
The Voting Algorithm
Implements Consensus
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Defining chosen

To say what it means for the Voting algorithm to
implement the Consensus spec, we have to say
what it means for the algorithm to choose a value.

More precisely, we have to say how the algorithm
implements the variable chosen of the spec.

This is stated in the definition of the expression chosen

in module Voting .
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True iff acceptor a has voted for value v in ballot b .
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True iff there is a quorum all of whose acceptors
voted for value v in ballot b .
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The set of all values v for which there is a ballot b

such that v is chosen in ballot b .
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{var ∈ Set : formula containing var}
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What it means for the Voting algorithm
to implement the Consensus spec with
this definition of chosen .

Consider any behavior of the Voting algorithm.

Consider the value of chosen in each state.

Those values of chosen should produce a behavior
allowed by the Consensus specification.

But that’s absurd.

A behavior of the Voting algorithm has lots of steps.
The Consensus spec only allows a single step.
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Another Example

Suppose we want to buy a clock that displays the hour,
and suppose we don’t care if the clock shows the actual time.

We could specify such a clock like this:
When the clock is plugged in, the display shows 12.
The display then changes to 1, then to 2, and so on.

We go into the store and a salesman shows us a clock
that displays the hour and also the minute.

Since we didn’t specify that the clock doesn’t display the minute,
most people would say the hour-minute clock satisfies our spec.
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But a computer scientist would say that’s wrong.

He’d say that the hour clock spec talks about a universe
containing only an hour display.

A spec of an hour-minute clock talks about a different universe
that contains an hour display and a minute display.

Comparing the two specs isn’t so simple.
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If Math was Invented by Computer Scientists

Supposed you proved:

Theorem 1. If x is an integer, then x + 1 > x .

And suppose you then wanted to prove:

Theorem 2. If x and y are integers, then y + (x + 1) > y + x .

You’d like to use Theorem 1 to prove Theorem 2.

But you couldn’t because Theorem 1 is about a universe
containing only one integer x , while Theorem 2 is about a
different universe that contains the two integers x and y .
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Why Math is So Simple

These two theorems

Theorem 1. If x is an integer, then x + 1 > x .

Theorem 2. If x and y are integers, then y + (x + 1) > y + x .

are about the same universe.

That universe contains the variables x , y , z , q , α , β ,
maxBal , chosen , . . .

Those theorems only say something about two of those variables.
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We’re describing systems with math.

A spec of an hour clock doesn’t describe a universe
containing only a single variable hour .

It describes a universe containing infinitely many variables.

A state is an assignment of values to all those variables.

The hour clock’s spec says nothing about the values of any
variable other than hour .
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When we say that the hour clock just has this single behavior:[
hour = 12

]
-

[
hour = 1

]
-

[
hour = 2

]
- · · ·

we mean that it allows infinitely many behaviors, such as:
hour = 12
chosen = { }
maxBal = −72
min = 32
x =

√
7

...

 -


hour = 1
chosen = {0}
maxBal = −7
min = 16
x =

√
−1

...

 -


hour = 2
chosen = { }
maxBal = 1/2
min = 〈1, 2〉
x =

√
−1

...

 - · · ·

All behaviors in which hour has these values
and the other variables can have any values.
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When we say that the hour clock just has this single behavior:[
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only once an hour.

This is silly.

9



When we say that the hour clock just has this single behavior:[
hour = 12

]
-

[
hour = 1

]
-

[
hour = 2

]
- · · ·

we also mean that it allows only behaviors such as:
hour = 12
chosen = { }
maxBal = −72
min = 32
x =

√
7

...

 -


hour = 1
chosen = {0}
maxBal = −7
min = 16
x =

√
−1

...

 -


hour = 2
chosen = { }
maxBal = 1/2
min = 〈1, 2〉
x =

√
−1

...

 - · · ·

in which the Voting algorithm can change maxBal or votes

only once an hour.

This is silly.

9



When we say that the hour clock just has this single behavior:[
hour = 12

]
-

[
hour = 1

]
-

[
hour = 2

]
- · · ·

we also mean that it allows only behaviors such as:
hour = 12
chosen = { }
maxBal = −72
min = 32
x =

√
7

...

 -


hour = 1
chosen = {0}
maxBal = −7
min = 16
x =

√
−1

...

 -


hour = 2
chosen = { }
maxBal = 1/2
min = 〈1, 2〉
x =

√
−1

...

 - · · ·

in which the Voting algorithm can change maxBal or votes

only once an hour.

This is silly.

9



When we say that the hour clock just has this single behavior:[
hour = 12

]
-

[
hour = 1

]
-

[
hour = 2

]
- · · ·

we also mean that it allows only behaviors such as:
hour = 12
chosen = { }
maxBal = −72
min = 32
x =

√
7

...

 -


hour = 1
chosen = {0}
maxBal = −7
min = 16
x =

√
−1

...

 -


hour = 2
chosen = { }
maxBal = 1/2
min = 〈1, 2〉
x =

√
−1

...

 - · · ·

in which the Voting algorithm can change maxBal or votes

only once an hour.

This is silly.

9



The spec of an hour clock should not allow just this behavior:[
hour = 12

]
-

[
hour = 1

]
-

[
hour = 2

]
- · · ·

It should also allow behaviors such as:[
hour = 12

]
-
[
hour = 12

]
-
[
hour = 1

]
-
[
hour = 1

]
-[

hour = 1
]
-
[
hour = 2

]
-
[
hour = 3

]
-
[
hour = 3

]
- · · ·

that include steps that don’t change the value of hour .
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Our Consensus spec should not allow just this behavior:[
chosen = { }

]
-
[
chosen = {42}

]
It should also allow these behaviors:[
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]
-
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]
-
[
chosen = {42}

]
qqq

And it does.
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Remember our Consensus specification:

[A]b is an abbreviation for A ∨ (b′ = b) .

So Spec equals

Init ∧ 2(Next ∨ (chosen ′ = chosen))

which means that as well as allowing steps satisfying Next

it allows stuttering steps that leave chosen unchanged.
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Remember the Voting specification:

We now know that this means Spec equals

Init ∧ 2(Next ∨ (〈votes,maxBal〉′ = 〈votes,maxBal〉))

′ means in the next state , so this allows steps that
leave 〈votes,maxBal〉 unchanged, which are steps that
leave both votes and maxBal unchanged, which are
stuttering steps.
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So the Voting spec allows stuttering steps.
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Remember the Voting specification:

We now know that this means Spec equals

Init ∧ 2(Next ∨ (〈votes,maxBal〉′ = 〈votes,maxBal〉))

′ means in the next state , so this allows steps that
leave 〈votes,maxBal〉 unchanged, which are steps that
leave both votes and maxBal unchanged, which are
stuttering steps.

All TLA+ specs allow stuttering steps.
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Think of a state in a behavior as a frame in a movie of the system

where the camera ran at an arbitrarily changing rate.

Speeding up the camera adds duplicate frames to the movie;
it doesn’t change the actual execution of the system.

A step of a behavior could represent the passing of an hour or of a
femtosecond.

If you want to describe the passage of real time, do what
real scientists do: add a variable that represents time.

We needn’t do that because Paxos is an asynchronous algorithm.
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We now return to our goal:
Showing that the voting algorithm implements
the consensus spec where the variable chosen

of the Consensus spec is implemented with the
expression chosen defined in the Voting spec by:
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We have to show that for any behavior of the Voting algorithm:[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
- · · ·

If we take the values of chosen in each state
and assign them to the variable chosen

we get a behavior that satisfies the Consensus spec.

This condition is equivalent to the condition that the original behavior
satisfies
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We have to show:

Any behavior of the Voting algorithm satisfies Specsub
C

.

Let’s now see how that theorem is written in TLA+.
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C
∆
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WITH Value ← Value, chosen ← chosen
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THEOREM Spec ⇒ Specsub
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Of course, it has to go after the INSTANCE statement.
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THEOREM Spec ⇒ C !Spec

This theorem asserts that algorithm Voting implements
the Consensus spec under its definition of consensus .
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The proof uses an invariant maintained by the
algorithm that explains why it is correct.
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Safety and Liveness

I said this was a behavior satisfying the Consensus spec[
chosen = { }

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
- · · ·

The hour clock and everything else doesn’t stop
just because the Consensus “algorithm” stops.

Termination of a system execution is represented by
a behavior ending in all stuttering steps.

This makes the math simpler.
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Behaviors that take an arbitrary number of stuttering steps
before a value is chosen.
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It also allows a behavior containing only stuttering steps

describing an execution that terminates without choosing a value.
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This formula says what steps are allowed to occur.

It doesn’t say what steps must occur.
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Init ∧ 2[Next ]chosen

An assertion of what is allowed to happen is called a
safety property.

An assertion of what must happen is called a
liveness property.

To specify that a value must be chosen, we’d have to
conjoin a liveness property to the spec.

That’s easy to do, but I won’t do it.

Adding the requirement that a value must be chosen
produces a spec that we can’t implement.
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The FLP Theorem

Impossibility of Distributed Consensus with One Faulty Process

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson

Journal of the ACM, 1985

It’s impossible to implement consensus with the requirement
that a value is eventually chosen in a distributed system in which
any single process may fail by stopping.

The Paxos consensus algorithm is useful because

– It never chooses more than one value no matter
how many processes stop.

– It has a very high probability of choosing a value if
not too many processes stop.
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