
C++ STL best and worst
performance features and

how to learn from them
Danila Kutenin

Google
danilak@google.com
Telegram: @Danlark

http://t.me/Danlark

About myself
● Worked at Yandex on core search engines
● Working at Google on distributed data

processing
● Primary expertise is C/C++, low-level

design, distributed systems design

2

Agenda
● Is C++ about performance?
● Performance problems

○ ABI
○ Compiler
○ Algorithmic

● STL performance experience
3

C++ performance
C++ is performant. Because of philosophy [1].

● What you don’t use, you don’t pay for
● What you do use, you couldn’t hand-code

any better

[1] B. Stroustrup
https://dl.acm.org/doi/abs/10.1145/3386320

4

https://dl.acm.org/doi/abs/10.1145/3386320

C++ performance

Chandler Carruth “There Are No Zero-cost Abstractions” 5

http://www.youtube.com/watch?v=rHIkrotSwcc

STL (Standard Template Library)
● Provides “standard” things. std::vector
● Hard to correctly implement “convenient”

things. std::shared_ptr

6

STL (Standard Template Library)
Is it actually performant?

7

STL (Standard Template Library)

8

STL (Standard Template Library)
● Results in self made libraries

○ Abseil
○ Folly
○ EASTL

● Why?
○ ABI compatibility and faster progress
○ Speed is simply money 9

Outstanding Types/Containers
● std::array

● std::optional, std::variant

● std::atomic

● std::span, std::string_view

● <algorithm>

Encouraged to use in many places
10

● std::vector

● std::string

● std::set, std::map

People still debate. Readability costs
outweigh the last percentages

Debatable Types/Containers

11

Bad Types/Containers
● std::pair, std::tuple

● std::unordered_*

● std::regex

Last two are banned in many places

12

std::array<T>
● No constructors, copy operators, destructors

○ Rule of zero is the key to success
● The performance is as `T[N]` with the

convenient helper functions

13

std::array<T>
std::is_trivially_copyable if T is

14

Trick #1
● If possible, make your type trivial

○ Trivially destructible types
■ It allows to “reuse” the object

○ Trivially copyable types can be memcpy’ed
■ mem* are highly platform optimized

15

Trick #1
The SysV ABI specification, section 3.2.3
Parameter Passing says:

If a C++ object has either a non-trivial copy
constructor or a non-trivial destructor, it is
passed by invisible reference.

16

Trick #1

Don’t!
17

std::optional<T>

18

std::optional<T>

[1]
~optional();
1. #Effects: If is_ trivially_ destructible_ v<T> != true

and *this contains a value, calls val->T::~T()
2. #Remarks: If is_ trivially_ destructible_ v<T> is true,

then this destructor is trivial.

[1] utilities.optional.destructor 19

https://eel.is/c++draft/optional#dtor

Optional Perf At What Cost?
class optional

__optional_move_assign_base

__optional_copy_assign_base

__optional_move_base __optional_copy_base

__optional_storage_base

 __optional_destruct_base

20

Optional Perf At What Cost?

 __optional_destruct_base

Why?
Partial specializations/SFINAE on special

member functions are forbidden

21

Optional Perf At What Cost?

1420 Lines of Code*

*libc++ implementation

22

Optional Perf At What Cost?

Fixed in libstdc++8

P0602R4
variant and optional should propagate

copy/move triviality

23

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0602r4.html

Evil side. std::pair, std::tuple

24

What?

25

Why?

:-(

26

Why?
A defaulted copy assignment operator for class T is
defined as deleted if any of the following is true:

● ...
● T has a non-static data member of a reference

type;
● ...

27

Good news?

28

Combines in 1 register

Good news? Not for tuple

29

Bad news?

ABI break

30

What is ABI?

Translation unit interactions. Including:
● The mangled name for a C++ function
● The mangled name for a type, including templates.
● The number of bytes (sizeof) and the alignment
● The semantics of the bytes in the binary

representation of an object.
● Register-level calling conventions.

31

What is ABI?

32

What is ABI?

33

What is ABI?

34

Future?
P0848R3

Conditionally Trivial Special Member Functions

Optional
implementation

down to 390
LOC

35

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0848r3.html
https://medium.com/@barryrevzin/optional-t-in-a-possible-c-20-future-6a1f2158fb76

Trick #2

Write =default in your code.
Always when possible.

36

std::string
● Small/Short string optimization

○ We must store pointer, size and capacity
○ Reuse these bytes when the string is small

● Dates back to 2000-2001

37

std::string
● libc++: 22 bytes
● libstdc++: 15 bytes
● MSVC STL: 15 bytes
● FBString: 23 bytes: https://www.youtube.com/watch?v=kPR8h4-qZdk

● Yandex: 0 bytes, fully COW

38

https://www.youtube.com/watch?v=kPR8h4-qZdk

std::string

39https://joellaity.com/2020/01/31/string.html

https://joellaity.com/2020/01/31/string.html

std::string

40https://joellaity.com/2020/01/31/string.html

https://joellaity.com/2020/01/31/string.html

std::string
● std::function uses the same technique
● The trick can be useful for highly accessed data

● `const std::string&` should almost die
○ Use std::string_view, two registers, no

indirection, cheap copy, pass by value

41

std::string

42

Check for small string

std::function

43

Trick #3

Use std::string_view and
std::span almost everywhere

44

Trick #4

Remember about small object
optimizations, e.g. don’t

capture blindly by reference in
lambda

45

std::string

46

std::string
● absl::StrJoin, folly::join

○ Sums all sizes, does 1 allocation

47

Trick #5

As of C++20, write your own
string operations library or use

the existing external one

48

std::unordered_*

https://github.com/google/hashtable-benchmarks
49

● Check if you need pointer stability (likely not)
● C++17 still does not support heterogeneous

lookups
○ Many other libraries do, for example,

absl::flat_hash_*
● You can outperform std:: by 10-20x

https://github.com/google/hashtable-benchmarks

Trick #6

If you have enough hash table
usages, use external ones or

even write your own

50

<algorithm>
● Use them, they don’t have ABI problems

○ They are constantly optimized in libraries
○ Compilers produce better SIMD code with

time
○ Only several are still debatable

■ E.g. std::sort, std::nth_element
■ Still use them

51

std::rotate
● Two algorithms, rotating by k where k < n.

○ GCD rotate. Moves n + gcd(n, k) times.
■ Requires random access

○ Forward rotate. Moves between 3/2n and 3n
times.
■ Can be done with forward iterators

52

std::rotate

53

std::rotate

54

std::rotate

55

std::copy

56

std::copy

57

std::copy

58

Bug?

std::reverse

59

std::reverse

60

std::reverse

61

std::sort

● Must have O(n log n) comparisons
● People debate about the best algorithms

○ pdqsort
○ Introsort
○ countsort
○ etc

62

std::sort

63

● libc++ has quadratic sort
○ qsort with some tricks

 https://bugs.llvm.org/show_bug.cgi?id=20837

https://bugs.llvm.org/show_bug.cgi?id=20837

std::sort

64https://www.cs.dartmouth.edu/~doug/mdmspe.pdf

https://www.cs.dartmouth.edu/~doug/mdmspe.pdf

std::sort

65

n = 1000
 libc++ 251232 comparisons
libstdc++ 29023 comparisons

std::sort

66

std::minmax_element
● Uses 3/2n + O(1) comparisons

○ min_element + max_element are 2n
comparisons

● For trivial types can be worse

67

std::minmax_element

68

Trick #7

Use standard algorithms, they
are almost always good

69

<atomic>
● “Happens before” memory model
● Supported everywhere

○ x86-64, ARM, PowerPC, etc
■ 16 byte atomics!
■ More than 16 is not supported almost

anywhere
○ CUDA (finally!)

● volatile is deprecated
70

https://danlark.org/2020/01/12/how-to-contribute-to-abseil-with-a-visible-performance-gain/
https://www.youtube.com/watch?v=VogqOscJYvk

<atomic>

71CppCon 2019: JF Bastien “Deprecating volatile”

http://www.youtube.com/watch?v=KJW_DLaVXIY

Trick #8

Use atomics, they are sane

72

std::regex
● It must support different grammars

○ BRE, ERE, ECMAscript, grep, egrep, awk, sed,
etc.

○ It becomes a part of ABI

73

std::regex

74Hana Dusikova, Compile Time Regular Expressions, CppCon 2018

https://www.youtube.com/watch?v=QM3W36COnE4

std::regex

75

● std::regex crashes when matching long lines
○ 2 years

● C++11 std::regex memory corruption
○ 6 years

● C++11 std::regex resource exhaustion
○ 6 years

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86164
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61582
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61601

Trick #9

Never use std::regex

76

Real world

● Balance between speed and readability
○ Education, people onboarding
○ Last 1% might be more expensive in a long

run
■ Debugging, occasional bugs

77

Real world. libc++ vs libstdc++

● Once ClickHouse decided to update the
standard library from libstdc++ to libc++

78

https://github.com/ClickHouse/ClickHouse/pull/8311

https://github.com/ClickHouse/ClickHouse/pull/8311

Real world. libc++ vs libstdc++

● Google transitioned from libstdc++ to libc++

1-2% performance win fleetwide

79

Trick #10

Write benchmarks, try different
things, find your own best

80

ABI breakages

81

● P2028 paper about ABI future
○ Prague meeting results:

■ Committee can consider ABI breakage
proposals

■ Only for huge performance wins
■ Do not break much
■ Be loud about the decision(?)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2028r0.pdf

Trick #11

 C++ is more than performance

82

Questions?

83

