Distributed Optimization for Machine Learning
[The Good, the Bad, and the Hyperparameters]

Dan Alistarh
IST Austria & NeuralMagic, Inc.

Institut e and Technology

Hydra 2020

The Machine Learning “Cambrian Explosion”

CAT, DOG, DUCK

Speech Recognition Strategic Games

Image Classification & Translation (Reinforcement Learning)
& Segmentation

Even if progress stalls, ML is here to stay:
existing technologies already have significant industry adoption.

2

Three Factors

Yoshua Bengio Geoffrey Hinton Yann LeCun

Great Ideas High Quaiity Data Efficient Computation

Distributed/parallel computing is the key enabler
of computational speedups.

IM&AGE
Distribution is Key

Training Deep Neural Networks Efficiently

* Large Datasets:

* ImageNet: 1.3 Million images
Google Openlmages: 9 Million images

* NIST2000 Switchboard dataset: 2000 hours
Proprietary speech datasets: > 30.000 hours (3.5 years)

» Distributed training is necessary

* Large Models:
* ResNet-152 [He et al. 2015]: 152 layers, 60 million parameters
 LACEA [Yu et al. 2016]: 22 layers, 65 million parameters

|s efficient distributed machine learning a solved problem?

The Scalability Problem

CSCS: Europe’s Top Supercomputer (World 4th)
* 4500+ GPU Nodes, state-of-the-art interconnect
Task:

* |Image Classification (ResNet-152 on ImageNet)
* Single Node time (TensorFlow): 19 days
1024 Nodes: 25 minutes (in theory)

The Scalability Problem

CSCS: Europe’s Top Supercomputer (World 4t")
4500+ GPU Nodes, state-of-the-art interconnect

Task:

* |Image Classification (ResNet-152 on ImageNet)
* Single Node time (TensorFlow): 19 days
1024 Nodes: 25 minutes (in theory)
Time to Train Model

12

9.6 days
- Communication

- Computation

I Imlmumlml

Number of GPU Nodes

10

8

Days

N

The Scalability Problem

CSCS: Europe’s Top Supercomputer (World 4th)
4500+ GPU Nodes, state-of-the-art interconnect
Task:
Image Classification (ResNet-152 on ImageNet)
Single Node time (TensorFlow): 19 days

1024 Nodes: 25 minutes (in theory)

Time to Train Model

- Communication
- Computation

Efficient distribution is still a non-trivial cha
for machine learning applications.

90%

P Communication

and
Synchronization

10%
Computation _

The Algorithm: Parallel Stochastic Gradient Descent

Synchronous Message-Passing System
* n nodes, fully-connected communication topology

~Compute Average Update

update updates model |
i | I 1 3 1
| I | BN | I N | | I
| I I BN | I N | | I
; | I I BN | I N | | I

%Round 1 (milliseconds) %Round 2 iRound 3

Parallel SGD (large models)

Synchronous Message-Passing System
* n nodes, fully-connected communication topology

Compute Average Update

- update updates model
| = i | S |
| = i | I
= i | I N |
) i —

'Round 1 ' Round 2 9

Parallel SGD (really large models)

Synchronous Message-Passing System
* n nodes, fully-connected communication topology

1D Do [

~Compute
update

Average Update
updates model |

iRound 1 (milliseconds)

.10
:Round 2

Today’s Talk

Synchronization-Efficient Algorithms for Scalable Machine Learning

Quantization Sparsification Efficient Aggregation

Trade-offs: compression vs convergence vs parametrization.

ScaleML: An open-source framework implementing these techniques

Overview & Open Problems

11

The General Setting

Given:
* n nodes, synchronous message-passing, fully-connected topology
* Dataset D: node p, is assigned dataset partition D;
 Loss function Loss(x, e) = how “good” is the prediction of model x on example e

Wanted: S
model x minimizing f(x) = f(x) + f,(x)

fl(x) = Ee from D1 [LOSS(X, e)] fZ(x) = Ee from D2 [LOSS(XI e)]

< Communication >

Complexity

Dataset
Partition D,

Dataset
Partition D,

he Algorithm: Data-Parallel Stochastic Gradient Descent

* Each node maintains a copy of the “model/parameter” x

* In each iteration t, until convergence:
* Each node i selects a sample e;uniformly at random from D;
* It computes the update V,! = the gradient of x, at e; w.r.t. the Loss
* Nodes average their updates: V, = (V,1 + V,2)/2
* Update model: x;,1= x; — n,V,, where n, is the learning rate.

! V.1 2
xt&d t < 32d bits / iteration > Vi =

Dataset
Partition D,

Xe+1

Dataset
Partition D,

Example: Distributed Mean Estimation

e Given distribution D, find a parameter x € R¢ which minimizes
EeinD [“X o 8”2]-

* In each iteration t until convergence:
* Each node i selects a sample e; uniformly at random from its local set
* It computes the gradient of its estimate V,! = e; — xt

* Nodes average their gradients to obtain V, = (e; + e,)/2 — xt,
and update their estimates by x;, 1= x; — n,V,.

The SGD algorithm remains roughly the same whether we are optimizing
complex neural networks or solving classic regression.

) N | e — |G

Why does averaging / parallelism help?

w\/ Intuition: two random samples are better than one!

A Bit of Theory (1)

* Assume we wish to minimize a differentiable function f: R4-> R

* We apply the classic SGD iteration

Xer1 = X¢ — NV (xt), where E,; [V (xt)] = Vf(x,).

* Let E[|||7t(x) — Vf(x)||2] < 0 (variance bound)

E

ey

Theorem [e.g. Bubeck15]: Given f convex and smooth, and R? = ||x, — x*||%.
2
If we run SGD for T = O(R? 2812) iterations, then

— f(x*) <e.

15

A Bit of Theory (2)

* Assume we wish to minimize a differentiable function f: R4-> R
* We apply the classic SGD iteration

Xt+1 = Xt — ntvt(xt)r where Ee inD[Vt(Xt)] = Vf(xt)

* Assume we are averaging over P gradient estimators.

Then E[“Vt(x) — Vf(x)||2] < ¢2/P. Trade-off: lower variance versus
_ cost of averaging.
Theorem [e.g. Bubeck15]: Given f convex and smooth, and R? = ||x, — x™||%.

2
If we run SGD for T = O(R? 12)—22) iterations, then

T
E|fG) x)|- f) <e
_ t=0 i

Today’s Talk

Communication-Efficient Algorithms for Scalable Machine Learning

Method 1: Gradient Quantization

N BN - = =

17

Gradient vector at a node:

1BitSGD Quantization 01]-03|05]|/-011| 0

[Microsoft Research, Seide et al. 2014] @
o . + - + - +
Quantization function
avg, = +0.2
av ifv; >0, _
Q;(v) = { 9+ L= avg_ = —0.2
avg_ otherwise

where avg, = mean([v; for i: v; = 0]), avg_ = mean(|v; fori:v; < 0])
Accumulate the quantization error locally, and apply to the next update!

float float float float float

vl v2 v3 v4 vd /,
float float d bits

Vp Vi sign Compression rate =~ 32x

Does not always converge! .

Seide et al (2014) “1-Bit Stochastic Gradient Descent and its Application to Data-Parallel Distributed Training of Speech DNNs”

Stochastic Quantization
[Alistarh, Grubic, Li, Tomioka, Vojnovic, NeurlPS17]

Quantization function

0.1 || -0.3

0.34

4

| |v|],=0.447 (scale)

s =4
Qlv; sl = lvll; - sgn(wv;) - & (v, s) 2 (2 bits)
1.00[3
The random variable §; encodes the integer quantization level for v,. 0.66| 2
lvl/]|v]],=0.4 4
0.33| 1
float float float float float
vl v2 v3 va vd /
0.00| O
float | Scale=0.447 0 1 pi 0
v, d+d-logs
8 + - + - +

Compression ratio = 32/(log s+1)

19

QSGD Properties 100 3

0.66| 2

Quantization function U ol 04
Qlv;s] = lIvll, - sgn(vy) - & (v, s) 033 1

* Properties

000 O
1. Unbiasedness
E[Q lv;; S]] = v; -> ensures convergence since E[Q[V,(x,)]]1=Vf(x,).

2. Sparsity

E[nonzeros (Q [17, S]) < 5%+ \/H -> intuitively ensures some compression
3. Variance bound Trade-off between sparsity and variance!

2 Vd 2 -> bounded variance -> fast convergence
EMIQLw: s3] < (1 +-—) - vl varian ,
S (Variance increase is 2 for s = V/d)
20

QSGD Compression

Informal Claim [QSGD]: There exists a setting of parameters for which QSGD
converges at most 2x slower than the full-precision baseline,

and sends more than 10x less bits per iteration.
Recently [Ramezani et al., 2019]
improved on these guarantees.

Proof sketch:

* Ideal: Assume we are implementing s = v/d integer quantization levels.
We notice that very few vector entries can be quantized to the top integers:

values are normalized with respect to ||v||,, so not all can be large.

* ldea2: The resulting “plain text” is a sequence of integers of different frequencies.
We can use custom arithmetic coding to encode this sequence efficiently.

Note: The QSGD compression-variance trade-off is tight:
Any algorithm sending < B bits per round will induce d / B additional variance.

QSGD can match the Q (d (logd + log (1 / €))) bit lower bound of [Tsitsiklis & Luo, 1986].

Does it actually work?

Amazon EC2 p2.xlarge multi-GPU server
AlexNet model (60M params) x ImageNet dataset x 2 GPUs
QSGD 4bit quantization (s = 16)

No additional hyperparameter tuning

| AlexNet |
1.2 L B 2 GPUS [o .
7100 e s B
% 0.8
soel B B
204 mEmmm- -
E 02F Communicate Wil /SNNN-u—
0.0 Communicate

SGD QSGD 4bit (d=512)

SGD vs QSGD on AlexNet.

95 3

0l T SR
9 S
<
(@)
© T5)
8 : :
% 70 4bit QSGD (d=512)-top1 ||
= 651 4bit QSGD (d=512)-top5 |
O 8bit QSGD (d=512)-top1
— 60} 8bit QSGD (d=512)-top5 ||

551 SGD-topl

3 3 | SGD-top5
500 20 40 60 80 100 120

Epoch
AlexNet on ImageNet: Accuracy %?

Experiments: “Strong” Sca

* State-of-the-art image classification on

1
51
21
80
c 0
20
"0

0

Time per epoch (hours)

4
2t
.0f
81
6
4t
2¢
.0

AlexNet

|- 2 GPUs [4 GPUs [/ 8 GPUs [16 GPUs |]

QSGD 4bit (d=512)

ResNetl152

|- 2GPUs [4GPUs [8GPUs [1 16 GPUs|

ol e
ON PPOYOOWONDIPO

QSGD 4bit (d=512)

1 1.8x
7

N
o

Time per epoch (hours)

Time per epoch (hours)

o
U

=
(%)

=
o

INg

mageNet, 16-GPU EC2 server

VGG19

92}

o

= NN
=

=
o

o
o

I- 2 GPUs [4GPUs [8GPUs [16 GPUs

QSGD 4bit (d=512)

BN-Inception

———|- 2GPUs [0 4GPUs [8GPUs [16 GPUs |~

QSGD 4bit (d=512)

3.5x

Accuracy vs Time on a Speech Model (LSTM)

* Speech Recognition Dataset (CMU AN4)
* Encoder-Decoder LSTM Model
* 2 GPU nodes 50

| 2bit QSGD (d=128)
| 4bit QSGD (d=8192)
| 8bit QSGD (d=8192)
L5 e s | sGb
A | | | 3
o
S0
-
o
= 3
050 N ™ 25x M
‘ e |
0.0 ‘ ‘ ‘
0 300 60 900 1200 1500

Time (sec)
Speech Recognition (3-Layer LSTM)

Summary: Quantization

0.4
[1bitSGD, 2014], [QSGD, NeurlPS17], [TernGrad, NeurlPS17], [NUQSGD, 2019]

0.6
1. How much compression?
* Usually < 32x, since it’s just bit width reduction
* Cannot do better without large variance <-> convergence loss

2. Does it guarantee convergence/accuracy?
* Theory: Yes (QSGD). Under strong assumptions (1bitSGD).

* Practice: Extensive testing (30’000 node hours) shows QSGD (4bit)
preserves accuracy for all neural networks [Grubic et al., EDBT18].

3. Do they need additional parameter tuning?
* TernGrad, 1BitSGD: Yes.
* QSGD: No.

® V; =04

Talk Outline

Communication-Efficient Algorithms for Scalable Machine Learning.

Method 2: Structured Sparsification

HEN N . __ I

26

Method 2: Structured Sparsification

[Strom, 2016; Dryden et al., 2017; Aji & Heafield, 2017; Alistarh & Grubic 2018; Lin et al., 2018]

Fix an integer parameter k

* Only send top k from each gradient vector, in order of absolute values
* Accumulate the unsent values locally

! 0.15 || -0.3 0.3 -0.1 || 0.04
l Top-2

Local Error

mam) 015 0 || 0 |[-0.1| 0.04
0O |[-03] 0.3 0 0 Error vector added
l to next gradient

Transmit k (32 log d) bits Gradient estimator not unbiased!

27

Method 2: Sparsification

[Dryden et al., 2016; Aji & Heafield, 2017; Lin et al., 2018]

1. How much compression?
« d/(klogd), potentially huge
2. Does it still guarantee convergence?

* Experimentally: up to 400X compression with no accuracy loss
via extremely careful parameter tuning [Lin et al. 2018, ICLR18]

* Theory: Yes! [Konstantinov et al., NeurlPS 2018]

3. Do they need additional parameter tuning?
* Yes [Deep Gradient Compression: Lin et al., ICLR18]
* No [ScaleML: Renggli et al., Supercomputing ‘19]

Sparsification with Error Correction Converges

[Konstantinov et al., NeurlPS 2018, journal version in preparation]

Informal Claim [TopK SGD]: Under analytic assumptions, given any smooth,
(non-convex) function f, there exists a learning rate sequence s.t. TopK SGD ensures

. T—o0
ming—, _ E[||Vf(x)|[2] — 0.

This suggests that TopK SGD will eventually Convergence rate depends linearly on
converge to a local minimum of f. the “density” parameter k / d.

Notes:
1. The above guarantee is the best we can hope for in the non-convex case.
2. The technical argument reveals that TopK is a special case of
asynchronous SGD [Hogwild!: Niu et al., 2011]
3. Key for convergence: how much gradient norm is transferred in the TopK

This also works in the concurrent setting:
threads have to write less!

Summary so far

Algorithmic methods for scalable distributed machine learning.

Quantization Sparsification

Can provide order-of-magnitude communication reduction!

But how about software support?

Neither method supported by communication libraries
| (MPI implementations or NVIDIA NCCL)

30

ScaleML: A Scalable Communication Framework for ML
[Renggli, Ashkboos, Aghagolzadeh, Hoefler, Alistarh; Supercomputing 2019]

 Communication framework with MPI-like semantics
* Implements distributed AlIReduce operations (a.k.a. MPI collectives)

* Native support for quantization and sparsity

* Efficient sparsity support is non-trivial:
the underlying sparsity distribution is unknown at runtime

N
: SRR B.e (o,
L .
= Dense AllReduce Sparse AllReduce
| N N N, [| N . p
[| | = 3
|| LN ..
@

N
+
N
-+
N
+

(a) Dense AllReduce (b) Sparse AllReduce

ScaleML: A Scalable Communication Framework for ML
[Renggli, Ashkboos, Aghagolzadeh, Hoefler, Alistarh; SuperComputing19]

* Q1: Can the data become dense during aggregation?
* Depending on this, we switch to a dense quantized data representation

* Q2: Is the system latency-dominated, or bandwidth-dominated?
* Depending on this, we use completely different communication patterns

X 2 X 2 X 2 X 7 R
T~ _ -7 ~._ .- ~._ .~ ~._ .~ X B

Stage 1:
Stage 2:

K\\ K\\, _/"' _/”‘ K\\. K\\. _/"‘ _/”' l* “a % : }J L‘ 91 L‘ QJ LA ;*J]t - 4 £ *J
Stage 3: ""‘ -_‘—.~.~ -_‘ €.~J~“% —"‘s _____ -%_- —"‘%

Optimal communication structure for Optimal communication structure for
latency-dominated case bandwidth-dominated case
(Recursive Doubling) (Sparse AllGather)

Practical Performance

End-to-
System Model #Nodes Sparsity end
speedup
CSCS 2-Layer 99.5%
Piz Daint LSTM 8 (+8bit QSGD) 2.6x
Amazon EC2 2-Layer 99.5%
Cluster LSTM 8 (+8bit QSGD) 7.1x

End-to-end training speedup
(LSTM for Natural Language Understanding / ATIS dataset)

Works well in for a variety of other models/settings.

Is this useful in the real world?

Does it work at scale? o

* Microsoft’s Automated Speech Recognition Tool Hi, I'm Cortana.

e State-of-the-art recurrent model
e Baseline: Fine-Tuned Block-Momentum SGD (BMUF) [Zhu et al., 2016]
* We use 99.5% induced sparsity (k = 0.5%) and 8-bit quantization

1.225 —— 16-GPU BMUF 128 4 ——- Linear Scalability
32-GPU sparseSGD —e— SparCML
1.200 A —— 64-GPU sparseSGD
—— 128-GPU sparseSGD
S 14 days
1.150 -
1.7 days

64
1.125 -

ce loss

1.100 -

32 4

'l‘l-udlll.hh”n‘h-l. R AR I TR | all
We can leverage sparsity and compression |
in real-world settings as well.

T

1.075 A

Summary

Algorithmic methods for scalable distributed machine learning

Quantization Sparsification Efficient Aggregation

Trade-offs: compression vs speed vs parametrization.

Distributed machine learning is wide open

35

Topics | Couldn’t Cover Today

Asynchronous

Machine Learning
E.g. [Bertsekas & Tsitsiklis, 1986],

Fault-Tolerant Distributed

Machine Learning

E.g. [Su & Vaidya, ”Fault-Tolerant Optimization” 2016],

. . A4 1”
De S [tNlr e;;al., Hg.gbvl\;”i' ' 20|.11]” 2016] [Blanchard, El Mhamdi, Guerraoui, Steiner,
[De Sa et al., “Async. Gibbs Sampling”, “Byzantine SGD,” 2017]

[Konstantinov et al., “Price of Asynchrony”, 2018] [Alistarh, Allen-Zhu, Li, “Optimal Byzantine SGD,” 2018]

Happy to cover these in the Q&A!

36

