o
the difference between

treatment

and
cure
“. Milen Dyankov . :
ﬁ Y @ mllenclzllanKDv @Jpomt
{ 07.04.2017 Moscow

pidot jaua

pidot jaua
9od¢ 2151

pidot jaua
oody 2151
ps aux | grep java | grep —v grep | awk {print 523

pidot jaua
oody 2151

ps aux | grep java | grep —v grep | awk {print 523
2151
F iy

ot jauva
99dd 2151

D5 aux | grep jaua g g%“z“%g} - grep | awk {print 52%
2151
i

What are

martinfowler.com/articles/microse

MARTIN FouLER

Infro Design Agile Refactoring NoSQL DSL Deliver

Microservices

icroservice Architecture™ has sprung ug

Sidebars
How big is a
Microservic

The circ

MiCraservices
characteristics!

Componentization via Services
Organized around Business Capabilities
Products not Projects

Smart endpoints and dumb pipes
Decentralized Governance
Decentralized Oata Management
Infrastructure Automation

Oesign for faillure

Evolutionary Design

| . P
€< > ¢c martinfowler.com/:

MARTIN FouLER

50« not strictly software but
rather operations related!

Infro Design Agile Refactoring NoSQL DSL Deliv

Microservices

N

Organized around Business Capabilities
Products not Projects

4

James Lewis

[N

vis is a Principal

4

Decentralized Governance

[

4

Infrastructure Automation

A

n author,
eral

N

L % Evolutionary Design

Translations

Find similar articles to this by looking
tt on

Wy consder

www.business.com/it-consulting/why-microser

The main benefit of using microservices is that, unlike a monolithic architecture

IR vovic.comusen technology -forecast2014/cloud

Why microservices?

style, a change made to a small part of the application does not require the In the software development community,

entire structure to be rebuilt and redeployed (Tweet This!). This results in much 'tis an article of faith that apps shouldbe Greater modularity, loose coupling, and

less, if not zero downtime.

opensource.com r 14112 T r r r A" 1 r ng-w Y ny
So, what are microservices really and how does this
architecture improve delivery cycles?

Microservices were developed as a way to divide and conquer.

Basically, the microservices approach in a nutshell dictates that instead of having
one giant code base that all developers touch, that often times becomes perilous to
manage, that there are numerous smaller code bases managed by small and agile
teams. The only dependency these code bases have on one another is their APIs.
This means that as long as you maintain backwards and forward compatibility
(which albeit is not that trivial), each team can work in release cycles that are
decoupled from other teams. There are some scenarios where these release cycles
are coupled, where one service depends on another or depends on a new feature in
another service, but this is not the usual case.

written with standard application

programming interfaces (APIs), using reduced dependencies all hold promise in

common services when possible, and simplifying the integration task.

managed through one or more

orchestration technologies. Often, there's

a superstructure of middleware, integration methods, and management tools. That's great for software
designed to handle complex tasks for long-term, core enterprise functions—it's how transaction systems

and other systems of record need to be designed.

But these methods hinder what Silicon Valley companies call web-scale development: software that must
evolve quickly, whose functionality is subject to change or obsolescence in a couple of years—even
months—and where the level of effort must fit a compressed and reactive schedule. It's more like web
page design than developing traditional enterprise software.

- oo o

Some of the benefits of microservices are pretty obvious:

« Each microservice is quite simple being focused on one business capability
« Microservices can be developed independently by different teams
« Microservices are loosely coupled
Microservices can be developed using different programming languages and tools

\
[l
”~
/ /'v::_

OpenVZ

L VERT.

Microsoft .
Hyper-V o

L VERT

undertow

vimware %_g xgﬂr m:)gﬁsoft b .. : amazon

webservices™

RS &/ % U Linux s

OpenVz veerver

nux Contakners

T £ very s

undertow

4 ! kafk &
W _ ’ kubernes i OPENSHIFT 88

Moo SEE amazon

webservices™

= A= VERD S

undertow

/ pUPPEt [/ elasticsearch. ’., logstash
E = 48

H..‘r_. _ u kubernes | OPENSHIFT 88

Microsoft [
Hyper-V

amazon

webservices™

nux Contakners

T £ very s

undertow

/ pUPPEt [/ elasticsearch. ’., logstash
- & 48

$88

amazon

webservices™

T £ very s

undertow

martinfowler.com/article licroservices.html

Co paoooa o aoTo

nlt a monullthu, archltecture that has decayed ov
t such decay is less likely with microservices, i

t and hard to patch around. Yet until we see
an't truly assess how microservice architectures

Finally, there is the f r of team skill. New techniques tend to be:
3 that is more effective for a more skillful tea

rs with microservices. A poor team will always ¢
if microservices reduce the mess in this case or

: n with a monolith, keep it modular, and
omes a problem. (Although this advice isn't
sually not a good service interface.)

ous optimism. So far, we've seen enougl

then all you are doing is shifting
complexity from inside a
component to the connections
between components.

It moves it to a place thats
less explicit and harder (o
control.

What's cool about

“The real power .. Is the ability for a developer to develop a
single entity and then deploy that component multiple times”

"Highly Scalable, Robust, Architecture”

“In very straightforward terms ... Is a component model for
bullding portable, reusable and scalable business
components ... for distributed environment.”

Ouotes from articles about EJB
(19899 - 2002)

“The real power .. Is the abillity for a developer to develop a
single entity and then deploy that component multiple times”

Www.onjava.com/pub/a/onjava/2001/12/19/eejbs.htmi

"Highly Scalable, Robust, Architecture”

www.dhlee.info/computing/ejb/reference/seybold_ejb.pdf

“In very straightforward terms ... Is a component model for
bullding portable, reusable and scalable business

components ... for distributed environment.”
www.idt.mdh.se/kurser/ct3340/archives/ht08/paperskRM0O8/37.pdf

(& web.archive.org/v ’ ww.nwfusion.col

Search sponsored by

SECTIONS:

> Home

P News:
NetFlash:Daily News
International News

P This Week

[> The Edge

D Net. Warker

P> Features

> Research
Buyer's Guides
Reviews
Technology Primers
Vendor Profiles

P> Forums

> Columnists/Opinions

P Knowledgebase
Experts Exchange
Help Desk
Dr. Internet
Gearhead

P Careers

P Free Newsletters

> Subscription Center

[> Seminars/Events

P Repnints/Links

D White Papers

http://www . nwfusion.com/news/2001/0821ga

NetSmart
IT Education

Printer-friendly

Gartner: don't overspend on
server tech

By Scarlet Pruitt
IDG News Service, 08/21/01

Vendors touting high-end application
server technology have led companies to
dramatically and unnecessarily overspend,
according to a report released Tuesday by
technology researcher Gartner.

lication server
- according to
Furthermore, the researcher
s that companies could waste $2)
billion more between now and 20038

sc application server Vendors
- -ustomer to buy high=end¥
ay llmt they don't need, Gartner i

said.

"When there is contuslon the vendors

Companies worldwide
have overspent
about $1 billion

vendors are encouraging
customer to buy
high-end technology
that they dont need.

Who 5 Ooing

karma

What do they have in common ¢

T —
SOUNDCLOUD

They build
microservices for
their own needs!

Nletien, <@l ¢ ud
LT Y A ,“ma%wﬁm&ﬂw%m
né&‘m.ti: - B

amazoncom
SOUNSM

They build
microservices for

their own needs!

This makes it easer for them to
grow the OevOps culture

hire the right people

accept "Decentralized” approach
automate infrastructure

de them. We have seen projects where a good {es
iilt a monolithic architecture that has decaye

t such decay is less likely with microservices,

xplicit and hard to patch around. Yet until we s

an't truly assess how microservice architectu

enough ac

There are certainly reasons why one might expect microsel
1entization, success depends on how well the s

easy to refactor them. But when your ol
, then refactoring is much harder than

- een participants, layers of backwards compati
is made more complicated.

sue is If the components do not compose cleaniy,
mplexity from inside a component to the connection

am skill. New technigues
more effective for a mor
ful teams. We've seen plenty of cases
monolithic architectures, but it takes time o See
kind of mess occurs with microservices. A POORISSN
reduce the mess in thi

argument we've heard is that you shouldn't sta
d begin with a monolith, keep it modular, 2
omes a problem. (Although this advice |
ally not a good service interface.)

‘Il end up, but one of the challenges of software devel
isions based on the imperfect information that you cu

a technique that i1s more effective
for @ more skiliful team

Isnt necessarily going to work
for less skilliful teams

A poor team will always create
a poor system

should 1 do

[

Ooes your organization
fit Into that space

) RO
ik B ¥ .ﬂn....h.w.. x
h:’nﬂ.r_‘q = z@‘&&v’b =

T —
SOUNDCLOUD

martinfowler.com/articles/microservicesihtmi

oo paoooa o oot Ao &

uences of your architectural decisions aré o

e them. We have seen projects where a good team,
1ilt a monolithic architecture that has decayed o

t such decay is less likely with microservices; si

t and hard to patch around. Yet until we se

t truly assess how microservice architectures

then refactoring is much harder than wit

difficult across service boundaries, any interface ¢l

retween participants, layers of backwards compatibill
i more complicated.

oblem. (Although this advice isn't
usually not a good service interface.)

ous optimism. So far, we've seen enoug

| that it can be a worthwhile road to tread.

but one of the challenges of software develop
on the imperfect information that you currel

you shouldn't start with a
microservices architecture.
Instead begin with a monolith,

Keep It modular,
and split it Into microservices
once the monolith
becomes a problem.

Whal eine, o not

Microservices do not
- CUI''2 complexity!

Actually nothing does !

The term "CUIM2" means that,

after medical treatment, the patient
- Nno longer has that
particular condition anymore.

Some diseases have no cure.
The patient will always have the

condition, but treatment
can help to manage (.

Good treatment for
- complexity 1s enforcing

L Clean
~ modular
architecture

14/10/01/CleanMic

The Clea

by Robert C.

uch thing as a mie
‘ment option, not an
them open for as |

5. There is also a greater risk’
easingly coupled. And, 0
s that live in a single executable.

around in the Java world
rap jar files. That's not qui

The Deployment Model 1s a Detall.

there 1s no such thing
as a micro-service

architecture.

Micro-services are a
deployment option

Interesting !7!

But in my progject it's not
possible because of ...

Really °!I?

Modularizing
“Ouke’s forest”
JEE tutorial demao!

https://github.com/azzazzel/modular-dukes-forest

Glassfish

Store
JPA, EAB
JSF

EJB 0SG
controllers
JEE services o
container :
runtime
Catalog
usecase
Database

SpringBoot Liferay

JEE
container

EJB
controllers

Catalog
usecase

Database

Catalog
usecase

SpringBoot

0sGi
services
0sGi
runtime
Catalog
usecase

0SGl
Services

Catalog
usecase

Liferay

Controllers

D Enterprise Business Rul
Use Cases _D Application Business R
: _D Interface Adapters
: ____._D Frameworks & Drivers

Use Case
Output Port

Use Case
Interactor

http://blog.8thlight.com/uncle-bob/2012/08/13/the-clean-architecture.ntmi

Mocuiariiyg

Is @ iImpaortant software architecture concept!

One can design modular application withaut

Executi

The 0561 specification describes
a modular system and a
service platform for the

Java programming language

Confluence

5 S ECclipse
he architecture Fuse ESB

of choice for ElSectich

, Jdboss
BALIFERAY =a e
i JonAS

Service Mix

Weblogic

Websphere

Same characteristics but
more flexible !

(V'

Componentization via Services

Smart endpoints and dumb pipes

\/

Sane Decentralized Data Management

(V]

(V]

Design for faillure

This 1s not theory! We dothis at B | |FERA

Q© BLACKDUCK | Open HUB v onfl wsionin
p
JPLE MNIZA JEP® BLOG Search...

Liferay Portal
[T "4

V 1 platform

Project Summary

over 100 apps

26%

\
7 over 600 modules

code [comments Blanks

7 over 2500 yServices

Communlty

ANKSCHEEN

omw YAQHANVELAY
o @3 ™ TASHAKKUR ATU :

GRACIAS ==
ARIGATO:

GREJTHG

et O GOZAIMASHITA

e E EFCHARISTO rere

; FANAKUE

WSPAGARATRAM

£ Mnmcs

KOMAPSUMNIDA

OLZIN MERCI

JUSPA
ve)

[MILEN.DYANKOV@LIFERAY.COM
W HTTP://WWW.LIFERAY.COM

. ™ HTTP://MILENDYANKOV.COM ==..
NN HTTP://WWW.LIFERAY.COM/WEB/MILEN.DYANKOV/ B EE Y CUrray
2 v @MILENDYANKOV HEE

@LIFERAYPL i HTTP://WWW.FACEBOOK.COM/LIFERAY

mailto:milen.dyankov@liferay.com

