ORACLE

Polyglot on the JVM with Graal

Vojin Jovanovic
VM Research Group, Oracle Labs

Github: @vjovanov
Twitter: @vojjov

c ®
OR Cl_e CCCCC ight © 2016 , Oracle and /or its affiliates. All rights reserved .

Safe Harbor Statement

The following is intended to provide some insight into a line of research in Oracle Labs. It
is intended for information purposes only, and may not be incorporated into any
contract. It is not a commitment to deliver any material, code, or functionality, and
should not be relied upon in making purchasing decisions. The development, release, and
timing of any features or functionality described in connection with any Oracle product or
service remains at the sole discretion of Oracle. Any views expressed in this presentation
are my own and do not necessarily reflect the views of Oracle.

O c ®
R CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 3

REPOSITORY

ACTIVE TOTAL PUSHES NEW FORKS OPENED ISSUES NEW WATCHERS APPEARED
LANGUAGE REPOSITORIES PUSHES PER REPOSITORY PER REPOSITORY PER REPOSITORY PER REPOSITORY IN YEAR
JavaScript m 3,461,415 w-‘ N NN SRS NN N .

Java N N N N N N N N
Python iy NN N N Ry NN Uittty
CSS NN RN N N AN A Y .
EhIE NN\ IR N N TNy TN SN
Ruby lt\ N AR .
C++ 10.69 & -
C NN\ NN N N NN RN ISy .
Shell N N ‘
C# TN W N N NN NN TN
Objective-C NN N N N AN NN
R AN N N N AR DONNNMNNNNNNNN NN
VimL N N IN W ARty SRMNNRNNNNNNN NN\
Go N N 1995
Perl N N
CoffeeScript N N b
TeX N N N N TNy NN Y €
Swift N N TSy NN NN Y ‘
Scala N 8 TR NN AN NN
Emacs Lisp § 8 NN NN .
Haskell 8) .
Lua 8 § MMM Ry NN NN .
Clojure N 8 \ NONNNNW Y
Matlab 8 § 4 SN = /
Arduino 8 g AN NN Y
Makefile § 8 €
Groovy § § b
Puppet 8 8
Rust 8 §
PowerShell § § o
0 0 0 0

350k

ORACLE

350k

3.5M

12 0

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

12 G5 0

12

12 e

CC license by http://githut.info 4

The World is Polyglot: What About Performance?

1000
£ 1100
()
O
D
2
@) 10
—
LC

Language

o c ®
R CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

“Write Your Own Language”

Current situation How it should be

Prototype a new language Prototype a new language in Java

Parser and language work to build syntax tree (AST)
Execute using AST interpreter

Parser and language work to build syntax tree (AST),
AST Interpreter

Write a “real” VM People start using it
In C/C++, still using AST interpreter, spend a lot of time And it is already fast
implementing runtime system, GC, ... And it integrates with other languages

And it has tool support, e.g., a debugger
People start using it PP 8 g8

| |
People complain about performance

- Define a bytecode format and write bytecode interpreter

Performance is still bad

' Write a JIT compiler, improve the garbage collector

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 6

4, p.

R

: ‘ CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

A

R

VM

-

o c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Costly and Cumbersome

: : ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Communication with Native Code is Expensive

JS

Impl

Costly and Cumbersome Native Project

ORACI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

10

Summary

* Fast languages are hard to implement
* Interoperability between the languages is cumbersome and costly

* Barrier between languages and native projects

o c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

11

ORACLE

Graal: One Compiler for Managed Languages

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

12

Graal VM Architecture

:ngjlava“ F scala W

JVM Compiler Interface (JVMCI) JEP 243

Java HotSpot Runtime
ORACI_E» Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Graal Compiler

Key Features of Graal

* Written in Java
— Eases development and maintenance

* Modular architecture
— Configurable compiler phases
— Compiler-VM separation: snippets, provider interfaces

* Designed for speculative optimizations and deoptimization
— Metadata for deoptimization is propagated through all optimization phases

* Designed for exact garbage collection
— Read/write barriers, pointer maps for garbage collector

* Aggressive high-level optimizations
— Example: partial escape analysis

o c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

14

Example Optimization: Partial Escape Analysis (1)

public static Car getCached(int hp, String name) {
Car car = new Car(hp, name, null);
Car cacheEntry = null;
for (int i = 0; i < cache.length; i++) {
if (car.hp == cachelil.hp &&

car.name == cache[i].name) {
cacheEntry = cachelil;
break;

¥
¥
if (cacheEntry !'= null) {

return cacheEntry;
} else {

addToCache(car);
return car;

}

o c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

15

Example Optimization: Partial Escape Analysis (2)

public static Car getCached(int hp, String name) {

Car cacheEntry = null;
for (int i = 0; i < cache.length; i++) {

if (hp == cache[il.hp && = new Car(...) escapes at:
name == cache[i].name) {
— T h ;
cacheEntry = cachelil; addToCache({car)
break; — return car;
}
; = Might be a very unlikely path

if (cacheEntry !'= null) {
return cacheEntry;
} else { " No allocation in frequent path
Car car = new Car(hp, name, null);
addToCache(car);
return car;

}

o c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 16

Graal VM Architecture

Truffle Framework

é;]avam F scala ‘m’

JVM Compiler Interface (JVMCI) JEP 243

Java HotSpot Runtime
ORACI_€® Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Graal Compiler

Speculate and Optimize ...

AST Interpreter
Uninitialized Nodes

ORACLE

Node Specialization
for Profiling Feedback

| >

('Node Transitions

@ Uninitialized Integer
String @(Double
Generic

-
-
-
.o

AST Interpreter
Specialized Nodes

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Compilation using
Partial Evaluation

>

Compiled Code

18

... and Transfer to Interpreter and Reoptimize!

Transfer back
to AST Interpreter

| >

Node Specialization to
Update Profiling Feedback

| >

Recompilation using
Partial Evaluation

R CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 19

How effective is this approach?

o c ®
R CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved

def add(a, b)
a+b
end

def sum(n)
1 =20
a ==o
while 1 < n
L +=1 — Looking at this loop here
a = add(a, n)
—
end
a
end

®
ORACI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

def add(a, b)
a+b
end

def sum(n)
i=20
a=2=0
while i < n B
1 +=1

a = add(a, n)
—
end
)
end

ORACLE

0x0000000103a7dc70:
0x0000000103a7dc72:
0x0000000103a7dc75:
0x0000000103a7dc7b:
0x0000000103a7dc7d:
0x0000000103a7dc7f:
0x0000000103a7dc82:

mov
add
jo

inc
mov
cmp

19

esi,edi

esi, rad
0x0000000103a7dda2
ecx

edi,esi

rad, ecx
0x0000000103a7dc70

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

0x0000000103a7dc70: mov esi,edi
0Ox0000000103a7dc72: add esi, rod
0x0000000103a7dc75: jo 0x0000000103a7dda2
0x0000000103a7dc7b: inc ecx
0x0000000103a7dc7d: mov edi,esi
0x0000000103a7dc7f: cmp rad, ecx
0x0000000103a7dc82: jg 0x0000000103a7dc70

O c ®
R Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

0x0000000103a7dc70: mov esi,edi

Ox0000000103a7dc72: add esi, rod
0x0000000103a7dc75: jo 0x0000000103a7dda2
0x0000000103a7dc7b: inc ecx

0x0000000103a7dc7d: mov edi,esi
0x0000000103a7dc7f: cmp rad, ecx
0x0000000103a7dc82: jg 0x0000000103a7dc70

O c ®
R Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Graal VM Architecture d
nede @ C

JS Sulong (LLVM)

Truffle Framework

:%]ava“ F scala ‘m’

JVM Compiler Interface (JVMCI) JEP 243

Java HotSpot Runtime
ORACI_€® Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Graal Compiler

Sulong

* Enable LLVM bitcode as just another "Truffle language”

suiong

— Particular interest in running C, C++, and Fortran programs.

— High-performance native extensions for managed languages.

— Low overhead of security-related instrumentations such as bounds checks.
— Apply dynamic optimization techniques to static context.

define i32 @add(i32 %x, 132 %y) #0 {

%1 = all i32, align 4
FUNCTION add(x, y) alloca 132, align

. %2 = alloca i32, align 4
iNIESEE . gdd LLVM frontenc store i32 %x, 132k %1, align 4 Graal VM
INTEGER i, b ‘ store 132 %y, 132% %2, align 4 ‘ :

. %3 = load i32% %1, align 4 via Truffle
add =@ * b %4 = load 1i32x %2, align 4

RETURN .
%5 add nsw 132 %3, %4
END FUNCTION ret i32 o5

}

o c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 26

Performance: Graal VM

Speedup, higher is better
5

4.5
4.1 B Graal
4 Best Specialized Competition
3
2
1.2
. 1.02 0.85 0.9
0 - . l
Java Scala Ruby R Native JavaScript

Performance relative to:
HotSpot/Server, HotSpot/Server running JRuby, GNU R, LLVM AOT compiled, V8

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Completeness

99,

96

Ruby language
JRuby passes 94%

Ruby core library
JRuby passes 95%

ECMA Script 2015
O v
O Missing Unicode Regexes

ECMA Script 2016
0)
O V8(5.4.500.6) passes 91.1%

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 28

Graal VM: Going Polyglot

o c ®
R CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

How important are the libraries you use?

Empirical Analysis of Programming Language Adoption

Open source libs. (M)
Extending existingcode (E) B ————F—————"——————5
Already used in group (E)
Personal familiarity (E)
Team familiarity (E)
Performance (M)
Portability/platform (E)
Development speed (M) B—————————
Tools MBF—+——F——+5
Safety/correctness (1)
Potential team famil. (E)
Particular language feature (1)
Commercial libs. (M)
Simplicity (1)

|
[
|
|
|
|
|
|
|
|
|
1

3 Overall
1 1-100 employees
B 101+ employees

0 10 20 30 40 50 60 70 80

Percent of respondents describing aspect as
medium or strong importance

|

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

ORACLE

VM

JS
——

A

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

R

31

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

32

ORACLE

Zero Overhead Interoperability

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

33

How we do polyglot in GraalVM?

o c ®
R CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Truffle::Interop.eval('application/language', source)
value = Truffle::Interop.import(name)

Truffle::Interop.export(name)

o c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Memory Managed
Code on the JVM

Native Code

Embedding a VM

ORACLE

Any Native Project

M

A AN gl

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

The Substrate VM is ...

ORACLE

. an embeddable VM

for, and written in, a subset of Java
optimized to execute Truffle languages

ahead-of-time compiled using Graal

integrating with native development tools.

Copyright © 2016, Oracle and/or its affiliates. All rights reserve

d.

38

Substrate VM: Execution Model

Points-To Analysis Ahead-of-Time

Compilation

i Machine Code

Initial Heap
Substrate VM
DWARF Info
All Java classes from Reachable methods, Application running
Truffle language fields, and classes without dependency on JDK
(or any application), and without Java class loading

JDK, and Substrate VM

R CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

39

Substrate VM Building Blocks

* Reduced runtime system, all written in Java
— Stack walking, exception handling, garbage collector, deoptimization
— Graal for ahead-of-time compilation and dynamic compilation

* Points-to analysis
— Closed-world assumption: no dynamic class loading, no reflection
— Using Graal for bytecode parsing
— Fixed-point iteration: propagate type states through methods

» Systemlava for integration with C code
— Machine-word sized value, represented as Java interface, but unboxed by compiler
— Import of C functions and C structs to Java

* Substitutions for JDK methods that use unsupported features
— JNI code replaced with SystemJava code that directly calls to C library

o c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

40

SystemlJava

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

41

SystemlJava

Call Java from C

>

Preexisting
C Code <€

Legacy C Code
Integration

Legacy Java Code
Integration

* Legacy C code integration

— Need a convenient way to access preexisting C functions and structures
— Example: libc, legacy code

* Legacy Java code integration
— Leverage preexisting Java libraries
— "Patch" violations of our reduced Java rules
— Example: JDK class library

e Call Java from C code
— Entry points into our Java code

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

>

42

SystemlJava vs. JNI

* Java Native Interface (JNI)
— Write custom C code to integrate existing C code with Java
— C code knows about Java types
— Java objects passed to C code using handles

* SystemlJava
— Write custom Java code to integrate existing C code with Java
— Java code knows about C types
— No need to pass Java objects to C code

o c ®
R CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

43

Word type for low-level memory access

* Requirements
— Support raw memory access and pointer arithmetic
— No extension of the Java programming language
— Pointer type modeled as a class to prevent mixing with, e.g., long
— Transparent bit width (32 bit or 64 bit) in code using it

* Base interface Word

— Looks like an object to the Java IDE, but is a primitive value at run time
— Graal does the transformation

public static Unsigned strlen(CharPointer str) {
* Subclasses for type safety Unsigned n = Word.zero();
: : : hile (str.read(n) != @
— Pointer: Cequivalent void* e r(fa;dr(‘i?;(n) A
— Unsigned: Cequivalentsize t }
. . . return n;
— Signed: Cequivalentssize t }

o c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

44

Java Annotations to Import C Elements

@CFunction static native int clock_gettime(int clock_id, timespec tp);

int clock_gettime(clockid t _ clock_id, struct timespec *_tp)

@CConstant static native int CLOCK_MONOTONIC();

#define CLOCK_MONOTONIC 1

@CStruct interface timespec extends PointerBase {
@CField long tv_sec();
@CField long tv_nsec();

}

struct timespec {
__time_t tv_sec;
__syscall slong_t tv_nsec;

};

@CPointerTo(nameOfCType="int") interface CIntPointer extends PointerBase {
int read();
void write(int value);

}

int* pint;

@CPointerTo(CIntPointer.class) interface CIntPointerPointer ...

int** ppint;

@CContext(PosixDirectives.class)

#include <time.h>

@CLibrary("rt")

-1rt

Implementation of System.nanoTime () using SystemJava:

static long nanoTime() {
timespec tp = StackValue.get(SizeOf.get(timespec.class));
clock_gettime(CLOCK_MONOTONIC(), tp);
return tp.tv_sec() * 1_000_000_000L + tp.tv_nsec();

}

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

45

Results

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

46

Microbenchmark for Startup and Peak Performance (1)

}

return obj.result;

function benchmark(n) {
var obj = {i: 0, result: 0};
while (obj.i <= n) {
obj.result = obj.result + obj.i;
obj.i = obj.i + 1;

n fixed to 50000 for all iterations

Function benchmark is invoked in a loop by harness
(0 to 40000 iterations)

Javascript VM Command Line Flags

Google V8

Mozilla Spidermonkey
Nashorn JDK 8 update 60
Truffle on HotSpot VM

Truffle on Substrate VM

ORACLE

Version 4.2.27 [none]
Version JavaScript-C45.0al [none]
build 1.8.0_60-b27 -J-Xmx256M
graal-js changeset a8947301fd1le from Nov 30, 2015 -J-Xmx256M

graal-enterprise changeset f47fff503e49 from Nov 30, 2015

substratevm changeset 45¢61d192d43 from Dec 1, 2015 [none]
graal-enterprise changeset d8ee392c83e3 from Nov 21, 2015

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

47

Microbenchmark for Startup and Peak Performance (2)

Memory Footprint [MByte]

Execution Time [Seconds]
©OO0O0O0O00000
OFRPNWPNMNUIONOOOER

150

Iterations

130

110
90

70

° —)

ORACLE

1 -
9
2 — 8 //
/ 7
1.5 6 /
5
1 - 4 "__"-lr
3 =
"
05 i7é— — =
W
0 ‘MI‘——"-‘—P'-_'_‘H"—-M O _ T T T
0 50 100 150 200 0 10000 20000 30000 40000
Iterations Iterations
250

' #__'
100

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

=== Google V8

= == Mozilla Spidermonkey
«===Nashorn JDK 8u60
Truffle on HotSpot VM
Truffle on Substrate VM

48

Embedding the VM

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

49

Truffle System Structure

Your language
should be here!

AST Interpreter for
every language

Common API separates
language implementation,
optimization system,

and tools (debugger)

Language agnostic
dynamic compiler

Integrate with Java Low-footprint VM, also
applications suitable for embedding
ORACI_E” Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

50

Summary

* Fast and easy-to-implement languages
* Interoperability between the languages with zero overhead

* Embeddable in native code via Substrate VM

o c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

51

Open Source

 github.com/graalvm/

* graal-core: dynamic compiler technology

* truffle: language implementation framework

* fastr: implementation of the R runtime

* sulong: execution of LLVM-based languages

* rubytruffle: implementation of the Ruby runtime

* simplelanguage: example language for getting started

: : -
R CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

52

Graal and Truffle Tutorials

Publications and Presentations - Graal - OpenJDK Wiki - Mozilla Firefox

& Publications and Present...

x

€

& | https://wiki.ope

pen)DKwiki

About

Adoption

Build

Code Tools

Coin

Compiler

Device 1/0

Graal
Debugging
Graal Technical
Documentation
HotSpot Changes
Instructions
Instrumentation API

Publications and
Presentations

The mx Tool
Truffle DSL
Truffle FAQ and
Guidelines
HotSpot
JDK 7u
JDK 8
Kulla
Memory Model Update
Multi-Language VM
Nashorn
Open)FX
Port: AArch64
Port: BSD
Port: MacOSX
Port: PowerPC/AIX
Port: s390x
Quality
Shenandoah
Sumatra
Type Annotations

o

ORACLE

dk java.net/display/Cra

Dashboard Graal Main Publications and Presentations

Publications and Presentations

Attachments: 0 « Added by Christian Wimmer, last edited by Christian Wimmer on Jun 20, 2016 (view change) + Labels No labels

Truffle Tutorial: One VM to Rule Them All, One VM to Bind Them

w8 9 3 a8 490 =

https://wiki.openjdk.java.net/display/Graal/Publications+and+Presentations

Forget “this language is fast”, “this language has the libraries | need”, and “this language has the tool support | need”. The
Truffle framework for implementing managed languages in Java gives you native performance, multi-language integration
with all other Truffle languages, and tool support - all of that by just implementing an abstract syntax tree (AST) interpreter

in Java.

Truffle applies AST specialization during interpretation, which enables partial evaluation to create highly optimized native
code without the need to write a compiler specifically for a language. The Java VM contributes high-performance garbage

collection, threads, and parallelism support.

This tutorial is both for newcomers who want to learn the basic principles of Truffle, and for people with Truffle experience
who want to learn about recently added features. It presents the basic principles of the partial evaluation used by Truffle and
the Truffle DSL used for type specializations, as well as features that were added recently such as the language-agnostic

object model, language integration, and debugging support.

Oracle Labs and external research groups have implemented a variety of programming languages on top of Truffle, including
JavaScript, Ruby, R, Python, and Smalltalk. Several of them already exceed the best implementation of that language that

existed before.

PLDI 2016, June 13, 2016, Santa Barbara, CA
Video recording
Download slides

Graal Tutorial

This tutorial presents Graal, a high-performance dynamic compiler for Java written in Java. It covers the following topics:

« Key distinguishing features of Graal,

« Introduction to the Graal IR: basic properties, instructions, and optimization phases

« Speculative optimizations: first-class support for optimistic optimizations and deoptimization
* Graal API: separation of the compiler from the VM

* Snippets: expressing high-level semantics in low-level Java code

* Compiler intrinsics: use all your hardware instructions with Graal

* Using Graal for static analysis

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

53

Acknowledgements

Oracle

Danilo Ansaloni
Stefan Anzinger
Cosmin Basca
Daniele Bonetta
Matthias Brantner
Petr Chalupa
Jurgen Christ
Laurent Daynes
Gilles Duboscq
Martin Entlicher
Bastian Hossbach
Christian Humer
Mick Jordan

Vojin Jovanovic
Peter Kessler
David Leopoldseder
Kevin Menard
Jakub Podlesak
Aleksandar Prokopec
Tom Rodriguez

ORACLE

Oracle (continued)
Roland Schatz

Chris Seaton

Doug Simon

Sté&pan Sindelar
Zbynék Slajchrt
Lukas Stadler
Codrut Stancu

Jan Stola

Jaroslav Tulach
Michael Van De Vanter
Adam Welc
Christian Wimmer
Christian Wirth

Paul Wogerer
Mario Wolczko
Andreas WoR
Thomas Wirthinger

Oracle Interns
Brian Belleville
Miguel Garcia
Shams Imam
Alexey Karyakin
Stephen Kell
Andreas Kunft
Volker Lanting
Gero Leinemann
Julian Lettner
Joe Nash

David Piorkowski
Gregor Richards
Robert Seilbeck
Rifat Shariyar

Alumni

Erik Eckstein
Michael Haupt
Christos Kotselidis
Hyunjin Lee

David Leibs

Chris Thalinger
Till Westmann

JKU Linz

Prof. Hanspeter M&ssenbdck

Benoit Daloze
Josef Eisl

Thomas Feichtinger
Matthias Grimmer
Christian Haubl
Josef Haider
Christian Huber
Stefan Marr
Manuel Rigger
Stefan Rumzucker
Bernhard Urban

University of Edinburgh
Christophe Dubach

Juan José Fumero Alfonso
Ranjeet Singh

Toomas Remmelg

LaBRI
Floréal Morandat

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

University of California, Irvine
Prof. Michael Franz

Gulfem Savrun Yeniceri

Wei Zhang

Purdue University
Prof. Jan Vitek
Tomas Kalibera
Petr Maj

Lei Zhao

T. U. Dortmund

Prof. Peter Marwedel
Helena Kotthaus
Ingo Korb

University of California, Davis
Prof. Duncan Temple Lang
Nicholas Ulle

University of Lugano, Switzerland
Prof. Walter Binder

Sun Haiyang

Yudi Zheng

54

Integrated Cloud

Applications & Platform Services

c ®
OR Cl_e CCCCC ight © 2016 , Oracle and/or its affiliates. All rights reserved .|

ORACLE

