
Kusto (ADX)
Architecture and Internals

through a life of a query

Evgeney Ryzhyk
Partner Software Developer, Kusto Engine

SmartData Conference
December 2020

1

Recap:
what is Kusto

BigData Database / Platform

Managed in Azure Cloud

Fully distributed

Optimized for append-only log and telemetry
workloads

Structured, semi-structured and unstructured data

2

Azure Data Explorer (Kusto)
Workload size / Nov 2020

Kusto: один из самых масштабных сервисов Microsoft

Agenda

• Instead of the dry architecture diagrams…

• …understand Kusto by looking at the “life of a query”

• We will review:
• Query planning and optimization

• Kusto cluster: roles and responsibilities

• Query distribution

• Storage format and low-level query engine

4

Sample query

Count error log messages per machine during last week:

KustoLogs
| where Timestamp > ago(7d)
| where EventText has "error"
| summarize count() by Machine

5

1-minute demo (Live!)

• 7 Trillion records after Timestamp filter

• Down to 14 billion by full-text term search

• Aggregated by Machine

6

How fast is it?

In dedicated log analytics benchmark (100TB):

• x40 faster than BigQuery for the same cost (single user)

• x200 faster that BigQuery for the same cost (50-concurrent users)

• Workload isn’t feasible on comparable HW with Elasticsearch

7

Query Lifetime

Gateway
Query

Planning

Distributed
Query

Execution

Shard-Level
Query

8

Step 0: Gateway

• Query arrives at the Gateway HTTP API endpoint as GET or POST
request

• Authentication (AAD)

• Ask the cluster fabric to find a suitable “query head” node

• Route to the query head for planning and further execution

9

Step 1: Query Head/Admin

• Parse the text into AST

• Understand what we’re querying: resolve database and table names
(fetch metadata for the latest DB and table definitions and schema)

• Authorization (ensure current user can view the DB)

• Check semantics and data types

10

Detour: metadata
• Structure:

• Kusto cluster: list of DB’s

• DB: list of tables

• Table: schema + list of shards

• Updated transactionally; query sees a consistent snapshot

11

Step 1.1: initial logical plan
• Build an initial tree of relational operators

• Generic optimizations:
• push down predicates and projections

• fold constant expressions

• rewrite complex operators into simpler ones

• …

• There’s a query optimizer framework:
recognize and rewrite fragments of the
RelOp tree
• Global transformations are achieved by iterative

application of local rewrites

12

Step 1.2: query distribution

• Table may have thousands of horizontal shards

• Shards are assigned to cluster nodes (using consistent hash)

• Machines cache the frequently accessed data fragments, on SSD and
in memory

• Need to turn an abstract, logical query plan into a parallel and
distributed one, such that:
• “Heavy lifting” is done on each node, close to the cached data

• All cluster resources are utilized

• Non-trivial strategies for large joins and aggregations are possible

13

Step 1.2: query distribution

• Represent the table as a hierarchy of shards

• Make important strategy decisions (shuffled vs broadcast join,
shuffled vs non-shuffled aggregation, etc.)

• Semantic-preserving transformations of the query plan:
• E.g. logical `count() by Key` becomes

• distributed `count() by key` → merge → `sum(counts) by Key`

• Hundreds of other transformations, rule-based and cost-based

14

Detour: shuffled and broadcast join

• Query distribution is not
just tree-merge style

• Shuffled joins and
aggregations create a DAG
of producers and
consumers:

15

Extendable storage model

• Shards (column-store) are created
from regular batch ingestion

• We also have RowStore, for trickling
NRT ingestion

• And external tables (e.g. Parquet files)

• And other clusters (cross-cluster
queries)

• There are handled by the same query
distribution/federation mechanisms:
• Represent logical table as union of

shards, row stores, external tables
• Push down and distribute the operators

to other "engines“

Database Query

Parser (syntax)

Analyzer (semantics)

Planner/optimizer

Query Execution

Storage

Native
shards

Parquet

Callout

Cross-
cluster

Cross-node

Virtual Filesystem

Filesystem XStore ADL

To other clusters…

Row store

16

Step 1.3: shard pruning

• Query head maintains a cache of high-level shard stats (min/max
values, Bloom filters, etc.)

• Apply the coarse-grained query filters to prune irrelevant shards early
• Reduction in query plan size and inter-node traffic

• In our example: eliminate shards that fall out of the last 7 days range
based on the per-shard min/max stats of the Timestamp field.

17

Step 1.4: final query plan

• A large tree of operator nodes

• 3 types of operators:
• Functional (actual query logic)

• Parallelization (run sub-trees in parallel)

• Remoting (run sub-tree on another node
and stream results back)

18

Step 2: query execution

• Distributed query plan is passed to the
“root” engine.

• Each node in the query plan
represents a pull-mode, block-level
iterator

• Leaf nodes are special: they know and
exploit the intricacies of the storage
format and the indexes

• Control flow: top-down

• Data flow: bottom-up

19

Step 2.1

• Parallelization and remoting operators quickly bring us to shards on
the leaf nodes

• Leaf shard queries run in parallel on all nodes and cores

• Shard queries are executed by the storage engine

20

Step 3: storage (shard) query

• As part of the query planning, identify the bottom part of the query
that runs “close enough” to the shard:

• Generate (LLVM) a fused, efficient machine code that:
• Calls out to the storage runtime to probe indexes and read slices of the shard

columns’ data
• Performs the vectorized and tuple-level filtering/calculations/aggregations
• Takes advantage of the specific shard encoding (dictionaries, non-nullability)

21

Shard
| where Timestamp > ago(7d)
| where Message has 'error’
| summarize count() by Machine

Detour: shard format

• Compressed column store with free text support and full-text
inverted index

22

time_index_res = probe_time_index(field=“Timestamp”, range=-7d..now);
txt_index_res = probe_text_index(field=“Message”, term=“error”);
positions = intersect(time_index_res, txt_index_res);
for each pos in positions:

key = fetch_field_key_at(“Machine”, pos);
grid[key] += 1; // count() by Machine

for each key in grid: // decode dict keys as text values
decode_value(“Machine”, key)

propagate aggregated grid to the parent operator

Generated shard query

Assume that “Machine” field is low-cardinality and dictionary-encoded
in this shard: query can benefit from it.

23

Beyond query

• Update policy (built-in lightweight ETL)

• Materialized Views

• Bulk and Streaming ingestion

• Continuous Data Export

• External tables and Data Lake integration

• Follower databases (aka “virtual data-warehouse”)

• Time-series analytics

• Geo-spatial queries

• ML: embed python in query

24

Recap / Summary

• This was not a full design of Kusto (see whitepaper), but we touched
upon key elements.

• Kusto architecture brings together classical and well-known DB design
patterns, along with recent research and domain-specific innovation.
• Relational model at the core

• Shared-nothing distributed architecture

• Tiered storage model (RAM/SSD/Blobs)

• Purpose-built compressed column store

• Automatic full-text index

• Special support for JSON-like data type

25

Azure Data Explorer (Kusto)
Product links

Product

• Product Page: http://aka.ms/AzureDataExplorer

• Docs: https://aka.ms/adx.docs

• Pricing Page: https://azure.microsoft.com/en-us/pricing/details/data-explorer/

• Cost Estimator: http://aka.ms/adx.cost

Demos

• Scott Guthrie’s Keynote (ADX Announcement/Demo)

• Rohan Kumar’s Keynote (ADX Announcement/Demo)

• Scott Guthrie’s in Techorama (Scott’s demo)

Blogs

• Announcement: https://azure.microsoft.com/en-in/blog/introducing-azure-data-explorer/

• Whitepaper: https://azure.microsoft.com/en-us/resources/azure-data-explorer/en-us/

• 101 blog: https://azure.microsoft.com/en-us/blog/azure-data-explorer-technology-101/

Social and Community

• Twitter: @AzDataExplorer

• Stack overflow: https://stackoverflow.com/search?q=Azure+Data+Explorer

• Tech Community: https://techcommunity.microsoft.com/t5/Azure-Data-Explorer/bd-p/Kusto

http://aka.ms/AzureDataExplorer
https://aka.ms/adx.docs
https://azure.microsoft.com/en-us/pricing/details/data-explorer/
http://aka.ms/ADX.Cost
https://mediastream.microsoft.com/events/2018/1809/Ignite/player/tracks/track2.html?start=7815
https://mediastream.microsoft.com/events/2018/1809/Ignite/player/tracks/track5.html?start=9880
https://www.youtube.com/watch?v=YTWewM_UMOk&feature=youtu.be&t=3074
https://azure.microsoft.com/en-in/blog/introducing-azure-data-explorer/
https://azure.microsoft.com/en-us/resources/azure-data-explorer/en-us/
https://azure.microsoft.com/en-us/blog/azure-data-explorer-technology-101/
https://twitter.com/azdataexplorer
https://stackoverflow.com/search?q=Azure+Data+Explorer
https://techcommunity.microsoft.com/t5/Azure-Data-Explorer/bd-p/Kusto

