
Distributed Optimization for Machine Learning
[The Good, the Bad, and the Hyperparameters]

Dan Alistarh
IST Austria & NeuralMagic, Inc.

Hydra 2020

The Machine Learning “Cambrian Explosion”

Image Classification
& Segmentation

Speech Recognition
& Translation

Strategic Games
(Reinforcement Learning)

Even if progress stalls, ML is here to stay:
existing technologies already have significant industry adoption.

2

Three Factors

Great Ideas High Quality Data Efficient Computation

Distributed/parallel computing is the key enabler
of computational speedups.

3

Distribution is Key
Training Deep Neural Networks Efficiently
• Large Datasets:

• ImageNet: 1.3 Million images
Google OpenImages: 9 Million images
• NIST2000 Switchboard dataset: 2000 hours

Proprietary speech datasets: > 30.000 hours (3.5 years)
Ø Distributed training is necessary

• Large Models:
• ResNet-152 [He et al. 2015]: 152 layers, 60 million parameters
• LACEA [Yu et al. 2016]: 22 layers, 65 million parameters
Ø Communication and synchronization are expensive!

Is efficient distributed machine learning a solved problem?
4

The Scalability Problem
CSCS: Europe’s Top Supercomputer (World 4th)
• 4500+ GPU Nodes, state-of-the-art interconnect
Task:
• Image Classification (ResNet-152 on ImageNet)
• Single Node time (TensorFlow): 19 days
• 1024 Nodes: 25 minutes (in theory)

5

0

2

4

6

8

10

12

2 4 8 16 32 64

Da
ys

Number of GPU Nodes

Time to Train Model
9.6 days

3.1 days
2.4 days

5 days

3.2 days
2.5 days

Communication

Computation

6

The Scalability Problem
CSCS: Europe’s Top Supercomputer (World 4th)
• 4500+ GPU Nodes, state-of-the-art interconnect
Task:
• Image Classification (ResNet-152 on ImageNet)
• Single Node time (TensorFlow): 19 days
• 1024 Nodes: 25 minutes (in theory)

0

2

4

6

8

10

12

2 4 8 16 32 64

Da
ys

Number of GPU Nodes

Time to Train Model
9.6 days

3.1 days2.4 days

5 days

3.2 days
2.5 days

10%
Computation

90%
Communication

and
Synchronization

Communication

Computation

Efficient distribution is still a non-trivial challenge
for machine learning applications.

7

The Scalability Problem
CSCS: Europe’s Top Supercomputer (World 4th)
• 4500+ GPU Nodes, state-of-the-art interconnect
Task:
• Image Classification (ResNet-152 on ImageNet)
• Single Node time (TensorFlow): 19 days
• 1024 Nodes: 25 minutes (in theory)

Synchronous Message-Passing System
• n nodes, fully-connected communication topology

The Algorithm: Parallel Stochastic Gradient Descent

Compute
update

Average
updates

Update
model

Round 1 (milliseconds) Round 2 Round 3
8

Synchronous Message-Passing System
• n nodes, fully-connected communication topology

Parallel SGD (large models)

Compute
update

Average
updates

Update
model

Round 1 Round 2 9

Synchronous Message-Passing System
• n nodes, fully-connected communication topology

Parallel SGD (really large models)

Compute
update

Average
updates

Update
model

Round 1 (milliseconds) Round 2
10

Today’s Talk

Synchronization-Efficient Algorithms for Scalable Machine Learning

Quantization

Trade-offs: compression vs convergence vs parametrization.

ScaleML: An open-source framework implementing these techniques

Sparsification

Overview & Open Problems

Efficient Aggregation

11

The General Setting

Dataset
Partition D1

Dataset
Partition D2

Given:
• n nodes, synchronous message-passing, fully-connected topology
• Dataset D: node pi is assigned dataset partition Di

• Loss function Loss(x, e) = how “good” is the prediction of model x on example e
Wanted:

𝑓1 𝑥 =𝐄e from D1 [Loss(x, e)] 𝑓2 𝑥 =𝐄e from D2 [Loss(x, e)]

model 𝒙minimizing 𝑓 𝒙 = 𝑓1(𝒙) + 𝑓2(𝒙)

Communication
Complexity

12

The Algorithm: Data-Parallel Stochastic Gradient Descent

Dataset
Partition D1

Dataset
Partition D2

• Each node maintains a copy of the “model/parameter” 𝒙
• In each iteration 𝒕, until convergence:
• Each node i selects a sample ei uniformly at random from Di

• It computes the update 𝜵𝒕𝒊 = the gradient of 𝑥𝑡 at ei w.r.t. the Loss
• Nodes average their updates: 𝜵𝒕 = (𝜵𝒕𝟏 + 𝜵𝒕𝟐)/𝟐
• Update model: 𝒙𝒕&𝟏= 𝒙𝒕 − 𝜼𝒕𝜵𝒕 , where 𝜼𝒕 is the learning rate.

𝒙𝒕 𝒙𝒕
𝜵𝒕𝟏 𝜵𝒕𝟐𝒙𝒕&𝟏 𝒙𝒕&𝟏32d bits / iteration

13

• Given distribution D, find a parameter 𝒙 ∈ ℝ𝑑 which minimizes
𝐄𝑒 in 𝐷 𝑥 − 𝑒 2 .

• In each iteration 𝒕 until convergence:
• Each node i selects a sample ei uniformly at random from its local set
• It computes the gradient of its estimate 𝜵𝒕𝒊 = 𝒆𝒊 − 𝒙𝒕
• Nodes average their gradients to obtain 𝜵𝒕 = (𝒆𝟏 + 𝒆𝟐)/𝟐 − 𝒙𝒕,

and update their estimates by 𝒙𝒕&𝟏= 𝒙𝒕 − 𝜼𝒕𝜵𝒕.

Example: Distributed Mean Estimation

Dataset
Partition D1

Dataset
Partition D2

Why does averaging / parallelism help?

Intuition: two random samples are better than one!

𝜵𝒕𝟏 𝜵𝒕𝟐𝒙𝒕&𝟏 𝒙𝒕&𝟏
The SGD algorithm remains roughly the same whether we are optimizing

complex neural networks or solving classic regression.

14

A Bit of Theory (1)

• Assume we wish to minimize a differentiable function f : ℝ𝑑-> ℝ
• We apply the classic SGD iteration

• Let 𝜠 𝜵𝒕 𝒙 − 𝜵𝒇 𝒙 𝟐 ≤ 𝝈𝟐 (variance bound)

𝒙𝒕&𝟏 = 𝒙𝒕 − 𝜼𝒕𝜵𝒕(𝒙𝒕), where 𝜠𝑒 in 𝐷[𝜵𝒕(𝒙𝒕)] = 𝜵𝒇 𝒙𝒕 .

Theorem [e.g. Bubeck15]: Given 𝑓 convex and smooth, and 𝑅2 = ||𝑥0− 𝑥∗||2.
If we run SGD for 𝑻 = 𝓞(𝑹𝟐 𝟐𝝈

𝟐

𝜺𝟐
) iterations, then

𝜠 𝑓(
1
𝑇
<
!"#

$

𝑥!) − 𝑓 𝑥∗ ≤ 𝜀.

15

A Bit of Theory (2)

• Assume we wish to minimize a differentiable function f : ℝ𝑑-> ℝ
• We apply the classic SGD iteration

• Assume we are averaging over P gradient estimators.
Then 𝜠 𝜵𝒕 𝒙 − 𝜵𝒇 𝒙 𝟐 ≤ 𝝈𝟐/𝑷.

𝒙𝒕&𝟏 = 𝒙𝒕 − 𝜼𝒕𝜵𝒕(𝒙𝒕), where 𝜠𝑒 in 𝐷[𝜵𝒕(𝒙𝒕)] = 𝜵𝒇 𝒙𝒕 .

Theorem [e.g. Bubeck15]: Given 𝑓 convex and smooth, and 𝑅2 = ||𝑥0− 𝑥∗||2.
If we run SGD for 𝑻 = 𝓞(𝑹𝟐 𝟐𝝈

𝟐

𝑷𝜺𝟐
) iterations, then

𝜠 𝑓(
1
𝑇
<
!"#

$

𝑥!) − 𝑓 𝑥∗ ≤ 𝜀.

Trade-off: lower variance versus
cost of averaging.

16

Today’s Talk

Communication-Efficient Algorithms for Scalable Machine Learning

Method 1: Gradient Quantization

17

1BitSGD Quantization
[Microsoft Research, Seide et al. 2014]

Quantization function

𝑄-(𝑣) = =𝑎𝑣𝑔& if 𝑣- ≥ 0,
𝑎𝑣𝑔. otherwise

where 𝑎𝑣𝑔! = mean(𝑣" for 𝑖: 𝑣" ≥ 0), 𝑎𝑣𝑔# = mean 𝑣" for 𝑖: 𝑣" < 0
Accumulate the quantization error locally, and apply to the next update!

v1
float

v2
float

v3
float

v4
float

vd
float

⋯

vp
float

vn
float

sign Compression rate ≈ 32x
d bits

Seide et al (2014) “1-Bit Stochastic Gradient Descent and its Application to Data-Parallel Distributed Training of Speech DNNs”
Does not always converge!

-0.30.1 0.5 -0.1 0

-+ + - +
𝑎𝑣𝑔! = +0.2
𝑎𝑣𝑔" = −0.2

Gradient vector at a node:

18

Stochastic Quantization
[Alistarh, Grubic, Li, Tomioka, Vojnovic, NeurIPS17]

•

-0.30.1 0.34 -0.1 0

10 2 1 0

-+ + - +

v1
float

v2
float

v3
float

v4
float

vd
float

float
d + d·log s

||𝑣||2=0.447 (scale)

0

1

2

31.00

0.66

0.33

0.00

ｓ = 4
(2 bits)

Compression ratio ≈ 32/(log s+1)

|𝑣i|/||𝑣||2=0.4

Scale=0.447

The random variable 𝝃𝒊 encodes the integer quantization level for 𝒗𝒊.

19

QSGD Properties
Quantization function

𝑄 𝑣𝑖; 𝑠 = 𝑣 (⋅ sgn 𝑣) ⋅ 𝜉) 𝑣, 𝑠

• Properties
1. Unbiasedness

𝐸 𝑄 𝑣𝑖; 𝑠 = 𝑣-
2. Sparsity

𝐸 𝑛𝑜𝑛𝑧𝑒𝑟𝑜𝑠 (𝑄[�⃗�, 𝑠) ≤ 𝑠. + 𝑑

3. Variance bound

𝐸 𝑄 𝑣; 𝑠 .
. ≤ 1 +

𝑑
𝑠

⋅ 𝑣 .
.

(Variance increase is 2 for 𝑠 = 𝑑)

0

1

2

31.00

0.66

0.33

0.00

|𝑣i|/||𝑣||2=0.4

-> ensures convergence since 𝜠[𝑸[𝜵𝒕 𝒙𝒕]] = 𝜵𝒇 𝒙𝒕 .

-> intuitively ensures some compression

-> bounded variance -> fast convergence

Trade-off between sparsity and variance!

20

Proof sketch:
• Idea1: Assume we are implementing s = 𝑑 integer quantization levels.

We notice that very few vector entries can be quantized to the top integers:
values are normalized with respect to 𝑣 8, so not all can be large.

• Idea2: The resulting ”plain text” is a sequence of integers of different frequencies.
We can use custom arithmetic coding to encode this sequence efficiently.

QSGD Compression
Informal Claim [QSGD]: There exists a setting of parameters for which QSGD

converges at most 2x slower than the full-precision baseline,
and sends more than 𝟏𝟎𝐱 less bits per iteration.

Note: The QSGD compression-variance trade-off is tight:
Any algorithm sending < B bits per round will induce d / B additional variance.

QSGD can match the Ω (d (log d + log (1 / 𝜀))) bit lower bound of [Tsitsiklis & Luo, 1986].

Recently [Ramezani et al., 2019]
improved on these guarantees.

21

• Amazon EC2 p2.xlarge multi-GPU server
• AlexNet model (60M params) x ImageNet dataset x 2 GPUs
• QSGD 4bit quantization (s = 16)
• No additional hyperparameter tuning

Does it actually work?

SGD vs QSGD on AlexNet.

Compute

Communicate

60%

40%

Compute 95%

5%Communicate

AlexNet on ImageNet: Accuracy 22

Experiments: “Strong” Scaling

2.5x

3.5x

1.8x 1.3x

• State-of-the-art image classification on ImageNet, 16-GPU EC2 server

23

Accuracy vs Time on a Speech Model (LSTM)

Speech Recognition (3-Layer LSTM)

2.5x

• Speech Recognition Dataset (CMU AN4)
• Encoder-Decoder LSTM Model
• 2 GPU nodes

???

24

Summary: Quantization
[1bitSGD, 2014], [QSGD, NeurIPS17], [TernGrad, NeurIPS17], [NUQSGD, 2019]

1

0

𝑣𝑖 = 0.4
0.4

0.6

1. How much compression?
• Usually < 32x, since it’s just bit width reduction
• Cannot do better without large variance <-> convergence loss

2. Does it guarantee convergence/accuracy?
• Theory: Yes (QSGD). Under strong assumptions (1bitSGD).
• Practice: Extensive testing (30’000 node hours) shows QSGD (4bit)

preserves accuracy for all neural networks [Grubic et al., EDBT18].

3. Do they need additional parameter tuning?
• TernGrad, 1BitSGD: Yes.
• QSGD: No.

25

Talk Outline

Communication-Efficient Algorithms for Scalable Machine Learning.

Method 2: Structured Sparsification

26

Fix an integer parameter k
• Only send top k from each gradient vector, in order of absolute values
• Accumulate the unsent values locally

Method 2: Structured Sparsification
[Strom, 2016; Dryden et al., 2017; Aji & Heafield, 2017; Alistarh & Grubic 2018; Lin et al., 2018]

-0.30.15 0.3 -0.1 0.04

-0.30 0.3 0 0

Top-2

Transmit k (32 log d) bits

00.15 0 -0.1 0.04

Local Error

Error vector added
to next gradient

Gradient estimator not unbiased!

27

Method 2: Sparsification
[Dryden et al., 2016; Aji & Heafield, 2017; Lin et al., 2018]

1. How much compression?
• d / (k log d), potentially huge

2. Does it still guarantee convergence?
• Experimentally: up to 400x compression with no accuracy loss

via extremely careful parameter tuning [Lin et al. 2018, ICLR18]
• Theory: Yes! [Konstantinov et al., NeurIPS 2018]

3. Do they need additional parameter tuning?
• Yes [Deep Gradient Compression: Lin et al., ICLR18]
• No [ScaleML: Renggli et al., Supercomputing ‘19]

28

Sparsification with Error Correction Converges
[Konstantinov et al., NeurIPS 2018, journal version in preparation]

Notes:
1. The above guarantee is the best we can hope for in the non-convex case.

2. The technical argument reveals that TopK is a special case of
asynchronous SGD [Hogwild!: Niu et al., 2011]

3. Key for convergence: how much gradient norm is transferred in the TopK
This also works in the concurrent setting:

threads have to write less!

Informal Claim [TopK SGD]: Under analytic assumptions, given any smooth,
(non-convex) function f, there exists a learning rate sequence s.t. TopK SGD ensures

𝑚𝑖𝑛:;<,…,? 𝐸 ∇𝑓 𝑥𝑡 2
@→B

0.
This suggests that TopK SGD will eventually

converge to a local minimum of f.
Convergence rate depends linearly on

the “density” parameter k / d.

29

Summary so far

Algorithmic methods for scalable distributed machine learning.

Quantization Sparsification

Can provide order-of-magnitude communication reduction!

But how about software support?
Neither method supported by communication libraries

|(MPI implementations or NVIDIA NCCL) 30

ScaleML: A Scalable Communication Framework for ML
[Renggli, Ashkboos, Aghagolzadeh, Hoefler, Alistarh; Supercomputing 2019]

• Communication framework with MPI-like semantics
• Implements distributed AllReduce operations (a.k.a. MPI collectives)

• Native support for quantization and sparsity
• Efficient sparsity support is non-trivial:

the underlying sparsity distribution is unknown at runtime 3.1. Formulation

+ + +p
1

p
2

p
3

p
4

p
1

p
2

p
3

p
4

Dense AllReduce

+ + +

+ + +

+ + +

(a) Dense AllReduce

+p
1

p
2

p
3

p
4

p
1

p
2

p
3

p
4

Sparse AllReduce

+

+

+

(b) Sparse AllReduce

Figure 3.2: Difference between dense and sparse AllReduce. The gray items
are neutral elements in the vectors.

(a) Dense Subspace AllReduce (b) AllGather

Figure 3.3: Specializations of sparse AllReduce. The gray items are neutral
elements in the vectors.

cost. That is, at the end of the execution, each node should have the correct
result locally, i.e. the element-wise sum over the N dimensions, while min-
imizing the total communication costs, measured in the a � b model above.
For analyzing the runtime of each algorithm, we assume that every node
starts the operation exactly at the same point in time, and the total duration
is defined as the interval until the last node receives its last message and, if
needed, has computed the reduction operation locally.

3.1.3 Generalization

Notice that the given definition of sparse AllReduce is a generalization of
both well known collective operations AllReduce and AllGather simultane-
ously. Only the sets of non-zero elements initially assigned to each node
distinguishes those problems. The AllGather collective is given if non of the
sets overlap: 8i < j : Hi \ Hj = ∆. The resulting set of non-zero indices
therefore has size ÂP

i=1 |Hi|. On the other hand, the AllReduce problem is
given if Hi = Hj for all nodes i and j, that is, the sets fully overlap and there-
fore the reduced result has |H1| elements. If |Hi| = N for all i, we refer to
this problem as dense AllReduce. If |Hi| = k < N, we say that the problem
is equivalent to a dense AllReduce on a subspace of dimension k rather than
N. Those two specializations are illustrated in Figure 3.3.

19

31

ScaleML: A Scalable Communication Framework for ML
[Renggli, Ashkboos, Aghagolzadeh, Hoefler, Alistarh; SuperComputing19]

• Q1: Can the data become dense during aggregation?
• Depending on this, we switch to a dense quantized data representation

• Q2: Is the system latency-dominated, or bandwidth-dominated?
• Depending on this, we use completely different communication patterns

3.3. Algorithms

p1 p2 p3 p4 p5 p6 p7 p8

Stage 1:
Stage 2:
Stage 3:

Figure 3.9: Static Sparse AllReduce: Recursive doubling - Increasing amount
of sparse data in every stage

3.3.3 Static Sparse AllReduce

The size of the final result remains below the threshold value d. Clearly it is
true that N ⇥ d, this implies that K = k ⇥ P < d must hold. Therefore, even
the final result is kept in a sparse format, and we give a lower bound on the
bandwidth term any algorithm needs in order to successfully terminate the
SSAR problem:

Lemma 3.1 Any algorithm solving the SSAR problem needs at least a duration of
log2(P)a + (P � 1)kb if K = k, and log2(P)a + 2 P�1

P kb if K = k ⇥ P.

Proof The proof follows directly from the fact that the lower bound is known
for both specializations of the sparse AllReduce problem: AllGather if K =
k ⇥ P and subspace dense AllReduce if K = k. ⇤
Inspired by both aforementioned algorithms for solving the AllReduce and
AllGather problems, we differ between two algorithms to solve the SSAR
problem. One for small messages, and the other one for a larger amount of
data. Again, the exact threshold is defined empirically due to the simplified
communication cost model and all the problem-specific unknown variables.

SSAR Rec Dbl

For small messages, we design a recursive doubling algorithm as visualized
in Figure 3.9. After every stage, a sparse vector summation on the received
and local data has to be performed. The latency is

L(P) = log2(P)a

for this algorithm, as there are log2(P) stages. This part is data-independent.
The runtime for this algorithm lies in the range

L(P) + log2(P)kb Tssar rec dbl L(P) + (P � 1)kb.

The lower bound is given when the k indices fully overlap. Therefore, at ev-
ery stage, k items need to be transmitted as the intermediate results maintain

27

3. The Sparse AllReduce Problem

p1 p2 p3 p4 p5 p6 p7 p8

p1 p2 p3 p4 p5 p6 p7 p8

Figure 3.11: Direct sparse send AllToAll

Theorem 3.2 Any algorithm solving the DSAR problem needs at least a duration
of log2(P)a + Nb.

Proof As every node needs to communicate to every other node directly or
indirectly, there is at least one node communicating to log2(P) other nodes.
For the bandwidth term, every node needs to send its k items. As the size
of the resulting vector increases such that it eventually has no sparse rep-
resentation anymore, each node has to receive or send at least N � k items.
Taking the sum results in Nb on the bandwidth term. ⇤
From this observation we further derive the following lemma.

Lemma 3.3 The bandwidth required by any algorithm solving the DSAR problem
is at least 1

2 the minimum bandwidth required by a dense AllReduce for the same
problem.

Proof Notice that the dense AllReduce has a lower bound of 2 P�1
P Nb on

the bandwidth. From Theorem 3.2 we know that every DSAR algorithm has
a minimum bandwidth term of Nb, which is obviously bigger than P�1

P Nb
for any P. ⇤
This lemma tells us, if the resulting size K is bigger than the threshold d, one
can only hope to get a speedup of factor 2 compared to an optimal dense
AllReduce algorithm, when focusing on the bandwidth term.

DSAR Split AG

Based on this fact, we adopt the algorithm SSAR Split AlGa to force every
split to become dense. So, even though the data is received from the other
nodes in a sparse format, both, the summation and more important the sec-
ond step of the algorithm, the AllGather, are fulfilled relying on a dense
format. There are already highly optimized algorithms to perform this sec-
ond step with dense data and reaching the lower bounds on both bandwidth
and latency terms. We therefore do not further investigate this topic here.
The Split part takes again a runtime of

(P � 1)a + 0b Tsplit (P � 1)a + kb.

30

Optimal communication structure for
latency-dominated case

(Recursive Doubling)

Optimal communication structure for
bandwidth-dominated case

(Sparse AllGather)
32

Practical Performance

System Model #Nodes Sparsity
End-to-

end
speedup

CSCS
Piz Daint

2-Layer
LSTM 8

99.5%
(+8bit QSGD) 2.6x

Amazon EC2
Cluster

2-Layer
LSTM 8

99.5%
(+8bit QSGD) 7.1x

Works well in for a variety of other models/settings.

Is this useful in the real world?

End-to-end training speedup
(LSTM for Natural Language Understanding / ATIS dataset)

33

Does it work at scale?
• Microsoft’s Automated Speech Recognition Tool
• State-of-the-art recurrent model
• Baseline: Fine-Tuned Block-Momentum SGD (BMUF) [Zhu et al., 2016]
• We use 99.5% induced sparsity (k = 0.5%) and 8-bit quantization

14 days

1.7 days

Scalability (speedup vs #nodes).

We can leverage sparsity and compression
in real-world settings as well. 34

Summary

Algorithmic methods for scalable distributed machine learning

Quantization Sparsification

Trade-offs: compression vs speed vs parametrization.

Distributed machine learning is wide open

Efficient Aggregation

35

Topics I Couldn’t Cover Today

Asynchronous
Machine Learning

E.g. [Bertsekas & Tsitsiklis, 1986],
[Niu et al.; ”Hogwild!”, 2011]

[De Sa et al., “Async. Gibbs Sampling”, 2016]
[Konstantinov et al., “Price of Asynchrony”, 2018]

Fault-Tolerant Distributed
Machine Learning

E.g. [Su & Vaidya, ”Fault-Tolerant Optimization” 2016],
[Blanchard, El Mhamdi, Guerraoui, Steiner,

“Byzantine SGD,” 2017]
[Alistarh, Allen-Zhu, Li, “Optimal Byzantine SGD,” 2018]

36

Happy to cover these in the Q&A!

