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The main benefit of using microservices is that, unlike a monolithic architecture

IR vovic.comusen technology -forecast2014/cloud

Why microservices?

style, a change made to a small part of the application does not require the In the software development community,

entire structure to be rebuilt and redeployed (Tweet This!). This results in much 'tis an article of faith that apps shouldbe  Greater modularity, loose coupling, and

less, if not zero downtime.

opensource.com r 14112 T r r r A" 1 r ng-w Y ny
So, what are microservices really and how does this
architecture improve delivery cycles?

Microservices were developed as a way to divide and conquer.

Basically, the microservices approach in a nutshell dictates that instead of having
one giant code base that all developers touch, that often times becomes perilous to
manage, that there are numerous smaller code bases managed by small and agile
teams. The only dependency these code bases have on one another is their APIs.
This means that as long as you maintain backwards and forward compatibility
(which albeit is not that trivial), each team can work in release cycles that are
decoupled from other teams. There are some scenarios where these release cycles
are coupled, where one service depends on another or depends on a new feature in
another service, but this is not the usual case.

written with standard application

programming interfaces (APIs), using reduced dependencies all hold promise in

common services when possible, and simplifying the integration task.

managed through one or more

orchestration technologies. Often, there's

a superstructure of middleware, integration methods, and management tools. That's great for software
designed to handle complex tasks for long-term, core enterprise functions—it's how transaction systems

and other systems of record need to be designed.

But these methods hinder what Silicon Valley companies call web-scale development: software that must
evolve quickly, whose functionality is subject to change or obsolescence in a couple of years—even
months—and where the level of effort must fit a compressed and reactive schedule. It's more like web
page design than developing traditional enterprise software.

- oo o

Some of the benefits of microservices are pretty obvious:

« Each microservice is quite simple being focused on one business capability
« Microservices can be developed independently by different teams
« Microservices are loosely coupled
Microservices can be developed using different programming languages and tools
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“The real power .. Is the ability for a developer to develop a
single entity and then deploy that component multiple times”

"Highly Scalable, Robust, Architecture”

“In very straightforward terms ... Is a component model for
bullding portable, reusable and scalable business
components ... for distributed environment.”



Ouotes from articles about EJB
(19899 - 2002 )

“The real power .. Is the abillity for a developer to develop a
single entity and then deploy that component multiple times”

Www.onjava.com/pub/a/onjava/2001/12/19/eejbs.htmi

"Highly Scalable, Robust, Architecture”

www.dhlee.info/computing/ejb/reference/seybold_ejb.pdf

“In very straightforward terms ... Is a component model for
bullding portable, reusable and scalable business

components ... for distributed environment.”
www.idt.mdh.se/kurser/ct3340/archives/ht08/paperskRM0O8/37.pdf
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Gartner: don't overspend on
server tech

By Scarlet Pruitt
IDG News Service, 08/21/01

Vendors touting high-end application
server technology have led companies to
dramatically and unnecessarily overspend,
according to a report released Tuesday by
technology researcher Gartner.

lication server
- according to
Furthermore, the researcher
s that companies could waste $2)
billion more between now and 20038

sc application server Vendors
- -ustomer to buy high=end¥
ay llmt they don't need, Gartner i

said.

"When there is contuslon the vendors

Companies worldwide
have overspent
about $1 billion

vendors are encouraging
customer to buy
high-end technology
that they dont need.
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They build
microservices for
their own needs!
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They build
microservices for

their own needs!

This makes it easer for them to
grow the OevOps culture

hire the right people

accept "Decentralized” approach
automate infrastructure
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you shouldn't start with a
microservices architecture.
Instead begin with a monolith,

Keep It modular,
and split it Into microservices
once the monolith
becomes a problem.
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Microservices do not
- CUI''2 complexity!

Actually nothing does !




The term "CUIM2" means that,

after medical treatment, the patient
- Nno longer has that
particular condition anymore.

Some diseases have no cure.
The patient will always have the

condition, but treatment
can help to manage (.
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s that live in a single executable.
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The Deployment Model 1s a Detall.

there 1s no such thing
as a micro-service

architecture.

Micro-services are a
deployment option
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But in my progject it's not
possible because of ...
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Modularizing
“Ouke’s forest”
JEE tutorial demao!

https://github.com/azzazzel/modular-dukes-forest
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Use Case
Output Port

Use Case
Interactor

http://blog.8thlight.com/uncle-bob/2012/08/13/the-clean-architecture.ntmi
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Is @ iImpaortant software architecture concept!

One can design modular application withaut
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The 0561 specification describes
a modular system and a
service platform for the

Java programming language

Confluence

5 S ECclipse
he architecture Fuse ESB

of choice for ElSectich

, Jdboss
BALIFERAY =a e
i JonAS

Service Mix

Weblogic

Websphere



Same characteristics but
more flexible !
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Componentization via Services

Smart endpoints and dumb pipes
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