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Q Bird's eye overview of deep learning

@ Convolutional neural networks

Q From CNN to object detection and segmentation
@ Current state of the art

@ Neuromation: synthetic data
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Neural networks: a brief history

e Neural networks started as models of actual neurons

e Very old idea (McCulloch, Pitts, 1943), there were actual
hardware perceptrons in the 1950s
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e Several “winters” and “springs”, but the 1980s already had
all basic architectures that we use today

e But they couldn't train them fast enough and on enough data
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The deep learning revolution

10 years ago machine learning underwent a deep learning revolution
Since 2007-2008, we can train large and deep neural networks
New ideas for training + GPUs + large datasets

And now deep NNs yield state of the art results in many fields
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What is a deep neural network

e A neural network is a composition of functions @\+

e Usually linear combination + nonlinearity Wn

h(Ziwixi)

e These functions comprise a computational graph
that computes the loss function for the model

e To train the model (learn the weights), you take the
gradient of the loss function w.r.t. weights with
backpropagation

and variations
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Convolutional neural networks

e Convolutional neural networks — specifically for image processing
e Alsoanoldidea, LeCun’s group did it since late 1980s

e Inspired by the experiments of Hubel and Wiesel who understood
(lower layers of) the visual cortex
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Convolutional neural networks: idea
e Main idea: apply the same filters to different parts of the image.

e Break up the picture into windows:
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Convolutional neural networks: idea
e Main idea: apply the same filters to different parts of the image.

e Apply a small neural network to each window:
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Convolutional neural networks: idea
e Main idea: apply the same filters to different parts of the image.
e Compress with max-pooling

e Then use the resulting features:

Input Image Convolution Max Pooling Fully- connected Outputs
Neural Network
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Convolutional neural networks: idea

e We can also see which parts of the image activate a specific neuron, i.e., find
out what the features do for specific images:

Image conv3 conv4 Image conv3 conv4
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Deep CNNs

e CNNs were deep from the e g U s
start — LeNet, late 1980s:

Convolutions Subsampling Convolutions  Subsampling Full connection
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e Network in network: the “small network” does not B rNyGuHY
have to be trivial , AN
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3x3 5x5 1x1
e Inception: a special network in network architecture i i i
CeepTkun ' CeepTku ‘ CsepTKun ‘ Max-pooling
. 1x1 1x1 1x1 3x3
e GooglLeNet: extra outputs for the error function - -
from “halfway” the model \ //
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ResNet led to the revolution of depth

AlexNet, 8 layers % VGG, 19 layers = ResNet, 152 layers
(ILSVRC 2012) (ILSVRC 2014) = (ILSVRC 2015)
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ImageNet

e Modern CNNs have hundreds of layers

e They usually train on ImageNet, a huge dataset forlmage ClaSSIflcat|on
>10M images, >1M bounding boxes, »
all labeled by hand
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Object detection

e In practice we also need to know where the objects are

e PASCAL VOC dataset for segmentation:
_ — =

e Relatively small, so recognition models are first trained on ImageNet
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YOLO

e YOLO: you only look once; look for bounding boxes and objects in one pass:

1. Resize image.
2. Run convolutional network.
3. Non-max suppression.

e YOLO v.2 has recently appeared and is one of the fastest and best object
detectors right now
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YOLO

e |dea: split the image into an SxS grid.

e In each cell, predict both bounding boxes
and class probabilities; then simply

p(class; | obj)p(obj)p(bbox)

e CNN architecture
in YOLO is standard:

ol 4, S
Final detections

SRS gd oninput

Conv. Layers  Conv. Layers  Conv. Layers
1x1x256 1x1x512 3x3x1024
3x3x512 }X4 3x3x1024 }x2 3x3x1024
Tx1x512 3x3x1024
3x3x1024 3x3x1024-5-2

o Mool Class probability map
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Single Shot Detectors

e Further development of this idea: single-shot detectors (SSD)

e A single network that predicts several class labels and several corresponding
positions for anchor boxes (bounding boxes of several predefined sizes).

Detection Generator

Multiway |
ST Classification |

T—-' (vgg, inception,

resnet, etc)

Feature Extractor
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R-CNN

R-CNN: Region-based ConvNet

Find bounding boxes with some
external algorithm
(e.g., selective search)

Then extract CNN features (from a CNN trained on ImageNet

and fine-tuned on the necessary dataset) and classify
= warped region ﬂ{aeroplane? no. |

2. Extract region
image  proposals (~2k)
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tvmonitor? no.
3. Compute 4. Classify
CNN features regions
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R-CNN

Visualizing regions of activation for a neuron from a high layer:
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Fast R-CNN

e But R-CNN has to be trained in several steps (first CNN, then SVM on CNN
features, then bounding box regressors), very long, and recognition is very
slow (47s per image even on a GPU!)

e The main reason is that we need to go through the CNN for every region

e Hence, Fast R-CNN makes Rol (region of interest) projection that collects
features from a region.

Outputs: b bOX

softmax regressor
[ 1 [ 1

e One pass of the main CNN

i Rol
for the whole image. o FC FC
. . layer FCs
e Loss = classification error
+ bounding box regression error Rol feature

vector

For each Rof



NSUROMATION  fi il @ SmartData

Faster R-CNN
e One more bottleneck left: selective search to choose bounding boxes.

e Faster R-CNN embeds it into the network too with a separate
Region Proposal Network

e Evaluates each individual possibility from a set of predefined anchor boxes

Y Rl [ 2k scores ] [ 4k coordinates ‘ <mm  kanchor boxes
Rol pooling cls layer ‘ ’ reg layer .
2 4

| 256-d |
4 intermediate layer
Region Proposal Networkg &
feature maps 3
conv layers [
/ sliding window .
Ll
~‘-‘m::£/ T .

— conv feature map
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R-FCN
e We can cut the costs even further, getting rid of complicated layers to be
computed on each region.

e R-FCN (Region-based Fully Convolutional Network) cuts the features from
the very last layer, immediately before classification

............................................................................................ .

Proposal Generator Proposal Generator
" I Objectness ! : I
""""" Classification =
M e - R g A
{vgg, inception, i e Ll {vgg, inception, /; |
resnet, etc) N e 5 resnet, etc) S
- ; ' : Box Classifier ' '
Feature Extractor Il i ﬂ Muldway | 5 Feature Extract
i L LT TR L R : [T T - Clazsification , -"""--.

| Box 1

(b) Faster RCNN. (c) R-FCN.
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How they all compare
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How they all compare
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Mask R-CNN aw« fv?“;{e;sﬁ;‘f?@ | )
for image segmentation o 33534 = x’m Sosl . [ 2’*ﬁ*c%_”{’ -
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e To get segmentation, just
add a pixel-wise output layer
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Synthetic data

e But all of this still requires lots and lots of data
e The Neuromation approach: create synthetic data ourselves

e We create a 3D model for each object and render images to train on
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Synthetic data

e Synthetic data can have pixel perfect labeling, something humans can't do

e Anditis 100% correct and free
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Problem: we need to do transfer learning from synthetic images to real ones

Transfer learn

We are successfully solving this problem from both sides
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Next step

e Retail Automation Lab needs to scale up synthetic data

e Challenge: 170000 SKU in the Russian retail catalogue only
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Synthetic data for industrial automation

« Another great fit for synthetic data — industrial automation
 Self-driving cars, flying drones, industrial robots... labeled data is limited

« Synthetic environments can help
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- KNOWLEDGE MINING - A NEW ERA OF
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