
Lambda?
You Keep Using that Letter

@KevlinHenney

AWS

Half-Life

wavelength

decay constant

calculus

-calculus

We do not attach any

character of uniqueness

or absolute truth to any

particular system of logic.

The entities of formal logic are

abstractions, invented because of their

use in describing and systematizing

facts of experience or observation, and

their properties, determined in rough

outline by this intended use, depend

for their exact character on the

arbitrary choice of the inventor.

In 1911 Russell & Whitehead published Principia
Mathematica, with the goal of providing a solid
foundation for all of mathematics.

In 1911 Russell & Whitehead published Principia
Mathematica, with the goal of providing a solid
foundation for all of mathematics. In 1931 Gödel’s
Incompleteness Theorem shattered the dream,
showing that for any consistent axiomatic system
there will always be theorems that cannot be
proven within the system.

Adrian Colyer
https://blog.acolyer.org/2020/02/03/measure-mismeasure-fairness/

One premise of many models of fairness in
machine learning is that you can measure (‘prove’)
fairness of a machine learning model from within
the system – i.e. from properties of the model itself
and perhaps the data it is trained on.

To show that a machine learning model is fair, you
need information from outside of the system.

Adrian Colyer
https://blog.acolyer.org/2020/02/03/measure-mismeasure-fairness/

We demand rigidly

defined areas of doubt

and uncertainty!

Despite the fancy name, a
lambda is just a function...
peculiarly... without a name.

https://rubymonk.com/learning/books/1-ruby-primer/chapters/34-lambdas-and-blocks-in-ruby/lessons/77-lambdas-in-ruby

There are only two hard things
in Computer Science: cache
invalidation and naming things.

Phil Karlton

There are only two hard things
in Computer Science: cache
invalidation and naming things.

Phil Karlton

We select a particular list of

symbols, consisting of the

symbols { , }, (,), λ, [,],

and an enumerably infinite

set of symbols a, b, c, · · · to

be called variables.

And we define the word

formula to mean any finite

sequence of symbols out of

this list.

f(x) = formula

f → λ x· formula

f → λ x· y x

variable

abstraction

application

f → λ x· y x

abbreviation free variable

bound variable

square(x) = x × x

square → λ x· x × x

square → λ😠· 😠 ×😠

☐ → λ😠· 😠 ×😠

☐ 7

square 7

(λ x· x × x) 7

AN UNSOLVEABLE

PROBLEM OF

ELEMENTARY

NUMBER THEORY

NUMBER

0

0 → λ f· λ x· x
1 → λ f· λ x· f(x)
2 → λ f· λ x· f(f(x))
3 → λ f· λ x· f(f(f(x)))
4 → λ f· λ x· f(f(f(f(x))))
5 → λ f· λ x· f(f(f(f(f(x)))))
6 → λ f· λ x· f(f(f(f(f(f(x))))))

0 → λ f x· x
1 → λ f x· f(x)
2 → λ f x· f(f(x))
3 → λ f x· f(f(f(x)))
4 → λ f x· f(f(f(f(x))))
5 → λ f x· f(f(f(f(f(x)))))
6 → λ f x· f(f(f(f(f(f(x))))))

0 → λ f x· x
1 → λ f x· f x
2 → λ f x· f2 x
3 → λ f x· f3 x
4 → λ f x· f4 x
5 → λ f x· f5 x
6 → λ f x· f6 x

0 → λ f x· f0 x
1 → λ f x· f1 x
2 → λ f x· f2 x
3 → λ f x· f3 x
4 → λ f x· f4 x
5 → λ f x· f5 x
6 → λ f x· f6 x

7

7.times

7.times {|i| puts i}

0
1
2
3
4
5
6

0
1
2
3
4
5
6

0 → λ f x· x
1 → succ 0
2 → succ succ 0
3 → succ succ succ 0
4 → succ succ succ succ 0
5 → succ succ succ succ succ 0
6 → succ succ succ succ succ succ

0 → λ f x· x
1 → succ1 0
2 → succ2 0
3 → succ3 0
4 → succ4 0
5 → succ5 0
6 → succ6 0

0 → λ f x· x
1 → succ 0
2 → succ 1
3 → succ 2
4 → succ 3
5 → succ 4
6 → succ 5

1 → succ → λ n f x· f (n f x)

You may have heard of lambdas
before. Perhaps you’ve used
them in other languages.

https://rubymonk.com/learning/books/1-ruby-primer/chapters/34-lambdas-and-blocks-in-ruby/lessons/77-lambdas-in-ruby

auto square(auto x)
{

return x * x;
}

auto square = [](auto x)
{

return x * x;
};

square(7)

[](auto x)
{

return x * x;
}(7)

[](auto x) {return x * x;}(7)

They’re anonymous, little
functional spies sneaking
into the rest of your code.

https://rubymonk.com/learning/books/1-ruby-primer/chapters/34-lambdas-and-blocks-in-ruby/lessons/77-lambdas-in-ruby

Excel is the world’s
most popular
functional language
Simon Peyton-Jones

(lambda (x) (* x x))

((lambda (x) (* x x)) 7)

(int x) int: x * x

proc (int) int square;

square := (int x) int: x * x;

int result := square (7);

((int x) int: x * x) (7)

Lambdas in Ruby are
also objects, just like
everything else!

https://rubymonk.com/learning/books/1-ruby-primer/chapters/34-lambdas-and-blocks-in-ruby/lessons/77-lambdas-in-ruby

Lambdas in C++ are
also objects!

[](auto x) {return x(y);}

struct __lambda
{
auto operator()(auto x)
{
return x(y);

}
};

Lambdas in C++ are
function objects!

Lambdas in C++ are
not functors!

The venerable master Qc Na was walking with his
student, Anton. Hoping to prompt the master into
a discussion, Anton said “Master, I have heard
that objects are a very good thing — is this true?”

Qc Na looked pityingly at his student and replied,
“Foolish pupil — objects are merely a poor man’s
closures.”

http://people.csail.mit.edu/gregs/ll1-discuss-archive-html/msg03277.html

The concept of closures was developed in the
1960s for the mechanical evaluation of
expressions in the λ-calculus.

Peter J. Landin defined the term closure in
1964 as having an environment part and a
control part.

https://en.wikipedia.org/wiki/Closure_(computer_programming)

Joel Moses credits Landin with introducing
the term closure to refer to a lambda
expression whose open bindings (free
variables) have been closed by (or bound in)
the lexical environment, resulting in a closed
expression, or closure.

https://en.wikipedia.org/wiki/Closure_(computer_programming)

This usage was subsequently adopted by
Sussman and Steele when they defined
Scheme in 1975, a lexically scoped variant of
LISP, and became widespread.

https://en.wikipedia.org/wiki/Closure_(computer_programming)

Chastised, Anton took his leave from his master
and returned to his cell, intent on studying
closures. He carefully read the entire “Lambda:
The Ultimate...” series of papers and its cousins,
and implemented a small Scheme interpreter with a
closure-based object system.

http://people.csail.mit.edu/gregs/ll1-discuss-archive-html/msg03277.html

(define (eval exp env)

(cond ((self-evaluating? exp) exp)

((variable? exp) (lookup-variable-value exp env))

((quoted? exp) (text-of-quotation exp))

((assignment? exp) (eval-assignment exp env))

((definition? exp) (eval-definition exp env))

((if? exp) (eval-if exp env))

((lambda? exp)

(make-procedure (lambda-parameters exp)

(lambda-body exp)

env))

((begin? exp)

(eval-sequence (begin-actions exp) env))

((cond? exp) (eval (cond->if exp) env))

((application? exp)

(apply (eval (operator exp) env)

(list-of-values (operands exp) env)))

(else

(error "Unknown expression type -- EVAL" exp))))

(define (eval exp env)

(cond ((self-evaluating? exp) exp)

((variable? exp) (lookup-variable-value exp env))

((quoted? exp) (text-of-quotation exp))

((assignment? exp) (eval-assignment exp env))

((definition? exp) (eval-definition exp env))

((if? exp) (eval-if exp env))

((lambda? exp)

(make-procedure (lambda-parameters exp)

(lambda-body exp)

env))

((begin? exp)

(eval-sequence (begin-actions exp) env))

((cond? exp) (eval (cond->if exp) env))

((application? exp)

(apply (eval (operator exp) env)

(list-of-values (operands exp) env)))

(else

(error "Unknown expression type -- EVAL" exp))))

This work developed out of an initial attempt
to understand the actorness of actors.

This interpreter attempted to intermix the
use of actors and LISP lambda expressions in
a clean manner.

“Scheme: An Interpreter for Extended Lambda Calculus”
Gerald Jay Sussman & Guy L Steele Jr

When it was completed, we discovered that
the “actors” and the lambda expressions
were identical in implementation.

“Scheme: An Interpreter for Extended Lambda Calculus”
Gerald Jay Sussman & Guy L Steele Jr

(define (eval exp env)

(cond ((self-evaluating? exp) exp)

((variable? exp) (lookup-variable-value exp env))

((quoted? exp) (text-of-quotation exp))

((assignment? exp) (eval-assignment exp env))

((definition? exp) (eval-definition exp env))

((if? exp) (eval-if exp env))

((lambda? exp)

(make-procedure (lambda-parameters exp)

(lambda-body exp)

env))

((begin? exp)

(eval-sequence (begin-actions exp) env))

((cond? exp) (eval (cond->if exp) env))

((application? exp)

(apply (eval (operator exp) env)

(list-of-values (operands exp) env)))

(else

(error "Unknown expression type -- EVAL" exp))))

(define (eval exp env)

(cond ((self-evaluating? exp) exp)

((variable? exp) (lookup-variable-value exp env))

((quoted? exp) (text-of-quotation exp))

((assignment? exp) (eval-assignment exp env))

((definition? exp) (eval-definition exp env))

((if? exp) (eval-if exp env))

((alpha? exp)

(make-procedure (alpha-parameters exp)

(alpha-body exp)

env))

((lambda? exp)

(make-procedure (lambda-parameters exp)

(lambda-body exp)

env))

((begin? exp)

(eval-sequence (begin-actions exp) env))

((cond? exp) (eval (cond->if exp) env))

((application? exp)

(apply (eval (operator exp) env)

(list-of-values (operands exp) env)))

(else

(error "Unknown expression type -- EVAL" exp))))

(define (eval exp env)

(cond ((self-evaluating? exp) exp)

((variable? exp) (lookup-variable-value exp env))

((quoted? exp) (text-of-quotation exp))

((assignment? exp) (eval-assignment exp env))

((definition? exp) (eval-definition exp env))

((if? exp) (eval-if exp env))

((alpha? exp)

(make-procedure (alpha-parameters exp)

(alpha-body exp)

env))

((lambda? exp)

(make-procedure (lambda-parameters exp)

(lambda-body exp)

env))

((begin? exp)

(eval-sequence (begin-actions exp) env))

((cond? exp) (eval (cond->if exp) env))

((application? exp)

(apply (eval (operator exp) env)

(list-of-values (operands exp) env)))

(else

(error "Unknown expression type -- EVAL" exp))))

On his next walk with Qc Na, Anton attempted
to impress his master by saying “Master, I have
diligently studied the matter, and now understand
that objects are truly a poor man’s closures.”

Qc Na responded by hitting Anton with his stick,
saying “When will you learn? Closures are a poor
man’s object.”

http://people.csail.mit.edu/gregs/ll1-discuss-archive-html/msg03277.html

At that moment, Anton became enlightened.

http://people.csail.mit.edu/gregs/ll1-discuss-archive-html/msg03277.html

λ-calculus was the

first object-oriented

language.

One of the most powerful
mechanisms for program
structuring [...] is the block
and procedure concept.

Ole-Johan Dahl and C A R Hoare

“Hierarchical Program Structures”

begin

ref(Rock) array items(1:capacity);

integer count;

integer procedure Depth; ...

ref(Rock) procedure Top; ...

procedure Push(top); ...

procedure Pop; ...

count := 0

end;

A procedure which is capable of
giving rise to block instances which
survive its call will be known as a
class; and the instances will be
known as objects of that class.

Ole-Johan Dahl and C A R Hoare

“Hierarchical Program Structures”

class Stack(capacity);

integer capacity;

begin

ref(Rock) array items(1:capacity);

integer count;

integer procedure Depth; ...

ref(Rock) procedure Top; ...

procedure Push(top); ...

procedure Pop; ...

count := 0

end;

We could, of course, use any notation
we want; do not laugh at notations;
invent them, they are powerful.
In fact, mathematics is, to a large
extent, invention of better notations.

Richard Feynman

lambda

\

function

fn

=>

->

[]

[](){}

[](){}()

[[]]([]()[[]]{}={})()

https://twitter.com/shafikyaghmour/status/1128790426519871496

f → λ x· y x

variable

abstraction

application

[](auto x) {return x(y);}

abstraction variable application

[](auto x) {x(y)}

#wishlist

“Oh God,” muttered Ford, slumped against
a bulkhead and started to count to ten.
He was desperately worried that one day
sentient life forms would forget how to do this.
Only by counting could humans demonstrate
their independence of computers.

0 → λ f· λ x· x
1 → λ f· λ x· f(x)
2 → λ f· λ x· f(f(x))
3 → λ f· λ x· f(f(f(x)))
4 → λ f· λ x· f(f(f(f(x))))
5 → λ f· λ x· f(f(f(f(f(x)))))
6 → λ f· λ x· f(f(f(f(f(f(x))))))

_0 = f => x => x
_1 = f => x => f(x)
_2 = f => x => f(f(x))
_3 = f => x => f(f(f(x)))
_4 = f => x => f(f(f(f(x))))
_5 = f => x => f(f(f(f(f(x)))))
_6 = f => x => f(f(f(f(f(f(x))))))

_0 = f => x => x
_1 = succ(_0)
_2 = succ(_1)
_3 = succ(_2)
_4 = succ(_3)
_5 = succ(_4)
_6 = succ(_5)

succ = n => f => x => f(n(f)(x))

auto succ =
[](auto n)
{

return [=](auto f)
{

return [=](auto x)
{

return f(n(f)(x));
};

};
};

auto _0 =
[](auto f)
{

return [=](auto x)
{

return x;
};

};

auto _0 = ...;
auto _1 = succ(_0);
auto _2 = succ(_1);
auto _3 = succ(_2);
auto _4 = succ(_3);
auto _5 = succ(_4);
auto _6 = succ(_5);

auto plus_1 = [](auto n)
{

return n + 1;
};

_0

_0(plus_1)

_0(plus_1)(0)
_1(plus_1)(0)
_2(plus_1)(0)
_3(plus_1)(0)
_4(plus_1)(0)
_5(plus_1)(0)
_6(plus_1)(0)

0
1
2
3
4
5
6

auto plus_1 = [](auto n)
{

return n + lexical_cast<decltype(n)>(1);
};

_0(plus_1)(0)
_1(plus_1)(0)
_2(plus_1)(0)
_3(plus_1)(0)
_4(plus_1)(0)
_5(plus_1)(0)
_6(plus_1)(0)

0
1
2
3
4
5
6

_0(plus_1)(“”s)
_1(plus_1)(“”s)
_2(plus_1)(“”s)
_3(plus_1)(“”s)
_4(plus_1)(“”s)
_5(plus_1)(“”s)
_6(plus_1)(“”s)

1
11
111

1111
11111
111111

square

auto square = [](auto m)
{

return _2(m);
};

square(_7)

square(_7)(plus_1)

square(_7)(plus_1)(0)

49

true
false

true → λ a b· a
false → λ a b· b

7 * 7 < limit
ifTrue: [^ ‘OK’]
ifFalse: [^ ‘Oh dear’]

True
ifTrue: toDo ifFalse: ignore

^ toDo value

False
ifTrue: ignore ifFalse: toDo

^ toDo value

false → λ a b· b

false → λ🙂☹· ☹

false → λ f x· x

false ＝ 0

pair → λ x y f· f x y
first → λ p· p λ x y· x
second → λ p· p λ x y· y

pair → λ x y f· f x y
first → λ p· p true
second → λ p· p false

cons → λ x y f· f x y
car → λ p· p true
cdr → λ p· p false
nil → false

cons → λ x y f· f x y
car → λ p· p true
cdr → λ p· p false
nil → false

push → λ x y f· f x y
top → λ p· p true
pop → λ p· p false
stack → false

People who brook no compromise
in programming languages should
program in lambda calculus or
machine language.

Andrew Koenig

