SmartDaté'C@_rjference
December 2020

o —

Evgeney Ryzhyk
Partner Software Developer, Kusto Engine

BigData Database / Platform

Managed in Azure Cloud

Recap:

Fully distributed

what is Kusto

I Optimized for append-only log and telemetry
110 workloads
[|
-'_-I_L Structured, semi-structured and unstructured data
| 2

m Microsoft

Azure Data Explorer (Kusto) B® Microsoft

A

Workload size / Nov 2020

Bce 2 > 1M
ermoHbl Azure CPU Cores
°e - 2 EB +35 PB
O6LWunii 06bEM AaHHbIX J[106aBAAETCA KaXAblM AEHb

2 30 Billion

3anpocoB B MecAL,

Kusto: oguH n3 cambix MmacwtabHbix cepBucoB Microsoft

Agenda

* Instead of the dry architecture diagrams...
e ...understand Kusto by looking at the “life of a query”

* We will review:
* Query planning and optimization
e Kusto cluster: roles and responsibilities
* Query distribution
» Storage format and low-level query engine

m Microsoft

Sample query

Count error log messages per machine during last week:

KustolLogs

| where Timestamp > ago(7d)

| where EventText has "error"
| summarize count() by Machine

B Microsoft

1-minute demo (Livel!)

7 Trillion records after Timestamp filter
* Down to 14 billion by full-text term search
* Aggregated by Machine

BT Microsoft

How fastis it?

In dedicated log analytics benchmark (100TB):

* x40 faster than BigQuery for the same cost (single user)

* x200 faster that BigQuery for the same cost (50-concurrent users)
* Workload isn’t feasible on comparable HW with Elasticsearch

m Microsoft

Query Lifetime

BT Microsoft

Query

Planning

Distributed

Query
Execution

Shard-Level
Query

Step 0: Gateway

* Query arrives at the Gateway HTTP APl endpoint as GET or POST
request

e Authentication (AAD)
* Ask the cluster fabric to find a suitable “query head” node
* Route to the query head for planning and further execution

m Microsoft

Step 1: Query Head/Admin

e Parse the text into AST

e Understand what we’re querying: resolve database and table names
(fetch metadata for the latest DB and table definitions and schema)

e Authorization (ensure current user can view the DB)
* Check semantics and data types

m Microsoft

Detour: metadata

e Structure:
e Kusto cluster: list of DB’s

e DB: list of tables

* Table: schema + list of shards

* Updated transactionally; query sees a consistent snapshot

Microsoft

Cluster

Transaction scope

—

Shard containers hold the database’s
data artifacts. One specific container

Database

—>

holds the metadata.

h 4

Table

| Column

Shards are mapped
to their table

Shard Container

l

Shard

Stores are mapped
to their column

b{ Column Slice

11

Step 1.1: initial logical plan

* Build an initial tree of relational operators

* Generic optimizations:
* push down predicates and projections
 fold constant expressions
* rewrite complex operators into simpler ones

* There’s a query optimizer framework:
recognize and rewrite fragments of the
RelOp tree

* Global transformations are achieved by iterative
application of local rewrites

Microsoft

[AggregationOperator]

[CrassTableUnionO perator]

P

Y

. T 4
AggregationOperator AggregationOperator
v o v
' i
Multiple5ubQueryMenge p bJue g
¥ o ¥
™) i
AggregationJperator AggregationOp
* A % *
R '
MultipleSubQueryMengs MukltipleSubQuenybeng
v) v
'l
Aggregationpearator AggregationUperat
. + S * A
- ' =
Projection Projection
v - v
T i
Selectio Zelect
v o ¥
A f
rojection Projection
v ~ v
™ '
TableExtentReferance TableSxtentRaferance
GitHuh Evants From Lisashnaam St el L
J N 12

Step 1.2: query distribution

e Table may have thousands of horizontal shards
* Shards are assigned to cluster nodes (using consistent hash)

* Machines cache the frequently accessed data fragments, on SSD and
In memory

* Need to turn an abstract, logical query plan into a parallel and
distributed one, such that:
* “Heavy lifting” is done on each node, close to the cached data
 All cluster resources are utilized
* Non-trivial strategies for large joins and aggregations are possible

m Microsoft

Step 1.2: query distribution

* Represent the table as a hierarchy of shards

* Make important strategy decisions (shuffled vs broadcast join,
shuffled vs non-shuffled aggregation, etc.)

* Semantic-preserving transformations of the query plan:
* E.g. logical ‘count() by Key becomes
e distributed ‘count() by key > merge - “sum(counts) by Key"

 Hundreds of other transformations, rule-based and cost-based

m Microsoft

Detour: shuffled and broadcast join

e Query distribution is not
just tree-merge style

e Shuffled joins and
aggregations create a DAG
of producers and
consumers:

BT Microsoft

node 0

[summarize by ... J
’i._

node 3

[summarize by ...
"

pO | pl | p2 p3

[SelectPa rtition]

T~

shard shard | | shard

pO | pl |[p2|p3

[SelectPartitionJ

]

shard | | shard | | shard

15

Extendable storage model

Database Query

e Shards (column-store) are created

from regular batch ingestion Parser (syntax)

* We also have RowsStore, for trickling Analyzer (semantics)
NRT ingeStiOn Planner/optimizer

* And external tables (e.g. Parquet files)

e And other clusters (cross-cluster Query Execution
gueries)

* There are handled by the same query Storage Callout

distribution/federation mechanisms:

* Represent logical table as union of
shards, row stores, external tables Virtual Filesystem

* Push down and distribute the operators
to other "engines”

-

To other clusters...

. 16
BT Microsoft

Step 1.3: shard pruning

* Query head maintains a cache of high-level shard stats (min/max
values, Bloom filters, etc.)

* Apply the coarse-grained query filters to prune irrelevant shards early
e Reduction in query plan size and inter-node traffic

* In our example: eliminate shards that fall out of the last 7 days range
based on the per-shard min/max stats of the Timestamp field.

m Microsoft

Step 1.4: final query plan

* A large tree of operator nodes

* 3 types of operators:
e Functional (actual query logic)
 Parallelization (run sub-trees in parallel)

* Remoting (run sub-tree on another node
and stream results back)

Microsoft

(CrossTableUnionNode J

<

~a

v

(" B &)
DetachedSubQueryNode DetachedSubQueryNode
. * Y @ * y
(: R & £
AggregationNode AggregationNode
- y @)
v v
(N 6)
DistributedMerge DistributedMerge
. * B N *
(D 6)
DetachedSubQueryNode DetachedSubQueryNode
. ey J
v v
(B 6 N
AggregationNode AggregationNode
< * r S * A
(R 6)
ParallelMerge ParallelMerge
< * € * =
(B &)
DetachedSubQueryNode DetachedSubQueryNode
. * € * P
(BN 6)
AggregationNode AggregationNode
. Ny © .
v v
(R & B
ExtentSelectNode ExtentSelectNogle
& r W J

AGGREGATE

Step 2: query execution

UNION

 Distributed query plan is passed to the
“root” engine.

AGGREGATE 2=

* Each node in the query plan
represents a pull-mode, block-level
iterator

AGGREGATE L

* Leaf nodes are special: they know and
exploit the intricacies of the storage
format and the indexes

AGGREGATE %»

e Control flow: top-down .

TABLE(FILTER) G

» Data flow: bottom-up

Microsoft

Os| 0%

Os| 0%

6
2K

<0.1s |

2K
1B

18.8s | 47%

1B
1B

0%

. = -

<

0s| 0%

0s| 0%
2
2

AGGREGATE ==

AGGREGATE L

AGGREGATE %

v

TABLE(FILTER) G

0s| 0%

0s| 0%
6
2K

<0.1s| 0%

2K
1B

21.5s | 53%
1B
1B

Step 2.1

 Parallelization and remoting operators quickly bring us to shards on
the leaf nodes

* Leaf shard queries run in parallel on all nodes and cores
* Shard queries are executed by the storage engine

m Microsoft

Step 3: storage (shard) query

* As part of the query planning, identify the bottom part of the query
that runs “close enough” to the shard:

Shard

| where Timestamp > ago(7d)

| where Message has 'error’

| summarize count() by Machine

* Generate (LLVM) a fused, efficient machine code that:

 Calls out to the storage runtime to probe indexes and read slices of the shard
columns’ data

* Performs the vectorized and tuple-level filtering/calculations/aggregations
» Takes advantage of the specific shard encoding (dictionaries, non-nullability)

BT Microsoft

Detour: shard format

* Compressed column store with free text support and full-text
inverted index

Sharddata - jumno Column 1

Block 0 Block 1 Block N Block 0 Block 1

Sharddata column X

Column 0 index

Shard " = K=
directory = =
« Column 1 index

« Column X index

BT Microsoft

Generated shard query

Assume that “Machine” field is low-cardinality and dictionary-encoded
in this shard: query can benefit from it.

time _index _res = probe time_index(field=“Timestamp”, range=-7d..now);
txt_index_res = probe_ text index(field=“Message”, term=“error”);
positions = intersect(time_index_res, txt index_res);
for each pos in positions:
key = fetch field key at(“Machine”, pos);
grid[key] += 1; // count() by Machine
for each key in grid: // decode dict keys as text values
decode_value(“Machine”, key)
propagate aggregated grid to the parent operator

Microsoft

Beyond query

» Update policy (built-in lightweight ETL)

* Materialized Views

* Bulk and Streaming ingestion

* Continuous Data Export

e External tables and Data Lake integration

* Follower databases (aka “virtual data-warehouse”)
* Time-series analytics

* Geo-spatial queries

 ML: embed python in query

m Microsoft

Recap / Summary

* This was not a full design of Kusto (see whitepaper), but we touched
upon key elements.

e Kusto architecture brings together classical and well-known DB design
patterns, along with recent research and domain-specific innovation.
* Relational model at the core
* Shared-nothing distributed architecture
* Tiered storage model (RAM/SSD/Blobs)
* Purpose-built compressed column store
e Automatic full-text index
* Special support for JSON-like data type

m Microsoft

Azure Data Explorer (Kusto)

Product links

Product
* Product Page: http://aka.ms/AzureDataExplorer

e Docs: https://aka.ms/adx.docs

* Pricing Page: https://azure.microsoft.com/en-us/pricing/details/data-explorer/

* Cost Estimator: http://aka.ms/adx.cost

Demos

» Scott Guthrie’s Keynote (ADX Announcement/Demo)

* Rohan Kumar’s Keynote (ADX Announcement/Demo)

* Scott Guthrie’s in Techorama (Scott’s demo)

Blogs

* Announcement: https://azure.microsoft.com/en-in/blog/introducing-azure-data-explorer/

* Whitepaper: https://azure.microsoft.com/en-us/resources/azure-data-explorer/en-us/

* 101 blog: https://azure.microsoft.com/en-us/blog/azure-data-explorer-technology-101/

Social and Community

e Twitter: @AzDataExplorer

» Stack overflow: https://stackoverflow.com/search?qg=Azure+Data+Explorer

* Tech Community: https://techcommunity.microsoft.com/t5/Azure-Data-Explorer/bd-p/Kusto

a" Microsoft

http://aka.ms/AzureDataExplorer
https://aka.ms/adx.docs
https://azure.microsoft.com/en-us/pricing/details/data-explorer/
http://aka.ms/ADX.Cost
https://mediastream.microsoft.com/events/2018/1809/Ignite/player/tracks/track2.html?start=7815
https://mediastream.microsoft.com/events/2018/1809/Ignite/player/tracks/track5.html?start=9880
https://www.youtube.com/watch?v=YTWewM_UMOk&feature=youtu.be&t=3074
https://azure.microsoft.com/en-in/blog/introducing-azure-data-explorer/
https://azure.microsoft.com/en-us/resources/azure-data-explorer/en-us/
https://azure.microsoft.com/en-us/blog/azure-data-explorer-technology-101/
https://twitter.com/azdataexplorer
https://stackoverflow.com/search?q=Azure+Data+Explorer
https://techcommunity.microsoft.com/t5/Azure-Data-Explorer/bd-p/Kusto

