]
WRITE [ozzie]

COMMIT

t = % WAN

OceanVista

BEGIN FOR (sunny, ozzie);
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

lady lady lady
lula lula lula
muddy muddy muddy
peetey peetey peetey

e BEGIN[sunny,ozzie]
WRITE [sunny]
WRITE [ozzie]

COMMIT

OceanVista

BEGIN FOR (sunny, ozzie);
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

lady lady lady
lula lula lula
muddy muddy muddy
peetey peetey peetey

e BEGIN[sunny,ozzie]
WRITE [sunny]
WRITE [ozzie]

COMMIT

OceanVista

BEGIN FOR (sunny, ozzie);
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

e BEGIN[sunny,ozzie]
WRITE [sunny]
WRITE [ozzie]

COMMIT

lady
lula
muddy
peetey

lady
lula

muddy

peetey

lady
lula
muddy
peetey

OceanVista

BEGIN FOR (sunny, ozzie);
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

lady
lula

lady lady
lula lula

muddy muddy

muddy

ozzie* ozzie* ozzie*

peetey peetey peetey

e BEGIN[sunny,ozzie]
WRITE [sunny]
WRITE [ozzie]

COMMIT

t =1 WAN + % LAN

OceanVista

BEGIN FOR (sunny, ozzie);
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

e BEGIN[sunny,ozzie]
WRITE [sunny]
WRITE [ozzie]

COMMIT

lady
lula

muddy

ozzie*

peetey

1 WAN + 1 LAN

lady
lula

muddy

ozzie*

peetey

lady
lula
muddy
ozzie*

peetey

OceanVista

BEGIN FOR (sunny, ozzie);
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

e BEGIN[sunny,ozzie]
WRITE [sunny]
WRITE [ozzie]

COMMIT

lady
lula

muddy

ozzie*

peetey

1 WAN + 1 LAN

lady
lula

muddy

ozzie*

peetey

lady
lula
muddy
ozzie*

peetey

OceanVista

BEGIN FOR (sunny, ozzie);
INSERT INTO dogs VALUES (sunny) ;
INSERT INTO dogs VALUES (ozzie);

COMMIT;

SEEERY BEGIN[sunny,ozziel
WRITE [sunny]
WRITE [ozzie]

COMMIT

lady
lula

muddy

ozzie*

peetey

+ 1 LAN

lady
lula
muddy
ozzie*

peetey

lady
lula
muddy
ozzie*

peetey

OceanVista

lady lady lady
flila lula lula

muddy muddy muddy

ozzie* ozzie* ozzie*

peetey peetey peetey

t =1 WAN + 1 LAN

OceanVista

lady lady
lula lula

lady
lula

muddy muddy

ozzie ozzie

muddy

ozzie

peetey peetey peetey

t =1 WAN + 1 LAN

OceanVista

lady lady lady
flila lula lula

muddy muddy muddy

ozzie ozzie ozzie

peetey peetey peetey

t =1 WAN + 1 LAN

Agenda

1. Foundations
2. Transactions VI. TAPIR
3. Implementations

TAPIR

2014, from University of Washington.
Observes that 2PC and Consensus-based
replication both order operations (each
contributing 1RTT). Proposes unordered
replication, and builds transaction protocol
on top of it.

Primitive: replicas all contain a set of
operations, but in no particular order. Two
sets are guaranteed to overlap.

- ‘ta‘enr-t‘rj;l“pdf

Building Consistent Transactions with Inconsistent Replication
UW Technical Report UW-CSE-14-12-01

Irene Zhang Naveen Kr. Sharma Adriana Szekeres

Arvind Krishnamurthy

Dan R. K. Ports

University of Washington
{iyzhang, naveenks, aaasz, arvind, drkp}@cs.washington.edu

Abstract

prog ingly prefer distrib
storage systems with distributed transactions and strong
consistency (e.g., Google’s Spanner) for their strong
guarantees and ease of use. Unfortunately, existing
transactional storage systems are expensive to use be-
cause they rely on expensive replication protocols like
Paxos for fault-tolerance. In this paper, we take a new
approach to make transactional storage systems more af-
ble; we elimi; i 'y from the replicati
protocol, while still providing distributed transactions
with strong consistency to applications.
This paper presents TAPIR — the Transaction Ap-
li Protocol for I Replication — the
first transaction protocol to use a replication protocol,

trend, most notably Google’s Spanner system [8], which
supports linearizable transactions.

For application programmers, distributed transac-
tional storage with strong consistency comes at a price.
These systems commonly use replication for fault-
tolerance; unfortunately, replication protocols with strong
consistency, like Paxos [21], impose a high performance
cost. They require cross-replica coordination on every
operation, increasing the latency of the system, and typ-
ically need a designated leader, reducing the throughput
of the system.

A number of transactional storage systems have ad-
dressed some of these performance limitations. Some
systems reduce throughput limitations [15, 33] or wide-
area latency [19, 30], while others tackle latency and

hroughput for read-on ansactions [81, commutative

Agenda

1.

Foundations

2. Transactions

3.

Implementations

[)

|. Spanner/Pipelined Transactions 2 WAN RTT

Il. Parallel Commits 1 WAN RTT
lll. Replicated Commit 1 WAN + LAN RTT
IV. Carousel 1 WAN RTT
V. MDCC 1 WAN RTT
VI. SLOG/OceanVista 1 WAN + LAN RTT
VIl. TAPIR 1 WAN RTT

Questions?

irfansharif.io
@irfansharifm

