
C++ STL best and worst 
performance features and 

how to learn from them
Danila Kutenin

Google
danilak@google.com
Telegram: @Danlark

http://t.me/Danlark


About myself
● Worked at Yandex on core search engines
● Working at Google on distributed data 

processing
● Primary expertise is C/C++, low-level 

design, distributed systems design
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Agenda
● Is C++ about performance?
● Performance problems

○ ABI
○ Compiler
○ Algorithmic

● STL performance experience
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C++ performance
C++ is performant. Because of philosophy [1].

● What you don’t use, you don’t pay for
● What you do use, you couldn’t hand-code 

any better

[1] B. Stroustrup 
https://dl.acm.org/doi/abs/10.1145/3386320
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https://dl.acm.org/doi/abs/10.1145/3386320


C++ performance

Chandler Carruth “There Are No Zero-cost Abstractions” 5

http://www.youtube.com/watch?v=rHIkrotSwcc


STL (Standard Template Library)
● Provides “standard” things. std::vector
● Hard to correctly implement “convenient” 

things. std::shared_ptr
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STL (Standard Template Library)
Is it actually performant?
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STL (Standard Template Library)
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STL (Standard Template Library)
● Results in self made libraries

○ Abseil
○ Folly
○ EASTL

● Why?
○ ABI compatibility and faster progress
○ Speed is simply money 9



Outstanding Types/Containers
● std::array

● std::optional, std::variant

● std::atomic

● std::span, std::string_view

● <algorithm>

Encouraged to use in many places
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● std::vector

● std::string

● std::set, std::map

People still debate. Readability costs 
outweigh the last percentages

Debatable Types/Containers
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Bad Types/Containers
● std::pair, std::tuple

● std::unordered_*

● std::regex

Last two are banned in many places
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std::array<T>
● No constructors, copy operators, destructors

○ Rule of zero is the key to success
● The performance is as `T[N]` with the 

convenient helper functions
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std::array<T>
std::is_trivially_copyable if T is
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Trick #1
● If possible, make your type trivial

○ Trivially destructible types
■ It allows to “reuse” the object

○ Trivially copyable types can be memcpy’ed
■ mem* are highly platform optimized 
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Trick #1
The SysV ABI specification, section 3.2.3 
Parameter Passing says:

If a C++ object has either a non-trivial copy 
constructor or a non-trivial destructor, it is 
passed by invisible reference.
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Trick #1
 

Don’t!
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std::optional<T>
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std::optional<T>

[1]
~optional();
1. #Effects: If is_ trivially_ destructible_ v<T> != true 

and *this contains a value, calls val->T::~T()
2. #Remarks: If is_ trivially_ destructible_ v<T> is true, 

then this destructor is trivial.

[1] utilities.optional.destructor 19

https://eel.is/c++draft/optional#dtor


Optional Perf At What Cost?
class optional

__optional_move_assign_base

__optional_copy_assign_base

__optional_move_base __optional_copy_base

__optional_storage_base

 __optional_destruct_base
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Optional Perf At What Cost?

 __optional_destruct_base

Why?
Partial specializations/SFINAE on special 

member functions are forbidden 

21



Optional Perf At What Cost?

1420 Lines of Code*

*libc++ implementation
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Optional Perf At What Cost?

Fixed in libstdc++8

P0602R4
variant and optional should propagate 

copy/move triviality
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http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0602r4.html


Evil side. std::pair, std::tuple
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What?

25



Why?

:-(
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Why?
A defaulted copy assignment operator for class T is 
defined as deleted if any of the following is true:

● ...
● T has a non-static data member of a reference 

type;
● ...
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Good news?

28

Combines in 1 register



Good news? Not for tuple
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Bad news?

ABI break
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What is ABI?

Translation unit interactions. Including: 
● The mangled name for a C++ function
● The mangled name for a type, including templates.
● The number of bytes (sizeof) and the alignment
● The semantics of the bytes in the binary 

representation of an object.
● Register-level calling conventions.
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What is ABI?

32



What is ABI?
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What is ABI?
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Future?
P0848R3

Conditionally Trivial Special Member Functions

Optional 
implementation 

down to 390 
LOC
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http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0848r3.html
https://medium.com/@barryrevzin/optional-t-in-a-possible-c-20-future-6a1f2158fb76


Trick #2

Write =default in your code.
Always when possible.
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std::string
● Small/Short string optimization

○ We must store pointer, size and capacity
○ Reuse these bytes when the string is small

● Dates back to 2000-2001
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std::string
● libc++:         22 bytes
● libstdc++:   15 bytes
● MSVC STL: 15 bytes
● FBString:     23 bytes: https://www.youtube.com/watch?v=kPR8h4-qZdk

● Yandex:       0 bytes, fully COW
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https://www.youtube.com/watch?v=kPR8h4-qZdk


std::string

39https://joellaity.com/2020/01/31/string.html

https://joellaity.com/2020/01/31/string.html


std::string

40https://joellaity.com/2020/01/31/string.html

https://joellaity.com/2020/01/31/string.html


std::string
● std::function uses the same technique
● The trick can be useful for highly accessed data

● `const std::string&` should almost die
○ Use std::string_view, two registers, no 

indirection, cheap copy, pass by value
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std::string

42

Check for small string



std::function
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Trick #3

Use std::string_view and 
std::span almost everywhere 

44



Trick #4

Remember about small object 
optimizations, e.g. don’t 

capture blindly by reference in 
lambda
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std::string
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std::string
● absl::StrJoin, folly::join

○ Sums all sizes, does 1 allocation
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Trick #5

As of C++20, write your own 
string operations library or use 

the existing external one
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std::unordered_*

https://github.com/google/hashtable-benchmarks
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● Check if you need pointer stability (likely not)
● C++17 still does not support heterogeneous 

lookups
○ Many other libraries do, for example, 

absl::flat_hash_* 
● You can outperform std:: by 10-20x

https://github.com/google/hashtable-benchmarks


Trick #6

If you have enough hash table 
usages, use external ones or 

even write your own
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<algorithm>
● Use them, they don’t have ABI problems

○ They are constantly optimized in libraries
○ Compilers produce better SIMD code with 

time
○ Only several are still debatable

■ E.g. std::sort, std::nth_element
■ Still use them
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std::rotate
● Two algorithms, rotating by k where k < n.

○ GCD rotate. Moves n + gcd(n, k) times.
■ Requires random access

○ Forward rotate. Moves between 3/2n and 3n 
times.
■ Can be done with forward iterators
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std::rotate
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std::rotate
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std::rotate
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std::copy
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std::copy
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std::copy
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Bug?



std::reverse
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std::reverse
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std::reverse
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std::sort

● Must have O(n log n) comparisons
● People debate about  the best algorithms

○ pdqsort
○ Introsort
○ countsort
○ etc
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std::sort
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● libc++ has quadratic sort
○ qsort with some tricks

   https://bugs.llvm.org/show_bug.cgi?id=20837

https://bugs.llvm.org/show_bug.cgi?id=20837


std::sort

64https://www.cs.dartmouth.edu/~doug/mdmspe.pdf

https://www.cs.dartmouth.edu/~doug/mdmspe.pdf


std::sort
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n = 1000
 libc++              251232 comparisons
libstdc++        29023 comparisons



std::sort
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std::minmax_element
● Uses 3/2n + O(1) comparisons

○ min_element + max_element are 2n 
comparisons

● For trivial types can be worse
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std::minmax_element
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Trick #7

Use standard algorithms, they 
are almost always good
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<atomic>
● “Happens before” memory model
● Supported everywhere

○ x86-64, ARM, PowerPC, etc
■ 16 byte atomics!
■ More than 16 is not supported almost 

anywhere
○ CUDA (finally!)

● volatile is deprecated
70

https://danlark.org/2020/01/12/how-to-contribute-to-abseil-with-a-visible-performance-gain/
https://www.youtube.com/watch?v=VogqOscJYvk


<atomic>

71CppCon 2019: JF Bastien “Deprecating volatile”

http://www.youtube.com/watch?v=KJW_DLaVXIY


Trick #8

Use atomics, they are sane

72



std::regex
● It must support different grammars

○ BRE, ERE, ECMAscript, grep, egrep, awk, sed, 
etc.

○ It becomes a part of ABI
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std::regex

74Hana Dusikova, Compile Time Regular Expressions, CppCon 2018

https://www.youtube.com/watch?v=QM3W36COnE4


std::regex
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● std::regex crashes when matching long lines
○ 2 years

● C++11 std::regex memory corruption
○ 6 years

● C++11 std::regex resource exhaustion
○ 6 years

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86164
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61582
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61601


Trick #9

Never use std::regex
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Real world

● Balance between speed and readability
○ Education, people onboarding
○ Last 1% might be more expensive in a long 

run
■ Debugging, occasional bugs
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Real world. libc++ vs libstdc++

● Once ClickHouse decided to update the 
standard library from libstdc++ to libc++ 
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https://github.com/ClickHouse/ClickHouse/pull/8311

https://github.com/ClickHouse/ClickHouse/pull/8311


Real world. libc++ vs libstdc++

● Google transitioned from libstdc++ to libc++

1-2% performance win fleetwide
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Trick #10

Write benchmarks, try different 
things, find your own best
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ABI breakages
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● P2028 paper about ABI future
○ Prague meeting results:

■ Committee can consider ABI breakage 
proposals

■ Only for huge performance wins
■ Do not break much
■ Be loud about the decision(?)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2028r0.pdf


Trick #11

 C++ is more than performance
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Questions?
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