Nikhil Barthwal

% Product Manager (Serverless),

Google Cloud Platform
DevOops °

. nikhilbarthwal@yahoo.com
www.nikhilbarthwal.com

Implementing Microservices Architecture
as Cloud Run Application

Agenda

® Problems with Microservices
® Why use Serverless to implement Microservices?
® Introducing Cloud Run

® Patterns & Practices for Implementation
® Closing notes ...

Microservices Architecture

Structures an application as a collection of loosely coupled fine-
grained services that communicate with lightweight protocols

® Independent Releasability

® Resilience

® Ease of Migration

® Faster testing & deployment

Microservices: The Problem!

LU ® Load Balancing

Load Balancer

® Scaling up & down

® Service discovery

oo Rl oo B

Autonscal
= Auto-scaling pjapagement Overhead!

> PN o __J

Machine 1 Machine 2

Serverless Computing

Code execution model where server-side logic is run in
stateless, event-triggered, ephemeral compute containers
that are fully managed by a third-party.

Il7 &> [)>

AWS Lambda Azure Functions Google Cloud Run

Characteristics of Serverless Applications

Infrastructure
Abstraction

Auto-Scaling

I©
©

Pay as you go

™

Less Management

_

Overhead!

Comparison: Microservices & Serverless

Microservices: Assembly of fine-grained Serverless: Logic distributed in stateless,
services to provide functionality event-triggered computer container

\ y
Y

Application composed of loosely coupled components

\ ¢

Microservices can be implemented as Serverless Application
without management overhead

Containers

* Any Language
* Any Library
* Any Binary

* Ecosystem of base images

) s o

y
y

Py

y
y

.rb

.sh

.go

Interest over time Google Trends

Containers:
An Industry standard .

Popular way to package Apr 13, 2017 Sep 24,
o o 2017
Microservices

Introducing

Cloud Run

Bringing serverless to containers

https://cloud.google.com/run

Serverless on Google Cloud

CloudRun Cloud Run onGKE Knative Everywhere

Fully managed, deploy your Deploy into your GKE cluster, run Use the same APIs and tooling

workloads and don'’t see thecluster. serverless side-by-side with your anywhere you run Kubernetes with
existing workloads. Knative.

Portability of tooling, and workloads - you can even run serverless on-prem

Knative project

https://knative.dev

Set of components (serving, eventing, buid)
Ingredients for Serverless

Solves for modern development patterns
Implements learnings from Google, partners

[’1votal.

Q redhat =

.|||

Cloud Run Serverless Model

Operational

© 0 O

No Infra Management Managed Security Pay only for usage

O 0 O

Service-based Event-driven Open

Model

Programming

Model

Data Partition Strategies: Use DDD

Order Service

Order

Al

id
total_price

Customer Service \

Customer

Address

street
city
zip

4

- id
name
address

Product Service \

Item

id

* quantity

Product

id
name
price

Aggregates
provide

~ boundaries
for
partition

14

Domain Driven Design (DDD)

An approach to software development for complex needs by
connecting the implementation to an evolving model.
—

.. . User Interface
®* Entities
o Value Objects Application Layer
pa
®* Bounded Context Domain Layer
®* Aggregates Infrastructure Layer

DDD: Aggregates

™

® Cluster of domain objects that

can be treated as a single unit _
Domain Model

* All outside reference would Collection of Aggregates
only go to the aggregate root

® One of its component is root >

16

Pattern: Fine Grained Functionality

growth

-

Jsplit

® Services have resource limits

® Distribute Functionality as small .
as possible

® Continuous refactoring needed
repeat\

Anti-Pattern: Common Data Ownership

Cloud Storage
_ 5 /

Loose Coupling = Faster Innovation

More loosely coupled execution units

Reduces team interdependencies

Faster Innovation!

/,3% ‘

Pattern: Schema Isolation Across Services

e ™ e C ™\ 4 D) 4 E I
=) =))
_ J - . J - . / - . J
- \
N Cloud Storage)

20

Problems with Distributed Data

* How do we query scattered data?
* How do we keep data consistent?

21

Cannot use ACID Transactions

BEGIN TRANSACTION

Private to
SELECT ADDRESS FRO @ NHEF Customer service
CUSTOMER _ID = XXX

SELECT PRICE FROM PRODUCTS WHERE
CUSTOMER ID =YYY]

— Private to
INSERT INTO ORDERS ...
COMMIT TRANSACTION

Product service

22

Eventual Consistency

i Consistency - Eventual Consistency
Availability O’%
Partition (Network)

\ J

\

Use Event Driven Microservice Architecture!

23

Event Driven Architecture: Introduction

®* Event occurs when a change happens in system
* All listeners get notified of the event, may take action
* Highly distributed/loosely coupled architecture

* Often used for asynchronous flows of information

24

Event Sourcing: Introduction

®* Modeling state changes as sequence of events
® Storing the event that could trigger the state change

® Enables rolling back to particular time in history

Examples:

25

Event Sourcing: Benefits & Drawbacks

Benefits:
®* 100% accurate audit logging
®* Easy temporal queries

® Process same events but
create views

Drawbacks:
* Adds Complexity
® No Strict Consistency

* Longer bootup times
(Snapshots can help)

Event Sourcing: Multiple views

Adding applications that process event ...

but create a different view!

Image Source: https://www.confluent.io/wp-content/uploads/2016/09/Event-sourced-based-architecture.jpeg

27

Command Query Responsibility Segregation

query model

reads from

database
"

CQRS Pattern

— ~ \

- Must for Event Sourcing!

application routes

/ » 7 L-‘hrJ' ne informatio
change information
command model / to command model
updates database

command model

executes validations, and _/
consequential logic

Image Source: https://martinfowler.com/bliki/CQRS.html 28

CQRS: Benefits & Drawbacks

Benefits:
* Needed for Event Sourcing

* Improved separation of
concerns

* Supports scalable multiple
denormalized views

Drawbacks:

ncreased complexity

Potential code duplication

Replication lag as No Strict
Consistency

Sagas: Introduction

SAGAS
Hector Garcia-Molina
Kenneth Salem

Department of Computer Science
Princeton University
Princeton, N.J. 08544

ABSTRACT

Long lived transactions (LLTs) hold on to database resources for
relatively long periods of time, significantly delaying the termination of
shorter and more common transactions. To alleviate these problems we
propose the notion of a saga. A LLT is a saga if it can be written as a
sequence of transactions that can be interleaved with other transactions.
The database management system guarantees that either all the tran-
sactions in a saga are successfully completed or compensating transac-
tions are run to amend a partial execution. Both the concept of saga
and its implementation are relatively simple, but they have the potential
to improve performance significantly. We analyze the various implemen-
tation issues related to sagas, including how they can be run on an exist-
ing system that does not directly support them. We also discuss tech-
niques for database and LLT design that make it feasible to break up

LLTs into sagas.

January 7, 1987

Based on a 1987 paper

Initially for a single database running
oh one node

Now adapted for distributed systems
with asynchrony and partial failure

30

Introducing Sagas

Long running transactions ...
use compensating actions to handle failures!

Deposit Check < This action initiates the saga

4

Check Credit Service

Does Sender have

)

Withdrawal Service

Deposit Service

Deposit the money
(unless account is
deactivated)?

enough money in his
account?

Withdraw the money
(unless it is on hold)?

Example Source: https://www.youtube.com/watch?v=YPbGW3Fnmbc

31

Transaction & Rollback Transaction

®* Every Transaction has a Rollback transaction
* This logic must be included in the service

Transactions - - ﬂ@
Rollback Transactions - - - -

GCP Pub/Sub: Event bus

) 2
- Publisher C

Flexible & Reliable Enterprise

grade message bus Message 3
Cloud Pub/Sub
Topic C
| |
J J
Subscription YC Subscription ZC
Message 3 Message 3
&2 Subscriber Y o2 Subscriber Z

33

GCP Cloud Tasks

Fully managed distributed Asynchronous task queues

Create Task
. |IAM Secured

® Low latency a
user_registration - e High Availability €52 | Daily activity metrics service
Q user_levelcompleted — — €9 | User profile service

ek Payment processing service

@ user_inapppurchase —

Attempt Task
[0 | user_statechange [— e Guaranteed delivery — €& | Game state service
° Rate/ concurrency controls
e Failure management
e Scheduling
e Configurable routing

GCP Cloud Scheduler: Managed Cron

Fully managed, enterprise-grade scheduler

Create Schedule

. Batch/big data, cloud
infrastructure jobs

(> e Invoke via CLI, Ul or AP a

Command Line
Interface (CLI) HTTP/ HTTPS

, \ endpoint

User Interface (Ul)

Pub/Sub
o JEN—. S
Invoke Triggers

Scheduler API App Engine
HTTP/HTTPS endpoint,

Pub/Sub, App Engine

Serverless execution

Automatic retries

Migrating Microservices to Cloud Run

® Decoupling components

® Data first to Cloud Storage
® Message Queues next ones
® “Lift and Shift” code

Advantages of Cloud Run Microservices

®* Focus on application code, underlying Runtime & OS all
managed

® QOut of the box Auto-Scaling and Load Balancing support

* More cost effective, Pay as you go model
8 j A

I

\
s

Disadvantages of Cloud Run Microservices

* Cold Start problem

* Dependence of certain technologies (Kubernetes etc.)
®* Vendor Lock-in (to some extent)

()

/4

\ \\ L‘
s

l

Summary

Microservice has high management overhead

Serverless has much lower overhead
Containers are popular ways for packing services
Cloud Run brings containers to serverless

Implementing Microservices as Cloud Run application
retains the benefits but avoid the drawback

39

Nikhil Barthwal

% Product Manager (Serverless),

Google Cloud Platform
DevOops °

. nikhilbarthwal@yahoo.com
@ www.nikhilbarthwal.com

Questions?

