
Fearless Global Transactions with
CockroachDB
Nathan VanBenschoten (@natevanben)

2

Challenge

3

> INSERT INTO Orders VALUES (gen_random_uuid(), 123, 3, 789)

Challenge

4

> INSERT INTO Orders VALUES (gen_random_uuid(), 123, 3, 789)

Challenge

5

REQUIREMENTS

Consistency

Referential integrity across tables

> INSERT INTO Orders VALUES (gen_random_uuid(), 123, 3, 789)

Challenge

6

REQUIREMENTS

Consistency

Referential integrity across tables

> INSERT INTO Orders VALUES (gen_random_uuid(), 123, 3, 789)

Challenge

7

REQUIREMENTS

Consistency

Referential integrity across tables

Scalability

100k+ orders per second

> INSERT INTO Orders VALUES (gen_random_uuid(), 123, 3, 789)

Challenge

8

REQUIREMENTS

Consistency

Referential integrity across tables

Scalability

100k+ orders per second

> INSERT INTO Orders VALUES (gen_random_uuid(), 123, 3, 789)

Challenge

9

REQUIREMENTS

Consistency

Referential integrity across tables

Scalability

100k+ orders per second

High availability

Survive node/zone/region failure

> INSERT INTO Orders VALUES (gen_random_uuid(), 123, 3, 789)

Challenge

10

REQUIREMENTS

Consistency

Referential integrity across tables

Scalability

100k+ orders per second

High availability

Survive node/zone/region failure

> INSERT INTO Orders VALUES (gen_random_uuid(), 123, 3, 789)

Challenge

11

REQUIREMENTS

Consistency

Referential integrity across tables

Scalability

100k+ orders per second

High availability

Survive node/zone/region failure

Low latency

Sub 20ms end-to-end

> INSERT INTO Orders VALUES (gen_random_uuid(), 123, 3, 789)

Challenge

12

REQUIREMENTS

Consistency

Referential integrity across tables

Scalability

100k+ orders per second

High availability

Survive node/zone/region failure

Low latency

Sub 20ms end-to-end

> INSERT INTO Orders VALUES (gen_random_uuid(), 123, 3, 789)

Challenge

13

SQL REQUIREMENTS

ACID

Secondary indexes

Foreign key constraints

Joins

ORDER BY / LIMIT

SYSTEM REQUIREMENTS

Strong consistency

Strong isolation

Cross-partition transactions

Range partitioning

NewSQL
What’s changed?

14

SYSTEM REQUIREMENTS

Strong consistency

Strong isolation

Cross-partition transactions

Range partitioning

SYSTEM IMPLEMENTATION

Leader-based consensus protocols

Synchronous replication

Partitioned consensus + clock sync

Serializable isolation + MVCC

Stale reads, not inconsistent reads

NewSQL
What’s changed?

15

SYSTEM IMPLEMENTATION

Leader-based consensus protocols

Synchronous replication

Partitioned consensus + clock sync

Serializable isolation + MVCC

Stale reads, not inconsistent reads

GLOBAL CHALLENGES

Data needs a leader, only leader can write

High consensus latency

Global serializable transaction history

NewSQL
What’s changed?

16

CockroachDB

17

CockroachDB

IN LATEST RELEASE — VERSION 21.1

First-class region management

Goal-oriented data placement policies

Non-voting replicas

Implicit table partitioning

Auto row-level data homing

Locality aware cost-based SQL optimizations

Non-blocking extension to transaction model

18

SINGLE LOGICAL
DATABASE

CockroachDB: Scalability

user user user user

user user user

user user user

SQL

Localization

Scalability

CockroachDB is a distributed,
relational database that can be
used for the most straightforward,
common and high value workloads
and gives your developers, familiar
standard SQL

It is a database cluster that is
comprised of nodes that appear as a
single logical database

Survivability

Elastic & efficient scale for applications with a relational database

19

SINGLE LOGICAL
DATABASE

user user user user

user user user

user user user

user user user

user user user

user user user

CockroachDB: Scalability
Elastic & efficient scale for applications with a relational database

Localization

Scalability

Scale the database by simply
adding more nodes

CockroachDB auto-balances to
incorporate the new resource. No
manual work is required

● Easy scale for increase in volume of
data in the database

● Every node accepts reads & writes so
you also scale transactional volume
(writes)

Survivability

20

SINGLE LOGICAL
DATABASE

REGION 3
US-EAST

REGION 1
US-WEST

REGION 2
CENTRAL

user user user user

user user user

user user user

user user user

user user user

user user user

user

user

user

user user

user user

user user

CockroachDB: Scalability
Elastic & efficient scale for applications with a relational database

Localization

Scalability

Scale even further across regions
and even clouds, yet still deliver a
single logical database

CockroachDB excels when deployed
across multiple data centers in
multiple regions

Survivability

21

SINGLE LOGICAL
DATABASE

CockroachDB: Survivability
A database that is always on & build to survive failures

REGION 3
US-EAST

REGION 1
US-WEST

REGION 2
CENTRAL

user user user user

user user user

user user user

user user user

user user user

user user user

user

user

user

user user

user user

user user

Localization

Survive Anything

Survivability

CockroachDB is naturally resilient
so you can survive failure of a node
or even an entire region without
service disruption

● Always-on and with zero RPO
● Allows for no downtime

rolling upgrades
● Online schema changes

Scalability

22

SINGLE LOGICAL
DATABASE

CockroachDB: Localization
Low-latency access even across broadly dispersed clients

REGION 3
US-EAST

REGION 1
US-WEST

REGION 2
CENTRAL

user user user

user user user

user user user

user user user

user user user

user user user

user user user

user user user

user user user

Localization

CockroachDB allows you to tie each
row to a physical location based on
data within each record

● reduce read/write latencies
● comply with regulations
● ensure customer data privacy

Survivability

Scalability

23

Schema-Level Primitives
SQL tools for global databases

Database Regions Table LocalitySurvival Goals

24

Schema-Level Primitives
SQL tools for global databases

Database Regions Table LocalitySurvival Goals

25

Database Regions
Which regions does a database live in?

> ALTER DATABASE <db> ADD REGION "europe-west1"

> SHOW REGIONS FROM DATABASE <db>

 region | primary | zones
---------------+---------+----------
 europe-west1 | false | {b,c,d}
 us-east1 | false | {b,c,d}
 us-west1 | true | {a,b,c}

26

Database Regions
Which regions does a database live in?

> SHOW REGIONS FROM CLUSTER

 region | zones
---------------+----------
 europe-west1 | {b,c,d}
 us-east1 | {b,c,d}
 us-west1 | {a,b,c}

27

Database Regions
Which regions does a database live in?

> SHOW ENUMS FROM <db>

 name | values
-----------------------+-----------------------------------
 crdb_internal_region | {europe-west1,us-east1,us-west1}

28

Schema-Level Primitives
SQL tools for global databases

Database Regions Table LocalitySurvival Goals

29

Region Survival
Cross-Region Consensus

leader

follower

> ALTER DATABASE <db> SURVIVE REGION FAILURE

30

Region Survival
Cross-Region Consensus

leader

follower

> ALTER DATABASE <db> SURVIVE REGION FAILURE

31

Region Survival
Cross-Region Consensus

leader

follower

> ALTER DATABASE <db> SURVIVE REGION FAILURE

32

Region Survival
Cross-Region Consensus with Non-Voting Replicas

leader

voting follower

non-voting follower

> ALTER DATABASE <db> SURVIVE REGION FAILURE

33

Region Survival
Cross-Region Consensus with Non-Voting Replicas

leader

voting follower

non-voting follower

> ALTER DATABASE <db> SURVIVE REGION FAILURE

34

Zone Survival
Intra-Region Consensus with Non-Voting Replicas

leader

voting follower

non-voting follower

> ALTER DATABASE <db> SURVIVE ZONE FAILURE

35

Schema-Level Primitives
SQL tools for global databases

Database Regions Table LocalitySurvival Goals

36

GLOBALREGIONAL

37

Table locality
Tune tables based on access locality

leader

voting follower

non-voting follower

REGIONAL tables
Meant for localized data

> ALTER DATABASE <db> SET PRIMARY REGION 'us-east1'

> ALTER TABLE <t> SET LOCALITY REGIONAL

38

Default survival goal, default table locality

- Failure tolerance: Availability zone failover with no data loss

 Region failover with some data loss (in development)

- Reads: All regions

- Writes: Single region

Configured REGION survival goal, default table locality

- Failure tolerance: Region failover with no data loss

- Reads: All regions

- Writes: Single region, increased latency

Table locality
What if I don’t configure anything?

39

REGIONAL tables
Meant for localized data

40

> INSERT INTO t VALUES (...)

> UPDATE t SET ... WHERE ...

> DELETE FROM t WHERE ...

> UPDATE t SET ... WHERE ...

REGIONAL tables
Meant for localized data

> CREATE TABLE t (k INT PRIMARY KEY)
> SHOW TABLES

 table_name | locality
-------------+--------------------------------------
 t | REGIONAL BY TABLE IN PRIMARY REGION

> ALTER TABLE t SET LOCALITY REGIONAL IN "europe-west1"
> SHOW TABLES

 table_name | locality
-------------+--------------------------------------
 t | REGIONAL BY TABLE IN "europe-west1"

41

leader

voting follower

non-voting follower

REGIONAL tables
Meant for localized data

> ALTER TABLE t SET
LOCALITY REGIONAL IN
"europe-west1"

> ALTER TABLE <t> SET LOCALITY
 REGIONAL IN "europe-west1"

42

REGIONAL tables
Meant for localized data

> ALTER TABLE users_na
 SET LOCALITY REGIONAL IN "northamerica-west1"

> ALTER TABLE users_sa
 SET LOCALITY REGIONAL IN "southamerica-east1"

> SHOW TABLES

 table_name | locality
-------------+--
 users_na | REGIONAL BY TABLE IN "northamerica-west1"
 users_sa | REGIONAL BY TABLE IN "southamerica-east1"

43

REGIONAL tables
But why do we need them?

44

REGIONAL tables
But why do we need them?

45

REGIONAL BY ROW tables
Localization, at a row-level

id item price

1 Bat 1.11

2 Ball 2.22

3 Glove 3.33

> CREATE TABLE orders (
id INT PRIMARY KEY,
item STRING,
price FLOAT

) LOCALITY REGIONAL IN "us-west1”

> INSERT INTO orders VALUES (...)

46

REGIONAL BY ROW tables
Localization, at a row-level

crdb_region
(hidden)

id item price

us-west1 1 Bat 1.11

us-east1 2 Ball 2.22

europe-west1 3 Glove 3.33

> CREATE TABLE orders (
id INT PRIMARY KEY,
item STRING,
price FLOAT

) LOCALITY REGIONAL BY ROW

-- ALTER TABLE orders ADD COLUMN
 crdb_region crdb_internal_region
 NOT NULL NOT VISIBLE

-- ALTER TABLE orders
 PARTITION BY LIST (crdb_region)

47

REGIONAL BY ROW tables
Localization, at a row-level

“Users can interact with the hidden crdb_region
column to control homing, but they do not need to”

> SELECT * FROM orders

 id | item | price
-----+--------+--------
 1 | Bat | 1.11
 2 | Ball | 2.22
 3 | Glove | 3.33

> INSERT INTO orders
 VALUES (4, 'Helmet', 4.44)

> SELECT *, crdb_region FROM orders

 id | item | price | crdb_region
-----+--------+-------+---------------
 1 | Bat | 1.11 | us-west1
 2 | Ball | 2.22 | us-east1
 3 | Glove | 3.33 | europe-west1

> INSERT INTO
 orders (id, item, price, crdb_region)
 VALUES (5, 'Hat', 5.55, 'europe-west1')

48

REGIONAL BY ROW tables
Auto-homing and Re-homing

> SHOW COLUMNS FROM orders

 column_name | data_type | is_hidden | column_default
--------------+----------------------+-----------+-----------------
 id | INT8 | false | NULL
 item | STRING | false | NULL
 price | FLOAT8 | false | NULL
 crdb_region | crdb_internal_region | true | gateway_region()

> INSERT INTO orders VALUES (6, 'Pants', 6.66) RETURNING crdb_region

 crdb_region

 us-east1

49

REGIONAL BY ROW tables
Auto-homing and Re-homing

> INSERT INTO orders VALUES (6, 'Pants', 6.66) RETURNING crdb_region

 crdb_region

 us-east1

> UPDATE orders SET crdb_region = 'europe-west1' WHERE id = 6

> SELECT *, crdb_region FROM orders WHERE id = 6

 id | item | price | crdb_region
-----+-------+-------+---------------
 6 | Pants | 6.66 | europe-west1

50

REGIONAL BY ROW tables
Preserving global uniqueness

UNIQUE (email) != UNIQUE (crdb_region, email)

But we are indexing on (crdb_region, email) due to partitioning!

How do we enforce uniqueness of emails?

Trick: crdb_region is an enum → all possible values known

SQL optimizer turns SELECT count(*) = 1 FROM t WHERE email = $1

 into SELECT count(*) = 1 FROM t WHERE (crdb_region, email)

 IN (('us-east1', $1), ('us-west1', $1), …)
51

REGIONAL BY ROW tables
Preserving global uniqueness, quickly

Tables with no UNIQUE constraints

Ex. CREATE TABLE logs (ts TIMESTAMP, msg STRING)

UNIQUE constraints on UUID column generated with gen_random_uuid()

Builtin often hidden in a DEFAULT expression

Ex. CREATE TABLE rides (

id UUID PRIMARY KEY DEFAULT gen_random_uuid(),

start_loc GEOGRAPHY, end_loc GEOGRAPHY)

Specialized sequence-like data type that rejects user-supplied values (in development)
52

REGIONAL BY ROW tables
Locality optimized search

> EXPLAIN SELECT * FROM orders WHERE id = 5

 • union all
 │ limit: 1
 │
 ├── • scan
 │ table: orders@primary
 │ spans: [/'us-east1'/5 - /'us-east1'/5]
 │
 └── • scan
 table: orders@primary
 spans: [/'europe-west1'/5 - /'europe-west1'/5]
 [/'us-west1'/5 - /'us-west1'/5]

53

REGIONAL BY ROW tables
Locality optimized search for mutations

> EXPLAIN UPDATE orders SET price = 9 WHERE id = 5

 • update
 │ table: orders
 │
 └── • union all
 │ limit: 1
 │
 ├── • scan
 │ spans: [/'us-east1'/5 - /'us-east1'/5]
 │
 └── • scan
 spans: [/'europe-west1'/5 - /'europe-west1'/5]
 [/'us-west1'/5 - /'us-west1'/5]

54

REGIONAL BY ROW tables
Latency Profile

Locally homed Remotely homed

INSERT Local if no uniqueness
check, otherwise Remote

N/A

UPDATE Local Remote

DELETE Local Remote

SELECT (lookup) Local Remote

SELECT (scan) Remote Remote

Stale SELECT (lookup/scan) * Local Local

* Stale reads only possible in
 read-only transactions

Local = 1 - 3ms
Remote = 30 - 120ms

55

GLOBAL tables
Meant for global data

56

Stale Reads
Low-Latency Reads, Everywhere

leader

voting follower

non-voting follower

time

57

read @7

success

read @9

success

read @22

success

Stale Reads
Low-Latency Reads, Everywhere

close @10

leader

voting follower

non-voting follower

time

58

Stale Reads
Low-Latency Reads, Everywhere

close @10

close @15

leader

voting follower

non-voting follower

write @12

success

time

59

Stale Reads
Low-Latency Reads, Everywhere

close @10

close @15

leader

voting follower

non-voting follower

write @12

success

read @7

success

read @9

success

time

60

Stale Reads
Low-Latency Reads, Everywhere

close @10

close @15

close @20
leader

voting follower

non-voting follower

write @12

success

write @14

reject

read @7

success

read @9

success

time

read @18

reject

read @22

success 61

Stale Reads
Low-Latency Reads, Everywhere

Exact staleness - Client-provided staleness

Bounded staleness (in development) - Client-provided staleness limit, dynamic staleness

Benefits

- Low-latency reads from all regions

Limitations

- Stale results (~3 seconds)
- Can only be used in read-only transactions!

62

> SELECT * FROM orders
 AS OF SYSTEM TIME '-3s'

 id | item | price
-----+--------+--------
 1 | Bat | 1.11
 2 | Ball | 2.22
 3 | Glove | 3.33

GLOBAL tables
Meant for global data

63

GLOBAL tables
Meant for global data

REGIONAL BY ROW

GLOBAL

REGIONAL BY ROW

> ALTER TABLE Products SET LOCALITY GLOBAL

64

GLOBAL tables
Meant for global data

REGIONAL BY ROW

> INSERT INTO Orders VALUES (gen_random_uuid(), 123, 3, 789)

GLOBAL

REGIONAL BY ROW

65

GLOBAL tables
Meant for global data

leader

voting follower

time

write @12

66

GLOBAL tables
Meant for global data

leader

voting follower

time

write @12
conflictingread ≥ 12?

nope!

nope!

read @9

success

67

GLOBAL tables
Meant for global data

leader

voting follower

time

write @12
conflictingread ≥ 12?

nope!

nope!

nope!

nope!

read @9

success

68

GLOBAL tables
Meant for global data

leader

voting follower

time

write @12

success

conflictingread ≥ 12?
nope!

nope!

nope!

nope!

read @9

success

read @11

success

69

GLOBAL tables
Meant for global data

leader

voting follower

time

write @12
conflictingread ≥ 12?

nope!

nope!

nope!

read @9

success

70
hello???

GLOBAL tables
Meant for global data

leader

voting follower

time

write @12

success

conflictingread ≥ 12?
nope!

nope!

71

GLOBAL tables
Meant for global data

leader

voting follower

time

write @12

success

conflictingread ≥ 12?
nope!

nope! read @9

success

72

GLOBAL tables
Meant for global data

leader

voting follower

time

write @12

success

conflictingread ≥ 12?
nope!

nope!

nope!

nope!

read @9

success

read @11

success

73

GLOBAL tables
Meant for global data

leader

voting follower

time

write @12

success

conflictingread ≥ 12?
nope!

nope!

nope!

nope!

read @9

success

read @11

success

read
lease
until 20

read
lease
until 22

74

GLOBAL tables
Meant for global data

leader

voting follower

time

write @12

success

conflictingread ≥ 12?
nope!

nope!

nope!

nope!

read @9

success

read @11

success

read
lease
until 20

read
lease
until 22

read
lease
until 16

read
lease
until 19

75

GLOBAL tables
Meant for global data

leader

voting follower

time

write @12

can’t write

until 20

conflictingread ≥ 12?
nope!

nope!

nope!

read @9

success

read
lease
until 20

read
lease
until 22

read
lease
until 16

read
lease
until 19

76

GLOBAL tables
Meant for global data

leader

voting follower

time

success

conflicting
read ≥ 12?

read
lease
until 20

read
lease
until 22

read
lease
until 16

read
lease
until 19

write @ 12

77

GLOBAL tables
Meant for global data

leader

voting follower

time

success

conflicting
read ≥ 12?

read
lease
until 20

read
lease
until 22

read
lease
until 16

read
lease
until 19

write @ 12

read @ 13

read @ 13complete

read @ 14

read @ 14complete

78

GLOBAL tables
Meant for global data

79

¬

GLOBAL tables
Meant for global data

leader

voting follower

time

write & close @ now() + δ

80

δ = RTT/2 +
 clock_offset

GLOBAL tables
Meant for global data

leader

voting follower

time

write & close @ now() + δ

close @now() + δ

81

δ = RTT/2 +
 clock_offset

GLOBAL tables
Meant for global data

leader

voting follower

time

write & close @ now() + δ

read ≤ now()

success

close @now() + δ

read ≤ now()

success

82

δ = RTT/2 +
 clock_offset

GLOBAL tables
Meant for global data

leader

voting follower

time

write & close @ now() + δ

read ≤ now()

success

read ≤ now()

success

close @now() + δ

read ≤ now()

success

write & close @ now() + δ

close @now() + δ

83

δ = RTT/2 +
 clock_offset

Consistency (“linearizability”) = read-your-writes + monotonic-reads

1. After committing, writes commit wait until visible on all followers

2. When reads see write in uncertainty interval, wait before retrying

GLOBAL tables
Meant for global data

84

GLOBAL tables
Meant for global data

Hazard of clock reliance? Stale reads

If clock skew bounds exceeded before detection, what happens?

- Loss of causality

+ No loss of isolation

Not a new concern — already present due to read lease mechanism

85

GLOBAL tables
Meant for global data

Benefits

- Fast reads from all regions

- Bounded tail-latency, below WAN communication latency

Limitations

- Slower writes, must wait for clock sync and communication latency

86

Table-Locality Settings
Latency Profile Comparison

REGIONAL GLOBAL

Access locality High Low

Access patterns Read-often, Write-often Read-often, Write-rarely

Read latency (local home) Fast Fast

Read latency (remote home) Slow Fast

Read latency (stale) Fast Fast

Write latency (local home) Fast Slow

Write latency (remote home) Slow Slow

87

Challenge Completed

> ALTER DATABASE <db> ADD REGION "us-east1",
 "europe-east2", "asia-east1", …

> ALTER DATABASE <db> SURVIVE REGION FAILURE

> ALTER TABLE Orders LOCALITY REGIONAL BY ROW
> ALTER TABLE Customers LOCALITY REGIONAL BY ROW
> ALTER TABLE Products LOCALITY GLOBAL

> INSERT INTO Orders VALUES
 (gen_random_uuid(), 123, 3, 789)

88

REQUIREMENTS

Consistency

Referential integrity across tables

Scalability

100k+ orders per second

High availability

Survive node/zone/region failure

Low latency

Sub 20ms end-to-end

CockroachDB 21.1

Database Regions Table LocalitySurvival Goals

89

Summary

90

Database Regions Table LocalitySurvival Goals

First-class region management

Goal-oriented data placement policies

Non-voting replicas

Implicit table partitioning Auto row-level data homing

Locality aware cost-based SQL optimizations

Non-blocking extension to transaction model

