
Adopting your
infrastructure to go
Multi-*
A migration story.

Copyright © 2019 HashiCorp

A migration story.

Erik Veld
Developer Advocate at HashiCorp

https://github.com/eveld/migrating-applications-with-service-mesh

How did we get
ourselves into this
mess?

Multi-Service

What?

Moving from
monoliths to
cloud-native
applications. Single,

Physical
Server

Dynamic Virtual
Machines

Smaller,
Ephemeral
Containers

Challenges?

▪ Handling stateful applications.

▪ Migrating between monoliths and microservices.

▪ Organizational challenges (Conway's law).

▪ Securing communication between microservices.

Challenges?

Moving from
function calls
to RPC over
the network.

Multi-Platform

What?

Multiple runtime
platforms and services
from Kubernetes to
VMs, Containers to
Serverless functions.

Challenges?

▪ Vendor lock-in.

▪ Increased operational complexity.

▪ There is no single "one size fits all" approach for all of the platforms.

▪ Security.

▪ Connecting all the different platforms together.

Multi-Cloud

Challenges?

▪ Connecting all the different platforms together x 10.

▪ Increased operational complexity x 10.

▪ There is no single "one size fits all" approach for all of the platforms x 10.

▪ Security x 10.

Networking.

Challenges?
Many common challenges have to do with networking.

▪ Naming things ─ What do I name the service and how do I find it?

▪ Security ─ Which services are allowed to talk to the service?

▪ Routing ─ How do I route to the service?

Naming things and

Routing (50%).

Load Balancers

What do I call the
service and how do I
find it?

Service Mesh
The Control Plane is
responsible for Service
Discovery, Authorization and
configuring the proxies of the
Data Plane.

The Data Plane is responsible
for connecting services and
routing data between them.

Configuration
▪ A proxy is co-located with the

service instance that proxies
inbound traffic.

▪ The Client agent instantiates
the proxy and registers it as a
service.

▪ The proxy is configured with a
port that is used for the service
and ports for any upstream
destination that the service
wants to connect to.

connect = {
 proxy = {
 config = {
 upstreams = [
 {
 destination_name = "mysql",
 local_bind_port = 8001
 }
]
 }
 }
}

Service Discovery
▪ The proxy of the web service

uses service discovery to
request the location of the
DB.

▪ The local agent returns the
proxy's IP address/port of a
healthy DB instance.

Security.

In the beginning

Access is controlled
through firewall rules,
determining which IP
and port is allowed
to connect.

Eventually..

With the growing
complexity in dynamic
environments,
managing these rules
becomes impossible.

Intentions

$ consul intention create -deny web '*'

Created: web => * (deny)

$ consul intention create -allow web app

Created: web => app (allow)

$ consul intention create -allow web db

Created: web => db (allow)

The service access
graph defines which
services are
allowed or denied
from communicating
through intentions.

Service based security
▪ The local agent also returns the

URI for the expected identity
of the service it is connected to.

▪ Proxies between web and
database start TLS handshake
to authenticate the identity.

Service based security
▪ The DB proxy sends the

authorization request to its
local agent.

▪ The local agent authorizes the
connection based on locally
cached intention.

▪ Mutual TLS is established.

Migrating from
monolith to
microservices.

Current state

Desired state

Traffic Routing
Service Router

Demo
Splitting off the
currency microservice

Current state

Desired state

Traffic Resolver
Service Router

Demo
A/B testing v2 of the
payments service

Current state

Desired state

Desired state

Desired state

Traffic Splitting
Service Splitter

Demo
Canary release v2 of the
payments service

Multi-Cluster
Networking.

Multi-Cluster networking is hard

▪ Handle overlapping IP ranges
in multiple clusters.

▪ Make routing work without
opening up the cluster to all
traffic.

▪ Integrating with non
Kubernetes resources.

Multi-Cloud networking is harder

▪ Handle overlapping IP ranges
in multiple clouds.

▪ Make routing work without
opening up the cloud to all
traffic.

▪ Integrating with non cloud
resources.

Migrating from VMs to
Kubernetes.

Multi-Cluster Gateways
Cross cluster / cross cloud service routing

Demo
Moving v2 of the currency
service to Kubernetes

Demo
Pilot a new service on
multiple Kubernetes
clusters

Key takeaways
Adopting Multi-* does not have to be scary

▪ You don't have to do a big bang migration

▪ Service Mesh gives you simple and secure service segmentation

▪ Mesh Gateways provide effortless multi-cluster/cloud networking

Thank You
eveld@hashicorp.com
www.hashicorp.com

52

https://github.com/eveld/migrating-applications-with-service-mesh

Discovery Chain

Use L7 criteria such as
path prefixes or http
headers, and send traffic
to a different service or
service subset.

Split incoming requests
across different
subsets of a single
service, or across
different services.

Define which instances of
a service should satisfy
discovery requests for
the provided name.

Why?

▪ Quickly build and deliver applications in response to customer needs.

▪ Automate operations to eliminate the risk of failure due to human
error.

▪ Architect for resilience and focus on automated improvements to
replace routine.

▪ Build applications that run anywhere without modification.

Why?

▪ Increase resiliency by leveraging schedulers and cloud services.

▪ Easily scale up and down by using containers or serverless functions.

▪ Choose the best of breed when selecting services.

▪ Create resources on demand and only pay for what is used.

Why?

▪ Try to prevent vendor lock-in.

▪ Choose the best of breed services from multiple cloud providers.

▪ Companies that operate on a global scale.

▪ Failover to another cloud in case of an outage.

Step 2

Migrating from
monolith to
microservices.

Step 3

Migrating from
monolith to
microservices.

Step 5

Multiple Kubernetes
clusters.

Step 6

Multi-Cloud.

Demo
Connect everything up
together

