Lambda’

AWS

wavelength

Half-Life
calculus

decay constant

l—calculus

A SET OF POSTULATES FOR THE FOUNDATION
OF LOGIC!

By AronNzo CHURCH.’

1. Introduction. In this paper we present a set of postulates for the
foundation of formal logic, in which we avoid use of the free, or real,
variable, and in which we introduce a certain restriction on the law of
excluded middle as a means of avoiding the paradoxes connected with the
mathematics of the transfinite.

Our reason for avoiding use of the free variable is that we require that
every combination of symbols belonging to our system, if it represents
a proposition at all, shall represent a particular proposition, unambigou-
ously, and without the addition of verbal explanations. That the use of
the free variable involves violation of this requirement, we believe is
readily seen. For example, the identity

We do not attach any
character of uniqueness
or absolute truth to any
particular system of logic.

The entities of formal logic are
abstractions, invented because of their
use 1n describing and systematizing
facts of experience or observation, and
their properties, determined in rough
outline by this intended use, depend
for their exact character on the
arbitrary choice of the inventor.

AN UNSOLVABLE PROBLEM OF ELEMENTARY NUMBER
THEORY !

By Aroxzo CHURCH.

1. Introduction. There is a class of problems of elementary number
theory which can be stated in the form that it is required to find an effectively

calculable function f of n positive integers, such that f(@s, @5, - <, 2,) =22
is a necessary and sufficient condition for the truth of a certain proposition of
elementary number theory involving 2, 2., - -, 2, as free variables.

An example of such a problem is the problem to find a means of de-
termining of any given positive integer n whether or not there exist positive
integers z, y, #, such that @™ | y» — 2", For this may be interpreted, required
to find an effectively calculable function f, such that f(n) is equal to 2 if and
only if there exist positive integers z. #. z. such that 2 4+ y* = 2*». (Clearlvy

In 1911 Russell & Whitehead published Principia
Mathematica, with the goal of providing a solid
foundation for all of mathematics. In 1931 Godel's
Incompleteness Theorem shattered the dream,
showing that for any consistent axiomatic system
there will always be theorems that cannot be
proven within the system.

Adrian Colyer

https.//blog.acolyer.org/2020/02/03/measure-mismeasure-fairness/

One premise of many models of fairness in
machine learning is that you can measure (‘prove’)
fairness of a machine learning model from within
the system - i.e. from properties of the model itself
and perhaps the data it is trained on.

To show that a machine learning model is fair, you
need information from outside of the system.

Adrian Colyer

https.//blog.acolyer.org/2020/02/03/measure-mismeasure-fairness/

N\ \\\\\&\\\?\\\

N
WA

'DOUGLAS ADAMS

Based onthefamous Radioseries

We demand rigidly
defined areas of doubt
and uncertainty!

LISP 1.5 Programmer’'s Manual

The Computation Center
and Research Laboratory of Electronics

Massachusetts Institute of Technology

Despite the fancy name, a
lambda is just a function...
peculiarly... without a name.

https.//rubymonk.comy/learning/books/1-ruby-primer/chapters/34-lambdas-and-blocks-in-ruby/lessons/77-lambdas-in-ruby

There are only two hard things
in Computer Science: cache
invalidation and naming things.

Phil Karlton

There are only two hard things
in Computer Science: cache
invalidation and naming things.

Phil Karlton

AN UNSOLVABLE PROBLEM OF ELEMENTARY NUMBER
THEORY !

By Aroxzo CHURCH.

1. Introduction. There is a class of problems of elementary number
theory which can be stated in the form that it is required to find an effectively

calculable function f of n positive integers, such that f(@s, @5, - <, 2,) =22
is a necessary and sufficient condition for the truth of a certain proposition of
elementary number theory involving 2, 2., - -, 2, as free variables.

An example of such a problem is the problem to find a means of de-
termining of any given positive integer n whether or not there exist positive
integers z, y, #, such that @™ | y» — 2", For this may be interpreted, required
to find an effectively calculable function f, such that f(n) is equal to 2 if and
only if there exist positive integers z. #. z. such that 2 4+ y* = 2*». (Clearlvy

We select a particular list of
symbols, consisting of the
symbols { , }, (,), A, [,],
and an enumerably infinite
set of symbols a, b, ¢, - * * to
be called variables.

And we define the word
formula to mean any finite

sequence of symbols out of
this list.

t(x) = formula

t — A x - formula

variable

abstraction —

X

oyx

application

bound variable

f > AXx yx

|

abbreviation free variable

square(x) = X X X

square — A XX X X

square - A@ @ X ©@

HE PSR ORA®

17

square 7

(AX X Xx)7

AN UNSOLVABLE PROBLEM OF ELEMENTARY NUMBER
THEORY !

By Aroxzo CHURCH.

1. Introduction. There is a class of problems of elementary number
theory which can be stated in the form that it is required to find an effectively

calculable function f of n positive integers, such that f(@s, @5, - <, 2,) =22
is a necessary and sufficient condition for the truth of a certain proposition of
elementary number theory involving 2, 2., - -, 2, as free variables.

An example of such a problem is the problem to find a means of de-
termining of any given positive integer n whether or not there exist positive
integers z, y, #, such that @™ | y» — 2", For this may be interpreted, required
to find an effectively calculable function f, such that f(n) is equal to 2 if and
only if there exist positive integers z. #. z. such that 2 4+ y* = 2*». (Clearlvy

AN UNSOLVEABLE
PROBLEM OF
ELEMENTARY
NUMBER THEORY

NUMBER

AN UNSOLVABLE PROBLEM OF ELEMENTARY NUMBER
THEORY .

By Aroxzo CHURCH.

1. Introduction. There is a class of problems of elementary number
theory which can be stated in the form that it is required to find an effectively

calculable function f of n positive integers, such that f(@s, @5, + <, 2,) =22
1s a necessary and sufficient condition for the truth of a certain proposition of
elementary number theory involving 2, 2., - -, 2, as free variables.

An example of such a problem is the problem to find a means of de-
termining of any given positive integer n whether or not there exist positive
integers z, y, #, such that @™ | y» — 2", For this may be interpreted, required
to find an effectively calculable function f, such that f(n) is equal to 2 if and
only if there exist positive integers z. #. z. such that z» 4+ y*» = 27». (Clearlvy

0 - ANf-AX"Xx

1 >N f-Ax-f(x)
2 N A x-f(f(x))

3 — N oA x - f(F((X))

4 — £\ x-f(FE(E(X))))

o — M- A £(f(E(E(E(x)))))
(A XN £\ ~ - EEE(€(E€(~- NN

0 > ANfx-x
1 = AN x-f(x
2 — A x - £(f(x))

3 — A x - f(f(f(x))

4 — N x-(F(E(E(X))))

o — A 1(E(f(t(E(x)))))
(A N\ £~ - FfE(€(E(€E(€(~ X\

)
(X
(f
(f

N Ol = WO N = O

— AN x X

— ANfx-fx
—SAfx-f2x
—SAfx-f°x
—SAfx-f4x
—SAfx-fx
o\ £~ -6

N Ol = WO N = O

— Af X
— AN x>
— AN X
— Af X
— AN X

—>ANfx-
_\ £~ .

-0 x

1 x

-3 x

4 x
5 x

7.times

7.times {|1i| puts 1}

O = AN O < LO

N O1 = L N — O

— AN XX

— succ 0

— succ succ 0

— succ succ succ 0

— succ succ succ succ 0

— succ succ succ succ succ 0

—_N C11' O C17C C17'C QC1' " C11'0C Q1

N Ol = WO N = O

— AN XX
— succ! 0
— succ? 0
— succ’ 0
— succ? 0
— succ 0

I Q11F("6 ﬂ

N Ol = WO N = O

— AN XX
— succ 0
— succ 1
— succ 2
— succ 3
— succ 4

N C11 DN R

succ > Anfx-f(nfx)

You may have heard of lambdas
before. Perhaps you've used
them in other languages.

https.//rubymonk.comy/learning/books/1-ruby-primer/chapters/34-lambdas-and-blocks-in-ruby/lessons/77-lambdas-in-ruby

auto square(auto x)

1

return x * x;

¥

auto square = [](auto x)

1

return x * x;

}s

square(7)

[] (auto x)
{

return x * x;

F(T)

[](auto x) {return x * x;}(7)

They’re anonymous, little
functional spies sneaking
into the rest of your code.

https.//rubymonk.comy/learning/books/1-ruby-primer/chapters/34-lambdas-and-blocks-in-ruby/lessons/77-lambdas-in-ruby

Excel is the world's
most popular
functional language

Simon Peyton-Jones

LISP 1.5 Programmer’'s Manual

The Computation Center
and Research Laboratory of Electronics

Massachusetts Institute of Technology

(lambda (x) (* x x))

((lambda (x) (* x x)) 7)

f;; evised Report
on the Algorithmic |

f
s
if
i

=
=y %
=

2

Epiien e

%

Sy

_ Editedby
~ A.vanWiing

R et 1

)
.

(int x) int: x * X

proc (int) int square;
square := (int x) int: x * x;

int result := square (7);

((int x) int: x * x) (7)

Lambdas in Ruby are
also objects, just like
everything else!

https.//rubymonk.com/learning/books/1-ruby-primer/chapters/34-lambdas-and-blocks-in-rubyy/lessons/77-lambdas-in-rub

Lambdas in C++ are
also objects!

[] (auto x) {return x(y);}

struct __ lambda
{
auto operator () (auto x)

1

¥
}s

return x(y) ;

Lambdas in C++ are
function objects!

LLambdas in C++ are
not functors!

T he venerable master (Qc Na was wa”cing with his

student, Anton. Hoping to prompt the masterinto
a discussion, Anton said “Master, | have heard
that o chcts are a very good thing-—- is this true?”

(Qc Nalooked pit inglg at his student and rcPlicd,
“Foolish PuPil — ogjccts are mcrclg felelely man’s
closures.”

http://people.csail.mit.edu/gregs/ll1-discuss-archive-html/msg03277.html

The concept of closures was developed in the
1960s for the mechanical evaluation of
expressions in the A-calculus.

Peter]J. Landin defined the term closure in
1964 as having an environment part and a
control part.

https.//en.wikipedia.org/wiki/Closure_(computer_programming)

Joel Moses credits Landin with introducing
the term closure to refer to a lambda
expression whose open bindings (free
variables) have been closed by (or bound in)
the lexical environment, resulting in a closed
expression, or closure.

https.//en.wikipedia.org/wiki/Closure_(computer_programming)

This usage was subsequently adopted by
Sussman and Steele when they defined
Scheme in 1975, a lexically scoped variant of
LISP, and became widespread.

https.//en.wikipedia.org/wiki/Closure_(computer_programming)

(_hastised, Anton took his leave from his master
and returned to his cc", intent on studging
closures. He carcfu"g read the entire “]__ambda:
The UItimatc...” series of papers and its cousins,
and imPlementcd a small Scheme intchrcter with a
closure-based objcct system.

http://people.csail.mit.edu/gregs/ll1-discuss-archive-html/msg03277.html

Structure and
Interpretation
of Computer
Programs

Harold Abelson and
- Gerald Jay Sussman
with Julie Sussman

(define (eval exp env)
(cond ((self-evaluating? exp) exp)
((variable? exp) (lookup-variable-value exp env))
((quoted? exp) (text-of-quotation exp))
((assignment? exp) (eval-assignment exp env))
((definition? exp) (eval-definition exp env))
((1f? exp) (eval-if exp env))
((lambda? exp)
(make-procedure (lambda-parameters exp)
(lambda-body exp)
env))
((begin? exp)
(eval-sequence (begin-actions exp) env))
((cond? exp) (eval (cond->if exp) env))
((application? exp)
(apply (eval (operator exp) env)
(list-of-values (operands exp) env)))
(else
(error "Unknown expression type -- EVAL" exp))))

((lambda? exp)

(make-procedure (lambda-parameters exp)
(lambda-body exp)
env))

This work developed out of an initial attempt
to understand the actorness of actors.

This interpreter attempted to intermix the
use of actors and LISP lambda expressions in
a clean manner.

“Scheme: An Interpreter for Extended Lambda Calculus”
Gerald Jay Sussman & Guy L Steele Jr

When it was completed, we discovered that
the “actors” and the lambda expressions
were identical in implementation.

“Scheme: An Interpreter for Extended Lambda Calculus”
Gerald Jay Sussman & Guy L Steele Jr

(define (eval exp env)
(cond ((self-evaluating? exp) exp)
((variable? exp) (lookup-variable-value exp env))
((quoted? exp) (text-of-quotation exp))
((assignment? exp) (eval-assignment exp env))
((definition? exp) (eval-definition exp env))
((1f? exp) (eval-if exp env))
((lambda? exp)
(make-procedure (lambda-parameters exp)
(lambda-body exp)
env))
((begin? exp)
(eval-sequence (begin-actions exp) env))
((cond? exp) (eval (cond->if exp) env))
((application? exp)
(apply (eval (operator exp) env)
(list-of-values (operands exp) env)))
(else
(error "Unknown expression type -- EVAL" exp))))

(define (eval exp env)
(cond ((self-evaluating? exp) exp)
((variable? exp) (lookup-variable-value exp env))
((quoted? exp) (text-of-quotation exp))
((assignment? exp) (eval-assignment exp env))
((definition? exp) (eval-definition exp env))
((1f? exp) (eval-if exp env))
((alpha? exp)
(make-procedure (alpha-parameters exp)
(alpha-body exp)
env))
((lambda? exp)
(make-procedure (lambda-parameters exp)
(lambda-body exp)
env))
((begin? exp)

(eval-sequence (begin-actions exp) env))
((cond? exp) (eval (cond->if exp) env))
((application? exp)

(apply (eval (operator exp) env)

(list-of-values (operands exp) env)))
(else
(error "Unknown expression type -- EVAL" exp))))

((alpha? exp)

(make-procedure (alpha-parameters exp)
(alpha-body exp)
env))

((lambda? exp)

(make-procedure (lambda-parameters exp)
(lambda-body exp)
env))

(On his next walk with QC Na, Anton attcmPtcd

to imPrcss his master bg saging“Mastcr, | have
diligcntly studied the matter, and now understand
that objccts are truly l elelely man’s closures.”

Qc Na rcsPondcd bg hittingAnton with his stick,
saying “When will you learn? Closu:‘cs are a poor
man’s object”

http://people.csail.mit.edu/gregs/ll1-discuss-archive-html/msg03277.html

At that moment, Anton became cnlightcncd.

http://people.csail.mit.edu/gregs/ll1-discuss-archive-html/msg03277.html

On Understanding Data Abstraction, Revisited

William R. Cook

University of Texas at Austin

wcook@cs.utexas.edu

Abstract

In 1985 Luca Cardelli and Peter Wegner, my advisor, pub-
lished an ACM Computing Surveys paper called “On un-
derstanding types, data abstraction, and polymorphism”.
Their work kicked off a flood of research on semantics and
type theory for object-oriented programming, which contin-
ues to this day. Despite 25 years of research, there is still
widespread confusion about the two forms of data abstrac-
tion, abstract data types and objects. This essay attempts to
explain the differences and also why the differences matter.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—Abstract
data types; D.3.3 [Programming Languages]: Language

So what is the point of asking this question? Everyone
knows the answer. It’s in the textbooks. The answer may be
a little fuzzy, but nobody feels that it’s a big issue. If [didn’t
press the issue, everyone would nod and the conversation
would move on to more important topics. But I do press the
1ssue. I don’t say it, but they can tell I have an agenda.

My point is that the textbooks mentioned above are
wrong! Objects and abstract data types are not the same
thing, and neither one is a variation of the other. They are
fundamentally different and in many ways complementary,
in that the strengths of one are the weaknesses of the other.
The issues are obscured by the fact that most modern pro-
gramming languages support both objects and abstract data
types, often blending them together into one syntactic form.

A-calculus was the
first object-oriented
language.

stack<std::string> words;

assert(words.depth() == 0);
assert(words.top() == std::nullopt);

words = words.push(”"C");
words = words.push("C++");

assert(words.depth() == 2);
assert(words.top() == "C++");

words = words.pop();

assert(words.top() == "C");

template<typename T>
struct stack
{
stack();
stack(const T & head, const stack & tail);

std: :function<std::size_t()> depth;
std: :function<std::optional<T>()> top;
std: :function<stack()> pop;

std: :function<stack(const T &)> push;

}s

stack() :

depth(
L]
{ return 0; }),
top(
L]
{ return std::nullopt; }),
pop(
L]
{ return stack(); 1),
push (

[1 (const auto & new_top)
{ return stack(new_top, stack()); })

stack(const T & head, const stack & tail) :
depth(
[=]
{ return 1 + tail.depth(); }),
top(
[=]
{ return head; }),
pop (
[=]
{ return tail; }),
push(
[=] (const auto & new_top)
{ return stack(new_top, tail.push(head)); })

stack(const T & head, const stack & tail) :
depth(
[size = 1 + tail.depth()]
{ return size; }),
top(
[head]
{ return head; }),
pop (
[tail]
{ return tail; }),
push(
[head, taill (const auto & new_top)
{ return stack(new_top, tail.push(head)); })

& TRUCTURED
PROGRAMMING

0.). DAHL,E.W. DIKSTRA
ad C. B R HOARE

One of the most powerful
mechanisms for program
structuring [...] is the block
and procedure concept.

Ole-Johan Dahl and C A R Hoare
“Hierarchical Program.Structures”

begin
ref (Rock) array items (l:capacity):;
integer count;
integer procedure Depth;
ref (Rock) procedure Top;
procedure Push (top) ;
procedure Pop;

count := 0
end;

A procedure which is capable of
giving rise to block instances which
survive its call will be known as a
class; and the instances will be
known as objects of that class.

Ole-Johan Dahl and C A R Hoare
“Hierarchical Program.Structures”

class Stack(capacity);
integer capacity;
begin
ref (Rock) array items (l:capacity):;
integer count;
integer procedure Depth;
ref (Rock) procedure Top;
procedure Push (top) ;
procedure Pop;

count := 0
end;

We could, of course, use any notation
we want; do not laugh at notations;
invent them, they are powerful.

In fact, mathematics is, to a large
extent, invention of better notations.

Richard Feynman

lambda

function

in

[

(1013

(10O 130)

(LI CLT O LLTI{3={3) O)

https://twitter.com/shafikyaghmour/status/1128790426519871496

variable

abstraction —

X

oyx

application

abstraction variable application

E](auto *) {return xky);}

[](auto x) {x(y)}

Hwishlist

N\ \\\\\&\\\?\\\

N
WA

'DOUGLAS ADAMS

Based onthefamous Radioseries

“Oh God,” muttered Ford, slumped against
a bulkhead and started to count to ten.

He was desperately worried that one day
sentient life forms would forget how to do this.
Only by counting could humans demonstrate
their independence of computers.

0 - ANf-AX"Xx

1 >N f-Ax-f(x)
2 N A x-f(f(x))

3 — N oA x - f(F((X))

4 — £\ x-f(FE(E(X))))

o — M- A £(f(E(E(E(x)))))
(A XN £\ ~ - EEE(€(E€(~- NN

N O &~ QLW N — O

H —h —h —h —hHh —H —h

V

vV V V V V V

< X X X X X X

V V V V V
<

\'

V

f(x)

f(f(x))
f(f(f(x)))
f(fF(f(f(x))))

fFOFCECF(F(X)).
C(€(€(€(Ff(f(~

succ = n =>f => x => f(n(f)(x))

auto succ =
[] (auto n)

{
return [=] (auto f)

{

return [=] (auto x)

{
return f(n(f)(x));

auto 0 =
[] (auto f)

{

return [=] (auto x)

{
bs

return X;

bs

auto
auto
auto
auto
auto
auto

A1 n

auto plus 1 = [](auto n)
{

bs

return n + 1;

O0(plus 1)

O(plus 1) (0)
1(plus 1) (0)
2(plus 1)(0)
3(plus 1) (0)
4(plus 1) (0)

5(plus 1) (0)
Alnliic 1Y(D)

N O B~ QLW DN — O

auto plus 1 = [](auto n)
{

bs

return n + lexical cast<decltype(n)>(1);

O(plus 1) (0)
1(plus 1) (0)
2(plus 1)(0)
3(plus 1) (0)
4(plus 1) (0)

5(plus 1) (0)
Alnliic 1Y(D)

N O B~ QLW DN — O

~O0(plus 1)(""s)

~1(plus 1)(""s) |
“2(plus 1)(""s) 11
~3(plus 1)(""s) 111
A4(plus 1)(""s) 1111
5(plus 1)(""s) 11111

AlnTliic 1Y () 1111117

square

auto square = [](auto m)

{
bs

return 2(m);

square(7)

square(7)(plus 1)

square(7) (plus 1) (0)

49

INVESTIGATION OF

HE LAWS
)F THOUGHT

N WHICH ARE FOUNDED
HE MATHEMATICAL °
IEORIES OF LOGIC

D PROBABILITIES

frue
false

true — ANab-a

false = ANab-b

SMALLALK- 80

THE LANGUAGE

N\
“) N\ R \\ \ N WA B
N X N \
R \ A\
NRNRRY \ \

Adele Goldberg and David Robson | SN SRR
- QTR \ SO\, N R SN RN \

N \ T RN \ SRR TR RR NN R S S

/ * 7 < limit
ifTrue: [~ 'OK']
ifFalse: [~ 'Oh dear']

True
ifTrue: toDo ifFalse: ignore
~ toDo value

False
ifTrue: ignore ifFalse: toDo
”~ toDo value

false = ANab-b

false - A\O® '@

false - ANt x-x

false = 0

SECOND EDITION

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

PRENTICE HALL SOFTWARE SERIES

pair —Axyf-ftxy
first —SAp pAxy-x
second = Ap pAxy- y

pair —Axyf-ftxy
first — Ap-ptrue
second — A p - p false

cons —Axyf-fxy
car — A p-p true
cdr — A p - p false

nil — false

LISP 1.5 Programmer’'s Manual

The Computation Center
and Research Laboratory of Electronics

Massachusetts Institute of Technology

cons —Axyf-fxy
car — A p-p true
cdr — A p - p false

nil — false

push —Axyf-fxy
top — A p - p true
pop — Ap-pfalse

stack — false

People who brook no compromise
in programming languages should
program in lambda calculus or
machine language.

Andrew Koenig

