
Low latency & Mechanical Sympathy:
Issues and solutions
Jean-Philippe BEMPEL @jpbempel
Performance Architect http://jpbempel.blogspot.com

© ULLINK 2016

Low latency order router

2

• pure Java SE application

• FIX protocol / Direct Market Access connectivity (TCP)

• transform to an intermediate form (UL Message)

Performance target

3

process & route orders in

< 100us

Low latency

4

• Process under 1ms

• No (Disk) I/O involved

• Memory is the new disk

• Hardware architecture has a major impact on
performance

• Mechanical Sympathy

Agenda

5

• GC pauses

• Power Management

• NUMA

• Cache pollution

6

GC pauses

Generations

7

• Minor GC & Full GC are Stop the World (STW)
=> All app threads are stopped

• Minor GC pauses: 30-100ms

• Full GC pauses: couple of seconds to minutes

GC pauses

8

• None during trading hours

• Outside of trading hours, maintenance time allowed

• Java heap sized accordingly to avoid Full GC

Full GC

9

Some tricks to reduce both

• frequency

• pause time

Minor GC

10

• Increase Young Gen (512MB)

• But increasing YG can increase pause time

• Increase likelihood of objects die

Minor GC frequency

11

pause time factors:

• Refs traversing

• Card scanning

• Object Copy (survivor or tenured)

Minor GC pause time

12

Card Scanning

13

Young Gen
Card table

C C D

Old Gen

1 2 3 4

GC Roots

1 card = 512 bytes

Object Copy

14

• Need to keep orders during app lifetime

• Orders are relatively large objects

• Orders will be promoted to old generation
=> copy to survivor spaces and then to old gen

• Increase significantly the pause time for minor GC

Object Copy

15

• Access pattern: 90% of the time accessed immediately
after creation

• Weak references: avoid copying orders object

• persistence cache to allow reloading orders without too
much impact

• Allocation should be controlled carefully

• Reduce frequency of minor gc occurrence

• JDK API is not always friendly with GC/allocation

Allocation

16

need to rewrite some part:

conversion int -> char[]

int intToString(int i, char[] buffer, int offset)

avoid intermediate/temporary char[]

Allocation

17

Usage of empty collections & pre-sizing:

Collection<String> process() {
 Collection<String> results = Collections.emptyList();
 for (String s : list) {
 if (results == Collections.<String>emptyList())
 results = new ArrayList(list.size());
 results.add(s);
 }
 return results;
}

Allocation

18

CMS

19

• Promotion allocation use Free Lists (like malloc)

• No Compaction of Old Gen

CMS

20

Old Gen

• Increase minor pause time

Full GC fallback unpredictable (fragmentation, promotion
failure, …)

176710.366: [GC 176710.366: [ParNew (promotion failed):

471872K->455002K(471872K), 2.4424250 secs]176712.809: [CMS:

6998032K->5328833K(7864320K), 53.8558640 secs] 7457624K->5328833K(8336192K),

[CMS Perm : 199377K->198212K(524288K)], 56.2987730 secs] [Times: user=56.60

sys=0.78, real=56.29 secs]

Same problem for G1

CMS

21

• We are partners

• Best GC algorithm in the world

• Our tests show maximum pause time of 2ms

• Some overhead compared to HotSpot (8%)

• False issue syndrom

Zing JVM from Azul?

22

23

Power Management

• few orders per day, most of the time in idle

Why power management matters ?

24

• CPU embeds technologies to reduce power usage

• Frequency scaling during execution (P states)
P0 = nominal frequency

• Deep sleep modes during idle phases (C states)
C0 = Running, C1 = idle

• latency to wakeup
cat /sys/devices/system/cpu/cpu0/cpuidle/state3/latency

200 (us)

Power management technologies

25

BIOS Settings

26

BIOS settings impact

27

BIOS settings impact

28

BIOS settings impact

29

BIOS settings impact

30

• Turbo boost is dynamic frequency scaling

• Depends on thermal envelop

• Reducing cores reduce thermal envelop => higher freq

• Some vendors can fix this higher frequency

• Example:
intel E5 v3 14 cores => 2 cores, 2.6Ghz => 3.6GHz

Cores reduction/Fixed Turbo Boost

31

• Some OS drivers are also very aggressive
cat /sys/devices/system/cpu/cpuidle/current_driver
intel_idle

• Disabled in boot kernel parameters:
intel_idle.max_cstate=0

Power management at OS level

32

With intel_idle driver, 1 msg/s

33

Without intel_idle driver, 1 msg/s

34

With intel_idle driver, 100 msg/s

35

Without intel_idle driver, 100 msg/s

36

37

NUMA

Uniform Memory Access?

38

CPU

DRAM

Uniform Memory Access?

39

CPU

DRAM

CPU

• Non-Uniform Memory Access

• Starts from 2 cpus (sockets)

• 1 Memory controller per socket (Node)

• Local Memory vs remote memory

NUMA

40

NUMA architecture

41

Socket 0 Socket 1

MC

DRAM

MC

DRAM

QPI QPI65ns 65ns40ns

• Avoid remote memory access

• Avoid scheduling and allocation on different node

• Bind process on one CPU only (numactl)
Restrictive but effective

Binding on node 0:
numactl --cpunodebind=0 --membind=0 java …

• BIOS: node interleaving disabled

How to deal with NUMA ?

42

43

Cache pollution

Cache hierarchy architecture

44

Socket 0

Core0 Core1

L2

L1

L3

L2

L1

DRAM

• CPU L3 shared cache across cores

• Non critical threads can “pollute” cache
• eviction of data required by critical threads
• => adds latency to re-access those data

• Need to isolate critical threads to non-critical ones

Cache pollution on L3

45

• OS Scheduling cannot work in this case

• Need to pin manually threads on cores

• Thread affinity allow us to do this

• Identify our critical and non-critical threads in application

Thread affinity

46

No thread affinity

47

With thread affinity

48

• Other processes can also pollute L3 cache

• Need to isolate all processes away from critical threads

• The whole CPU need to be dedicated

System processes & cache pollution

49

• No other processes should be scheduled on the same
socket (isolcpus)

• But if more than one thread per core need to use cpuset

Isolating cores

50

Socket 0 Socket 1

Core0 Core2

Core4 Core6

Core1 Core3

Core5 Core7

Scheduler

• Make GC pauses predictable

• Tune BIOS/OS for maximum performance

• Control NUMA effect by binding on one node

• Avoid cache pollution with Thread Affinity and CPU
isolation

Recommendations

51

• Can optimize a process without changing your code

• Know your hardware and your OS

• This is Mechanical Sympathy

Conclusion

52

• Mechanical Sympathy blog
http://mechanical-sympathy.blogspot.com/

• Mechanical Sympathy forum
https://groups.google.com/forum/#!forum/mechanical-sympathy

• Java Thread Affinity library
https://github.com/peter-lawrey/Java-Thread-Affinity

References

53

http://mechanical-sympathy.blogspot.com/
http://mechanical-sympathy.blogspot.com/
https://groups.google.com/forum/#!forum/mechanical-sympathy
https://groups.google.com/forum/#!forum/mechanical-sympathy
https://github.com/peter-lawrey/Java-Thread-Affinity
https://github.com/peter-lawrey/Java-Thread-Affinity

Q&A

Jean-Philippe BEMPEL @jpbempel
Performance Architect http://jpbempel.blogspot.com

