
The Voting Algorithm
Implements Consensus

0



Defining chosen

To say what it means for the Voting algorithm to
implement the Consensus spec, we have to say
what it means for the algorithm to choose a value.

More precisely, we have to say how the algorithm
implements the variable chosen of the spec.

This is stated in the definition of the expression chosen

in module Voting .

0



Defining chosen

To say what it means for the Voting algorithm to
implement the Consensus spec, we have to say
what it means for the algorithm to choose a value.

More precisely, we have to say how the algorithm
implements the variable chosen of the spec.

This is stated in the definition of the expression chosen

in module Voting .

0



Defining chosen

To say what it means for the Voting algorithm to
implement the Consensus spec, we have to say
what it means for the algorithm to choose a value.

More precisely, we have to say how the algorithm
implements the variable chosen of the spec.

This is stated in the definition of the expression chosen

in module Voting .

0



Defining chosen

To say what it means for the Voting algorithm to
implement the Consensus spec, we have to say
what it means for the algorithm to choose a value.

More precisely, we have to say how the algorithm
implements the variable chosen of the spec.

This is stated in the definition of the expression chosen

in module Voting .

0



Defining chosen

To say what it means for the Voting algorithm to
implement the Consensus spec, we have to say
what it means for the algorithm to choose a value.

More precisely, we have to say how the algorithm
implements the variable chosen of the spec.

This is stated in the definition of the expression chosen

in module Voting .

0



3



True iff acceptor a has voted for value v in ballot b .

3



3



3



3



True iff there is a quorum all of whose acceptors
voted for value v in ballot b .

3



True iff there is a quorum all of whose acceptors
voted for value v in ballot b .

3



True iff there is a quorum all of whose acceptors
voted for value v in ballot b .

3



True iff there is a quorum all of whose acceptors
voted for value v in ballot b .

3



True iff there is a quorum all of whose acceptors
voted for value v in ballot b .

3



True iff there is a quorum all of whose acceptors
voted for value v in ballot b .

3



3



3



3



The set of all values v for which there is a ballot b

such that v is chosen in ballot b .

3



The set of all values v for which there is a ballot b

such that v is chosen in ballot b .

3



The set of all values v for which there is a ballot b

such that v is chosen in ballot b .

3



The set of all values v for which there is a ballot b

such that v is chosen in ballot b .

3



The set of all values v for which there is a ballot b

such that v is chosen in ballot b .

3



The set of all values v for which there is a ballot b

such that v is chosen in ballot b .

3



3



{var ∈ Set : formula containing var}

3



{var ∈ Set : formula containing var}

3



{var ∈ Set : formula containing var}

3



{var ∈ Set : formula containing var}

3



3



What it means for the Voting algorithm
to implement the Consensus spec with
this definition of chosen .

Consider any behavior of the Voting algorithm.

Consider the value of chosen in each state.

Those values of chosen should produce a behavior
allowed by the Consensus specification.

But that’s absurd.

A behavior of the Voting algorithm has lots of steps.
The Consensus spec only allows a single step.

4



What it means for the Voting algorithm
to implement the Consensus spec with
this definition of chosen .[

votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
- · · ·

Consider any behavior of the Voting algorithm.

Consider the value of chosen in each state.

Those values of chosen should produce a behavior
allowed by the Consensus specification.

But that’s absurd.

A behavior of the Voting algorithm has lots of steps.
The Consensus spec only allows a single step.

4



What it means for the Voting algorithm
to implement the Consensus spec with
this definition of chosen .[

votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
- · · ·

chosen = · · ·

Consider any behavior of the Voting algorithm.

Consider the value of chosen in each state.

Those values of chosen should produce a behavior
allowed by the Consensus specification.

But that’s absurd.

A behavior of the Voting algorithm has lots of steps.
The Consensus spec only allows a single step.

4



What it means for the Voting algorithm
to implement the Consensus spec with
this definition of chosen .[

votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
- · · ·

chosen = · · · chosen = · · ·

Consider any behavior of the Voting algorithm.

Consider the value of chosen in each state.

Those values of chosen should produce a behavior
allowed by the Consensus specification.

But that’s absurd.

A behavior of the Voting algorithm has lots of steps.
The Consensus spec only allows a single step.

4



What it means for the Voting algorithm
to implement the Consensus spec with
this definition of chosen .[

votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
- · · ·

chosen = · · · chosen = · · · chosen = · · ·

Consider any behavior of the Voting algorithm.

Consider the value of chosen in each state.

Those values of chosen should produce a behavior
allowed by the Consensus specification.

But that’s absurd.

A behavior of the Voting algorithm has lots of steps.
The Consensus spec only allows a single step.

4



What it means for the Voting algorithm
to implement the Consensus spec with
this definition of chosen .[

votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
- · · ·

chosen = · · · chosen = · · · chosen = · · · · · ·

Consider any behavior of the Voting algorithm.

Consider the value of chosen in each state.

Those values of chosen should produce a behavior
allowed by the Consensus specification.

But that’s absurd.

A behavior of the Voting algorithm has lots of steps.
The Consensus spec only allows a single step.

4



What it means for the Voting algorithm
to implement the Consensus spec with
this definition of chosen .[

votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
- · · ·

· · ·
[
chosen = · · ·

] [
chosen = · · ·

] [
chosen = · · ·

]
- - -

Consider any behavior of the Voting algorithm.

Consider the value of chosen in each state.

Those values of chosen should produce a behavior
allowed by the Consensus specification.

But that’s absurd.

A behavior of the Voting algorithm has lots of steps.
The Consensus spec only allows a single step.

4



What it means for the Voting algorithm
to implement the Consensus spec with
this definition of chosen .[

votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
- · · ·

· · ·
[
chosen = · · ·

] [
chosen = · · ·

] [
chosen = · · ·

]
- - -

Consider any behavior of the Voting algorithm.

Consider the value of chosen in each state.

Those values of chosen should produce a behavior
allowed by the Consensus specification.

But that’s absurd.

A behavior of the Voting algorithm has lots of steps.
The Consensus spec only allows a single step.

4



What it means for the Voting algorithm
to implement the Consensus spec with
this definition of chosen .[

votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
- · · ·

· · ·
[
chosen = · · ·

] [
chosen = · · ·

] [
chosen = · · ·

]
- - -

Consider any behavior of the Voting algorithm.

Consider the value of chosen in each state.

Those values of chosen should produce a behavior
allowed by the Consensus specification.

But that’s absurd.

A behavior of the Voting algorithm has lots of steps.
The Consensus spec only allows a single step.

4



What it means for the Voting algorithm
to implement the Consensus spec with
this definition of chosen .[

votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
- · · ·

· · ·
[
chosen = · · ·

] [
chosen = · · ·

] [
chosen = · · ·

]
- - -

Consider any behavior of the Voting algorithm.

Consider the value of chosen in each state.

Those values of chosen should produce a behavior
allowed by the Consensus specification.

But that’s absurd.

A behavior of the Voting algorithm has lots of steps.
The Consensus spec only allows a single step.

4



Another Example

Suppose we want to buy a clock that displays the hour,
and suppose we don’t care if the clock shows the actual time.

We could specify such a clock like this:
When the clock is plugged in, the display shows 12.
The display then changes to 1, then to 2, and so on.

We go into the store and a salesman shows us a clock
that displays the hour and also the minute.

Since we didn’t specify that the clock doesn’t display the minute,
most people would say the hour-minute clock satisfies our spec.

5



Another Example

Suppose we want to buy a clock that displays the hour,
and suppose we don’t care if the clock shows the actual time.

We could specify such a clock like this:
When the clock is plugged in, the display shows 12.
The display then changes to 1, then to 2, and so on.

We go into the store and a salesman shows us a clock
that displays the hour and also the minute.

Since we didn’t specify that the clock doesn’t display the minute,
most people would say the hour-minute clock satisfies our spec.

5



Another Example

Suppose we want to buy a clock that displays the hour,
and suppose we don’t care if the clock shows the actual time.

We could specify such a clock like this:
When the clock is plugged in, the display shows 12.
The display then changes to 1, then to 2, and so on.

We go into the store and a salesman shows us a clock
that displays the hour and also the minute.

Since we didn’t specify that the clock doesn’t display the minute,
most people would say the hour-minute clock satisfies our spec.

5



Another Example

Suppose we want to buy a clock that displays the hour,
and suppose we don’t care if the clock shows the actual time.

We could specify such a clock like this:
When the clock is plugged in, the display shows 12.
The display then changes to 1, then to 2, and so on.

We go into the store and a salesman shows us a clock
that displays the hour and also the minute.

Since we didn’t specify that the clock doesn’t display the minute,
most people would say the hour-minute clock satisfies our spec.

5



Another Example

Suppose we want to buy a clock that displays the hour,
and suppose we don’t care if the clock shows the actual time.

We could specify such a clock like this:
When the clock is plugged in, the display shows 12.
The display then changes to 1, then to 2, and so on.

We go into the store and a salesman shows us a clock
that displays the hour and also the minute.

Since we didn’t specify that the clock doesn’t display the minute,
most people would say the hour-minute clock satisfies our spec.

5



Another Example

Suppose we want to buy a clock that displays the hour,
and suppose we don’t care if the clock shows the actual time.

We could specify such a clock like this:
When the clock is plugged in, the display shows 12.
The display then changes to 1, then to 2, and so on.

We go into the store and a salesman shows us a clock
that displays the hour and also the minute.

Since we didn’t specify that the clock doesn’t display the minute,
most people would say the hour-minute clock satisfies our spec.

5



Another Example

Suppose we want to buy a clock that displays the hour,
and suppose we don’t care if the clock shows the actual time.

We could specify such a clock like this:
When the clock is plugged in, the display shows 12.
The display then changes to 1, then to 2, and so on.

We go into the store and a salesman shows us a clock
that displays the hour and also the minute.

Since we didn’t specify that the clock doesn’t display the minute,
most people would say the hour-minute clock satisfies our spec.

5



Another Example

Suppose we want to buy a clock that displays the hour,
and suppose we don’t care if the clock shows the actual time.

We could specify such a clock like this:
When the clock is plugged in, the display shows 12.
The display then changes to 1, then to 2, and so on.

We go into the store and a salesman shows us a clock
that displays the hour and also the minute.

Since we didn’t specify that the clock doesn’t display the minute,
most people would say the hour-minute clock satisfies our spec.

5



Another Example

Suppose we want to buy a clock that displays the hour,
and suppose we don’t care if the clock shows the actual time.

We could specify such a clock like this:
When the clock is plugged in, the display shows 12.
The display then changes to 1, then to 2, and so on.

We go into the store and a salesman shows us a clock
that displays the hour and also the minute.

Since we didn’t specify that the clock doesn’t display the minute,
most people would say the hour-minute clock satisfies our spec.

5



Another Example

Suppose we want to buy a clock that displays the hour,
and suppose we don’t care if the clock shows the actual time.

We could specify such a clock like this:
When the clock is plugged in, the display shows 12.
The display then changes to 1, then to 2, and so on.

We go into the store and a salesman shows us a clock
that displays the hour and also the minute.

Since we didn’t specify that the clock doesn’t display the minute,
most people would say the hour-minute clock satisfies our spec.

5



But a computer scientist would say that’s wrong.

He’d say that the hour clock spec talks about a universe
containing only an hour display.

A spec of an hour-minute clock talks about a different universe
that contains an hour display and a minute display.

Comparing the two specs isn’t so simple.

6



But a computer scientist would say that’s wrong.

He’d say that the hour clock spec talks about a universe
containing only an hour display.

A spec of an hour-minute clock talks about a different universe
that contains an hour display and a minute display.

Comparing the two specs isn’t so simple.

6



But a computer scientist would say that’s wrong.

He’d say that the hour clock spec talks about a universe
containing only an hour display.

A spec of an hour-minute clock talks about a different universe
that contains an hour display and a minute display.

Comparing the two specs isn’t so simple.

6



But a computer scientist would say that’s wrong.

He’d say that the hour clock spec talks about a universe
containing only an hour display.

A spec of an hour-minute clock talks about a different universe
that contains an hour display and a minute display.

Comparing the two specs isn’t so simple.

6



If Math was Invented by Computer Scientists

Supposed you proved:

Theorem 1. If x is an integer, then x + 1 > x .

And suppose you then wanted to prove:

Theorem 2. If x and y are integers, then y + (x + 1) > y + x .

You’d like to use Theorem 1 to prove Theorem 2.

But you couldn’t because Theorem 1 is about a universe
containing only one integer x , while Theorem 2 is about a
different universe that contains the two integers x and y .

7



If Math was Invented by Computer Scientists

Supposed you proved:

Theorem 1. If x is an integer, then x + 1 > x .

And suppose you then wanted to prove:

Theorem 2. If x and y are integers, then y + (x + 1) > y + x .

You’d like to use Theorem 1 to prove Theorem 2.

But you couldn’t because Theorem 1 is about a universe
containing only one integer x , while Theorem 2 is about a
different universe that contains the two integers x and y .

7



If Math was Invented by Computer Scientists

Supposed you proved:

Theorem 1. If x is an integer, then x + 1 > x .

And suppose you then wanted to prove:

Theorem 2. If x and y are integers, then y + (x + 1) > y + x .

You’d like to use Theorem 1 to prove Theorem 2.

But you couldn’t because Theorem 1 is about a universe
containing only one integer x , while Theorem 2 is about a
different universe that contains the two integers x and y .

7



If Math was Invented by Computer Scientists

Supposed you proved:

Theorem 1. If x is an integer, then x + 1 > x .

And suppose you then wanted to prove:

Theorem 2. If x and y are integers, then y + (x + 1) > y + x .

You’d like to use Theorem 1 to prove Theorem 2.

But you couldn’t because Theorem 1 is about a universe
containing only one integer x , while Theorem 2 is about a
different universe that contains the two integers x and y .

7



If Math was Invented by Computer Scientists

Supposed you proved:

Theorem 1. If x is an integer, then x + 1 > x .

And suppose you then wanted to prove:

Theorem 2. If x and y are integers, then y + (x + 1) > y + x .

You’d like to use Theorem 1 to prove Theorem 2.

But you couldn’t because Theorem 1 is about a universe
containing only one integer x , while Theorem 2 is about a
different universe that contains the two integers x and y .

7



Why Math is So Simple

These two theorems

Theorem 1. If x is an integer, then x + 1 > x .

Theorem 2. If x and y are integers, then y + (x + 1) > y + x .

are about the same universe.

That universe contains the variables x , y , z , q , α , β ,
maxBal , chosen , . . .

Those theorems only say something about two of those variables.

7



Why Math is So Simple

These two theorems

Theorem 1. If x is an integer, then x + 1 > x .

Theorem 2. If x and y are integers, then y + (x + 1) > y + x .

are about the same universe.

That universe contains the variables x , y , z , q , α , β ,
maxBal , chosen , . . .

Those theorems only say something about two of those variables.

7



Why Math is So Simple

These two theorems

Theorem 1. If x is an integer, then x + 1 > x .

Theorem 2. If x and y are integers, then y + (x + 1) > y + x .

are about the same universe.

That universe contains the variables x , y , z , q , α , β ,
maxBal , chosen , . . .

Those theorems only say something about two of those variables.

7



Why Math is So Simple

These two theorems

Theorem 1. If x is an integer, then x + 1 > x .

Theorem 2. If x and y are integers, then y + (x + 1) > y + x .

are about the same universe.

That universe contains the variables x , y , z , q , α , β ,
maxBal , chosen , . . .

Those theorems only say something about two of those variables.

7



Why Math is So Simple

These two theorems

Theorem 1. If x is an integer, then x + 1 > x .

Theorem 2. If x and y are integers, then y + (x + 1) > y + x .

are about the same universe.

That universe contains the variables x , y , z , q , α , β ,
maxBal , chosen , . . .

Those theorems only say something about two of those variables.

7



Why Math is So Simple

These two theorems

Theorem 1. If x is an integer, then x + 1 > x .

Theorem 2. If x and y are integers, then y + (x + 1) > y + x .

are about the same universe.

That universe contains the variables x , y , z , q , α , β ,
maxBal , chosen , . . .

Those theorems only say something about two of those variables.

7



Why Math is So Simple

These two theorems

Theorem 1. If x is an integer, then x + 1 > x .

Theorem 2. If x and y are integers, then y + (x + 1) > y + x .

are about the same universe.

That universe contains the variables x , y , z , q , α , β ,
maxBal , chosen , . . .

Those theorems only say something about two of those variables.

7



Why Math is So Simple

These two theorems

Theorem 1. If x is an integer, then x + 1 > x .

Theorem 2. If x and y are integers, then y + (x + 1) > y + x .

are about the same universe.

That universe contains the variables x , y , z , q , α , β ,
maxBal , chosen , . . .

Those theorems only say something about two of those variables.

7



Why Math is So Simple

These two theorems

Theorem 1. If x is an integer, then x + 1 > x .

Theorem 2. If x and y are integers, then y + (x + 1) > y + x .

are about the same universe.

That universe contains the variables x , y , z , q , α , β ,
maxBal , chosen , . . .

Those theorems only say something about two of those variables.

7



Why Math is So Simple

These two theorems

Theorem 1. If x is an integer, then x + 1 > x .

Theorem 2. If x and y are integers, then y + (x + 1) > y + x .

are about the same universe.

That universe contains the variables x , y , z , q , α , β ,
maxBal , chosen , . . .

Those theorems only say something about two of those variables.

7



Why Math is So Simple

These two theorems

Theorem 1. If x is an integer, then x + 1 > x .

Theorem 2. If x and y are integers, then y + (x + 1) > y + x .

are about the same universe.

That universe contains the variables x , y , z , q , α , β ,
maxBal , chosen , . . .

Those theorems only say something about two of those variables.

7



Why Math is So Simple

These two theorems

Theorem 1. If x is an integer, then x + 1 > x .

Theorem 2. If x and y are integers, then y + (x + 1) > y + x .

are about the same universe.

That universe contains the variables x , y , z , q , α , β ,
maxBal , chosen , . . .

Those theorems only say something about two of those variables.

7



We’re describing systems with math.

A spec of an hour clock doesn’t describe a universe
containing only a single variable hour .

It describes a universe containing infinitely many variables.

A state is an assignment of values to all those variables.

The hour clock’s spec says nothing about the values of any
variable other than hour .

8



We’re describing systems with math.

A spec of an hour clock doesn’t describe a universe
containing only a single variable hour .

It describes a universe containing infinitely many variables.

A state is an assignment of values to all those variables.

The hour clock’s spec says nothing about the values of any
variable other than hour .

8



We’re describing systems with math.

A spec of an hour clock doesn’t describe a universe
containing only a single variable hour .

It describes a universe containing infinitely many variables.

A state is an assignment of values to all those variables.

The hour clock’s spec says nothing about the values of any
variable other than hour .

8



We’re describing systems with math.

A spec of an hour clock doesn’t describe a universe
containing only a single variable hour .

It describes a universe containing infinitely many variables.

A state is an assignment of values to all those variables.

The hour clock’s spec says nothing about the values of any
variable other than hour .

8



We’re describing systems with math.

A spec of an hour clock doesn’t describe a universe
containing only a single variable hour .

It describes a universe containing infinitely many variables.

A state is an assignment of values to all those variables.

The hour clock’s spec says nothing about the values of any
variable other than hour .

8



When we say that the hour clock just has this single behavior:[
hour = 12

]
-

[
hour = 1

]
-

[
hour = 2

]
- · · ·

we mean that it allows infinitely many behaviors, such as:
hour = 12
chosen = { }
maxBal = −72
min = 32
x =

√
7

...

 -


hour = 1
chosen = {0}
maxBal = −7
min = 16
x =

√
−1

...

 -


hour = 2
chosen = { }
maxBal = 1/2
min = 〈1, 2〉
x =

√
−1

...

 - · · ·

All behaviors in which hour has these values
and the other variables can have any values.

9



When we say that the hour clock just has this single behavior:[
hour = 12

]
-

[
hour = 1

]
-

[
hour = 2

]
- · · ·

we mean that it allows infinitely many behaviors, such as:
hour = 12
chosen = { }
maxBal = −72
min = 32
x =

√
7

...

 -


hour = 1
chosen = {0}
maxBal = −7
min = 16
x =

√
−1

...

 -


hour = 2
chosen = { }
maxBal = 1/2
min = 〈1, 2〉
x =

√
−1

...

 - · · ·

All behaviors in which hour has these values
and the other variables can have any values.

9



When we say that the hour clock just has this single behavior:[
hour = 12

]
-

[
hour = 1

]
-

[
hour = 2

]
- · · ·

we mean that it allows infinitely many behaviors, such as:
hour = 12
chosen = { }
maxBal = −72
min = 32
x =

√
7

...

 -


hour = 1
chosen = {0}
maxBal = −7
min = 16
x =

√
−1

...

 -


hour = 2
chosen = { }
maxBal = 1/2
min = 〈1, 2〉
x =

√
−1

...

 - · · ·

All behaviors in which hour has these values
and the other variables can have any values.

9



When we say that the hour clock just has this single behavior:[
hour = 12

]
-

[
hour = 1

]
-

[
hour = 2

]
- · · ·

we mean that it allows infinitely many behaviors, such as:
hour = 12
chosen = { }
maxBal = −72
min = 32
x =

√
7

...

 -


hour = 1
chosen = {0}
maxBal = −7
min = 16
x =

√
−1

...

 -


hour = 2
chosen = { }
maxBal = 1/2
min = 〈1, 2〉
x =

√
−1

...

 - · · ·

All behaviors in which hour has these values
and the other variables can have any values.

9



When we say that the hour clock just has this single behavior:[
hour = 12

]
-

[
hour = 1

]
-

[
hour = 2

]
- · · ·

we also mean that it allows only behaviors such as:
hour = 12
chosen = { }
maxBal = −72
min = 32
x =

√
7

...

 -


hour = 1
chosen = {0}
maxBal = −7
min = 16
x =

√
−1

...

 -


hour = 2
chosen = { }
maxBal = 1/2
min = 〈1, 2〉
x =

√
−1

...

 - · · ·

in which the Voting algorithm can change maxBal or votes

only once an hour.

This is silly.

9



When we say that the hour clock just has this single behavior:[
hour = 12

]
-

[
hour = 1

]
-

[
hour = 2

]
- · · ·

we also mean that it allows only behaviors such as:
hour = 12
chosen = { }
maxBal = −72
min = 32
x =

√
7

...

 -


hour = 1
chosen = {0}
maxBal = −7
min = 16
x =

√
−1

...

 -


hour = 2
chosen = { }
maxBal = 1/2
min = 〈1, 2〉
x =

√
−1

...

 - · · ·

in which the Voting algorithm can change maxBal or votes

only once an hour.

This is silly.

9



When we say that the hour clock just has this single behavior:[
hour = 12

]
-

[
hour = 1

]
-

[
hour = 2

]
- · · ·

we also mean that it allows only behaviors such as:
hour = 12
chosen = { }
maxBal = −72
min = 32
x =

√
7

...

 -


hour = 1
chosen = {0}
maxBal = −7
min = 16
x =

√
−1

...

 -


hour = 2
chosen = { }
maxBal = 1/2
min = 〈1, 2〉
x =

√
−1

...

 - · · ·

in which the Voting algorithm can change maxBal or votes

only once an hour.

This is silly.

9



When we say that the hour clock just has this single behavior:[
hour = 12

]
-

[
hour = 1

]
-

[
hour = 2

]
- · · ·

we also mean that it allows only behaviors such as:
hour = 12
chosen = { }
maxBal = −72
min = 32
x =

√
7

...

 -


hour = 1
chosen = {0}
maxBal = −7
min = 16
x =

√
−1

...

 -


hour = 2
chosen = { }
maxBal = 1/2
min = 〈1, 2〉
x =

√
−1

...

 - · · ·

in which the Voting algorithm can change maxBal or votes

only once an hour.

This is silly.

9



The spec of an hour clock should not allow just this behavior:[
hour = 12

]
-

[
hour = 1

]
-

[
hour = 2

]
- · · ·

It should also allow behaviors such as:[
hour = 12

]
-
[
hour = 12

]
-
[
hour = 1

]
-
[
hour = 1

]
-[

hour = 1
]
-
[
hour = 2

]
-
[
hour = 3

]
-
[
hour = 3

]
- · · ·

that include steps that don’t change the value of hour .

10



The spec of an hour clock should not allow just this behavior:[
hour = 12

]
-

[
hour = 1

]
-

[
hour = 2

]
- · · ·

It should also allow behaviors such as:[
hour = 12

]
-
[
hour = 12

]
-
[
hour = 1

]
-
[
hour = 1

]
-[

hour = 1
]
-
[
hour = 2

]
-
[
hour = 3

]
-
[
hour = 3

]
- · · ·

that include steps that don’t change the value of hour .

10



The spec of an hour clock should not allow just this behavior:[
hour = 12

]
-

[
hour = 1

]
-

[
hour = 2

]
- · · ·

It should also allow behaviors such as:[
hour = 12

]
-
[
hour = 12

]
-
[
hour = 1

]
-
[
hour = 1

]
-[

hour = 1
]
-
[
hour = 2

]
-
[
hour = 3

]
-
[
hour = 3

]
- · · ·

that include steps that don’t change the value of hour .

10



The spec of an hour clock should not allow just this behavior:[
hour = 12

]
-

[
hour = 1

]
-

[
hour = 2

]
- · · ·

It should also allow behaviors such as:[
hour = 12

]
-
[
hour = 12

]
-
[
hour = 1

]
-
[
hour = 1

]
-[

hour = 1
]
-
[
hour = 2

]
-
[
hour = 3

]
-
[
hour = 3

]
- · · ·

that include steps that don’t change the value of hour .

10



The spec of an hour clock should not allow just this behavior:[
hour = 12

]
-

[
hour = 1

]
-

[
hour = 2

]
- · · ·

It should also allow behaviors such as:[
hour = 12

]
-
[
hour = 12

]
-
[
hour = 1

]
-
[
hour = 1

]
-[

hour = 1
]
-
[
hour = 2

]
-
[
hour = 3

]
-
[
hour = 3

]
- · · ·

that include steps that don’t change the value of hour .

10



The spec of an hour clock should not allow just this behavior:[
hour = 12

]
-

[
hour = 1

]
-

[
hour = 2

]
- · · ·

It should also allow behaviors such as:[
hour = 12

]
-
[
hour = 12

]
-
[
hour = 1

]
-
[
hour = 1

]
-[

hour = 1
]
-
[
hour = 2

]
-
[
hour = 3

]
-
[
hour = 3

]
- · · ·

that include steps that don’t change the value of hour .

10



The spec of an hour clock should not allow just this behavior:[
hour = 12

]
-

[
hour = 1

]
-

[
hour = 2

]
- · · ·

It should also allow behaviors such as:[
hour = 12

]
-
[
hour = 12

]
-
[
hour = 1

]
-
[
hour = 1

]
-[

hour = 1
]
-
[
hour = 2

]
-
[
hour = 3

]
-
[
hour = 3

]
- · · ·

that include steps that don’t change the value of hour .

10



The spec of an hour clock should not allow just this behavior:[
hour = 12

]
-

[
hour = 1

]
-

[
hour = 2

]
- · · ·

It should also allow behaviors such as:[
hour = 12

]
-
[
hour = 12

]
-
[
hour = 1

]
-
[
hour = 1

]
-[

hour = 1
]
-
[
hour = 2

]
-
[
hour = 3

]
-
[
hour = 3

]
- · · ·

that include steps that don’t change the value of hour
stuttering steps

.

10



Our Consensus spec should not allow just this behavior:[
chosen = { }

]
-
[
chosen = {42}

]
It should also allow these behaviors:[

chosen = { }
]
-
[
chosen = { }

]
-
[
chosen = {42}

]
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = {42}

]
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = {42}

]
qqq

And it does.

10



Our Consensus spec should not allow just this behavior:[
chosen = { }

]
-
[
chosen = {42}

]
It should also allow these behaviors:[

chosen = { }
]
-
[
chosen = { }

]
-
[
chosen = {42}

]
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = {42}

]
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = {42}

]
qqq

And it does.

10



Our Consensus spec should not allow just this behavior:[
chosen = { }

]
-
[
chosen = {42}

]
It should also allow these behaviors:[

chosen = { }
]
-
[
chosen = { }

]
-
[
chosen = {42}

]
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = {42}

]
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = {42}

]
qqq

And it does.

10



Our Consensus spec should not allow just this behavior:[
chosen = { }

]
-
[
chosen = {42}

]
It should also allow these behaviors:[

chosen = { }
]
-
[
chosen = { }

]
-
[
chosen = {42}

]
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = {42}

]
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = {42}

]
qqq

And it does.

10



Our Consensus spec should not allow just this behavior:[
chosen = { }

]
-
[
chosen = {42}

]
It should also allow these behaviors:[

chosen = { }
]
-
[
chosen = { }

]
-
[
chosen = {42}

]
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = {42}

]
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = {42}

]
qqq

And it does.

10



Our Consensus spec should not allow just this behavior:[
chosen = { }

]
-
[
chosen = {42}

]
It should also allow these behaviors:[

chosen = { }
]
-
[
chosen = { }

]
-
[
chosen = {42}

]
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = {42}

]
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = {42}

]
qqq

And it does.

10



Our Consensus spec should not allow just this behavior:[
chosen = { }

]
-
[
chosen = {42}

]
It should also allow these behaviors:[

chosen = { }
]
-
[
chosen = { }

]
-
[
chosen = {42}

]
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = {42}

]
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = {42}

]
qqq

And it does.

10



Remember our Consensus specification:

[A]b is an abbreviation for A ∨ (b′ = b) .

So Spec equals

Init ∧ 2(Next ∨ (chosen ′ = chosen))

which means that as well as allowing steps satisfying Next

it allows stuttering steps that leave chosen unchanged.

11



Remember our Consensus specification:

Now we find out what this is all about.

[A]b is an abbreviation for A ∨ (b′ = b) .

So Spec equals

Init ∧ 2(Next ∨ (chosen ′ = chosen))

which means that as well as allowing steps satisfying Next

it allows stuttering steps that leave chosen unchanged.

11



Remember our Consensus specification:

[A]b is an abbreviation for A ∨ (b′ = b) .

So Spec equals

Init ∧ 2(Next ∨ (chosen ′ = chosen))

which means that as well as allowing steps satisfying Next

it allows stuttering steps that leave chosen unchanged.

11



Remember our Consensus specification:

[A]b is an abbreviation for A ∨ (b′ = b) .

So Spec equals

Init ∧ 2(Next ∨ (chosen ′ = chosen))

which means that as well as allowing steps satisfying Next

it allows stuttering steps that leave chosen unchanged.

11



Remember our Consensus specification:

[A]b is an abbreviation for A ∨ (b′ = b) .

So Spec equals

Init ∧ 2(Next ∨ (chosen ′ = chosen))

which means that as well as allowing steps satisfying Next

it allows stuttering steps that leave chosen unchanged.

11



Remember our Consensus specification:

[A]b is an abbreviation for A ∨ (b′ = b) .

So Spec equals

Init ∧ 2(Next ∨ (chosen ′ = chosen))

which means that as well as allowing steps satisfying Next

it allows stuttering steps that leave chosen unchanged.

11



Remember our Consensus specification:

[A]b is an abbreviation for A ∨ (b′ = b) .

So Spec equals

Init ∧ 2(Next ∨ (chosen ′ = chosen))

which means that as well as allowing steps satisfying Next

it allows stuttering steps that leave chosen unchanged.

11



Remember the Voting specification:

We now know that this means Spec equals

Init ∧ 2(Next ∨ (〈votes,maxBal〉′ = 〈votes,maxBal〉))

′ means in the next state , so this allows steps that
leave 〈votes,maxBal〉 unchanged, which are steps that
leave both votes and maxBal unchanged, which are
stuttering steps.

13



Remember the Voting specification:

We now know that this means Spec equals

Init ∧ 2(Next ∨ (〈votes,maxBal〉′ = 〈votes,maxBal〉))

′ means in the next state , so this allows steps that
leave 〈votes,maxBal〉 unchanged, which are steps that
leave both votes and maxBal unchanged, which are
stuttering steps.

13



Remember the Voting specification:

We now know that this means Spec equals

Init ∧ 2(Next ∨ (〈votes,maxBal〉′ = 〈votes,maxBal〉))

′ means in the next state , so this allows steps that
leave 〈votes,maxBal〉 unchanged, which are steps that
leave both votes and maxBal unchanged, which are
stuttering steps.

13



Remember the Voting specification:

We now know that this means Spec equals

Init ∧ 2(Next ∨ (〈votes,maxBal〉′ = 〈votes,maxBal〉))

′ means in the next state , so this allows steps that
leave 〈votes,maxBal〉 unchanged, which are steps that
leave both votes and maxBal unchanged, which are
stuttering steps.

13



Remember the Voting specification:

We now know that this means Spec equals

Init ∧ 2(Next ∨ (〈votes,maxBal〉′ = 〈votes,maxBal〉))

′ means in the next state , so this allows steps that
leave 〈votes,maxBal〉 unchanged, which are steps that
leave both votes and maxBal unchanged, which are
stuttering steps.

13



Remember the Voting specification:

We now know that this means Spec equals

Init ∧ 2(Next ∨ (〈votes,maxBal〉′ = 〈votes,maxBal〉))

′ means in the next state , so this allows steps that
leave 〈votes,maxBal〉 unchanged, which are steps that
leave both votes and maxBal unchanged, which are
stuttering steps.

13



Remember the Voting specification:

We now know that this means Spec equals

Init ∧ 2(Next ∨ (〈votes,maxBal〉′ = 〈votes,maxBal〉))

′ means in the next state , so this allows steps that
leave 〈votes,maxBal〉 unchanged, which are steps that
leave both votes and maxBal unchanged, which are
stuttering steps.

13



Remember the Voting specification:

We now know that this means Spec equals

Init ∧ 2(Next ∨ (〈votes,maxBal〉′ = 〈votes,maxBal〉))

′ means in the next state , so this allows steps that
leave 〈votes,maxBal〉 unchanged, which are steps that
leave both votes and maxBal unchanged, which are
stuttering steps.

So the Voting spec allows stuttering steps.

13



Remember the Voting specification:

We now know that this means Spec equals

Init ∧ 2(Next ∨ (〈votes,maxBal〉′ = 〈votes,maxBal〉))

′ means in the next state , so this allows steps that
leave 〈votes,maxBal〉 unchanged, which are steps that
leave both votes and maxBal unchanged, which are
stuttering steps.

All TLA+ specs allow stuttering steps.

13



Think of a state in a behavior as a frame in a movie of the system

where the camera ran at an arbitrarily changing rate.

Speeding up the camera adds duplicate frames to the movie;
it doesn’t change the actual execution of the system.

A step of a behavior could represent the passing of an hour or of a
femtosecond.

If you want to describe the passage of real time, do what
real scientists do: add a variable that represents time.

We needn’t do that because Paxos is an asynchronous algorithm.

14



Think of a state in a behavior as a frame in a movie of the system

where the camera ran at an arbitrarily changing rate.

Speeding up the camera adds duplicate frames to the movie;
it doesn’t change the actual execution of the system.

A step of a behavior could represent the passing of an hour or of a
femtosecond.

If you want to describe the passage of real time, do what
real scientists do: add a variable that represents time.

We needn’t do that because Paxos is an asynchronous algorithm.

14



Think of a state in a behavior as a frame in a movie of the system

where the camera ran at an arbitrarily changing rate.

Speeding up the camera adds duplicate frames to the movie;
it doesn’t change the actual execution of the system.

A step of a behavior could represent the passing of an hour or of a
femtosecond.

If you want to describe the passage of real time, do what
real scientists do: add a variable that represents time.

We needn’t do that because Paxos is an asynchronous algorithm.

14



Think of a state in a behavior as a frame in a movie of the system

where the camera ran at an arbitrarily changing rate.

Speeding up the camera adds duplicate frames to the movie;
it doesn’t change the actual execution of the system.

A step of a behavior could represent the passing of an hour or of a
femtosecond.

If you want to describe the passage of real time, do what
real scientists do: add a variable that represents time.

We needn’t do that because Paxos is an asynchronous algorithm.

14



Think of a state in a behavior as a frame in a movie of the system

where the camera ran at an arbitrarily changing rate.

Speeding up the camera adds duplicate frames to the movie;
it doesn’t change the actual execution of the system.

A step of a behavior could represent the passing of an hour or of a
femtosecond.

If you want to describe the passage of real time, do what
real scientists do: add a variable that represents time.

We needn’t do that because Paxos is an asynchronous algorithm.

14



Think of a state in a behavior as a frame in a movie of the system

where the camera ran at an arbitrarily changing rate.

Speeding up the camera adds duplicate frames to the movie;
it doesn’t change the actual execution of the system.

A step of a behavior could represent the passing of an hour or of a
femtosecond.

If you want to describe the passage of real time, do what
real scientists do: add a variable that represents time.

We needn’t do that because Paxos is an asynchronous algorithm.

14



Think of a state in a behavior as a frame in a movie of the system

where the camera ran at an arbitrarily changing rate.

Speeding up the camera adds duplicate frames to the movie;
it doesn’t change the actual execution of the system.

A step of a behavior could represent the passing of an hour or of a
femtosecond.

If you want to describe the passage of real time, do what
real scientists do: add a variable that represents time.

We needn’t do that because Paxos is an asynchronous algorithm.

14



Think of a state in a behavior as a frame in a movie of the system

where the camera ran at an arbitrarily changing rate.

Speeding up the camera adds duplicate frames to the movie;
it doesn’t change the actual execution of the system.

A step of a behavior could represent the passing of an hour or of a
femtosecond.

If you want to describe the passage of real time, do what
real scientists do: add a variable that represents time.

We needn’t do that because Paxos is an asynchronous algorithm.

14



We now return to our goal:
Showing that the voting algorithm implements
the consensus spec where the variable chosen

of the Consensus spec is implemented with the
expression chosen defined in the Voting spec by:

15



We now return to our goal:
Showing that the voting algorithm implements
the consensus spec, where the variable chosen

of the Consensus spec is implemented with the
expression chosen defined in the Voting spec by:

15



We now return to our goal:
Showing that the voting algorithm implements
the consensus spec, where the variable chosen

of the Consensus spec is implemented with the
expression chosen defined in the Voting spec by:

15



We now return to our goal:
Showing that the voting algorithm implements
the consensus spec, where the variable chosen

of the Consensus spec is implemented with the
expression chosen defined in the Voting spec by:

15



We now return to our goal:
Showing that the voting algorithm implements
the consensus spec, where the variable chosen

of the Consensus spec is implemented with the
expression chosen defined in the Voting spec by:

15



We have to show that for any behavior of the Voting algorithm:[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
- · · ·

If we take the values of chosen in each state
and assign them to the variable chosen

we get a behavior that satisfies the Consensus spec.

This condition is equivalent to the condition that the original behavior
satisfies

17



We have to show that for any behavior of the Voting algorithm:[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
- · · ·

chosen = · · · chosen = · · · chosen = · · · · · ·

If we take the values of chosen in each state
and assign them to the variable chosen

we get a behavior that satisfies the Consensus spec.

This condition is equivalent to the condition that the original behavior
satisfies

17



We have to show that for any behavior of the Voting algorithm:[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
- · · ·

chosen = · · · chosen = · · · chosen = · · · · · ·

If we take the values of chosen in each state
and assign them to the variable chosen

we get a behavior that satisfies the Consensus spec.

This condition is equivalent to the condition that the original behavior
satisfies

17



We have to show that for any behavior of the Voting algorithm:[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
- · · ·

· · ·
[
chosen = · · ·

] [
chosen = · · ·

] [
chosen = · · ·

]
- - -

If we take the values of chosen in each state
and assign them to the variable chosen

we get a behavior that satisfies the Consensus spec.

This condition is equivalent to the condition that the original behavior
satisfies

17



We have to show that for any behavior of the Voting algorithm:[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
- · · ·

· · ·
[
chosen = · · ·

] [
chosen = · · ·

] [
chosen = · · ·

]
- - -

If we take the values of chosen in each state
and assign them to the variable chosen

we get a behavior that satisfies the Consensus spec.

This condition is equivalent to the condition that the original behavior
satisfies

17



We have to show that for any behavior of the Voting algorithm:[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
- · · ·

· · ·
[
chosen = · · ·

] [
chosen = · · ·

] [
chosen = · · ·

]
- - -

If we take the values of chosen in each state
and assign them to the variable chosen

we get a behavior that satisfies the Consensus spec.

This condition is equivalent to the condition that the original behavior
satisfies

17



We have to show that for any behavior of the Voting algorithm:[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
- · · ·

· · ·
[
chosen = · · ·

] [
chosen = · · ·

] [
chosen = · · ·

]
- - -

If we take the values of chosen in each state
and assign them to the variable chosen

we get a behavior that satisfies the Consensus spec.

This condition is equivalent to the condition that the original behavior
satisfies

17



We have to show that for any behavior of the Voting algorithm:[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
- · · ·

· · ·
[
chosen = · · ·

] [
chosen = · · ·

] [
chosen = · · ·

]
- - -

If we take the values of chosen in each state
and assign them to the variable chosen

we get a behavior that satisfies the Consensus spec.

This condition is equivalent to the condition that the original behavior
satisfies the formula obtained by substituting the definition of chosen

in Voting for the variable chosen in formula Spec of Consensus .

17



We have to show that for any behavior of the Voting algorithm:[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
- · · ·

· · ·
[
chosen = · · ·

] [
chosen = · · ·

] [
chosen = · · ·

]
- - -

If we take the values of chosen in each state
and assign them to the variable chosen

we get a behavior that satisfies the Consensus spec.

This condition is equivalent to the condition that the original behavior
satisfies the formula obtained by substituting the definition of chosen

in Voting for the variable chosen in formula Spec of Consensus .

I don’t expect you to see why these two conditions are equivalent.
That requires a lot of thinking. For now, you’ll have to believe me.

17



We have to show that for any behavior of the Voting algorithm:[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
- · · ·

· · ·
[
chosen = · · ·

] [
chosen = · · ·

] [
chosen = · · ·

]
- - -

If we take the values of chosen in each state
and assign them to the variable chosen

we get a behavior that satisfies the Consensus spec.

This condition is equivalent to the condition that the original behavior
satisfies the formula obtained by substituting the definition of chosen

in Voting for the variable chosen in formula Spec of Consensus .

I don’t expect you to see why these two conditions are equivalent.
That requires a lot of thinking. For now, you’ll have to believe me.

17



We have to show that for any behavior of the Voting algorithm:[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
- · · ·

· · ·
[
chosen = · · ·

] [
chosen = · · ·

] [
chosen = · · ·

]
- - -

If we take the values of chosen in each state
and assign them to the variable chosen

we get a behavior that satisfies the Consensus spec.

This condition is equivalent to the condition that the original behavior
satisfies the formula obtained by substituting the definition of chosen

in Voting for the variable chosen in formula Spec of Consensus .

I don’t expect you to see why these two conditions are equivalent.
That requires a lot of thinking. For now, you’ll have to believe me.

17



We have to show that for any behavior of the Voting algorithm:[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
- · · ·

· · ·
[
chosen = · · ·

] [
chosen = · · ·

] [
chosen = · · ·

]
- - -

If we take the values of chosen in each state
and assign them to the variable chosen

we get a behavior that satisfies the Consensus spec.

This condition is equivalent to the condition that the original behavior
satisfies the formula obtained by substituting the definition of chosen

in Voting for the variable chosen in formula Spec of Consensus .

Let’s call this formula Specsub
C

.

17



We have to show that for any behavior of the Voting algorithm:[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
- · · ·

· · ·
[
chosen = · · ·

] [
chosen = · · ·

] [
chosen = · · ·

]
- - -

If we take the values of chosen in each state
and assign them to the variable chosen

we get a behavior that satisfies the Consensus spec.

This condition is equivalent to the condition that the original behavior
satisfies Specsub

C
.

Let’s call this formula Specsub
C

.

17



We have to show that for any behavior of the Voting algorithm:[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
- · · ·

· · ·
[
chosen = · · ·

] [
chosen = · · ·

] [
chosen = · · ·

]
- - -

If we take the values of chosen in each state
and assign them to the variable chosen

we get a behavior that satisfies the Consensus spec.

This condition is equivalent to the condition that the original behavior
satisfies Specsub

C
.

17



We have to show that for any behavior of the Voting algorithm:[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
- · · ·

· · ·
[
chosen = · · ·

] [
chosen = · · ·

] [
chosen = · · ·

]
- - -

If we take the values of chosen in each state
and assign them to the variable chosen

we get a behavior that satisfies the Consensus spec.

This condition is equivalent to the condition that the original behavior
satisfies Specsub

C
.

17



We have to show that for any behavior of the Voting algorithm:[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
-
[
votes = · · ·
maxBal = · · ·

]
- · · ·

· · ·
[
chosen = · · ·

] [
chosen = · · ·

] [
chosen = · · ·

]
- - -

If we take the values of chosen in each state
and assign them to the variable chosen

we get a behavior that satisfies the Consensus spec.

This condition is equivalent to the condition that the original behavior
satisfies Specsub

C
.

17



We have to show:

Any behavior of the Voting algorithm satisfies Specsub
C

.

Let’s now see how that theorem is written in TLA+.

19



We have to show:

Any behavior of the Voting algorithm satisfies Specsub
C

.

Let SpecV be formula Spec of module Voting .

Let’s now see how that theorem is written in TLA+.

19



We have to show:

Any behavior of the Voting algorithm satisfies Specsub
C

.

Let SpecV be formula Spec of module Voting .

Let’s now see how that theorem is written in TLA+.

19



We have to show:

Any behavior satisfying SpecV satisfies Specsub
C

.

Let SpecV be formula Spec of module Voting .

Let’s now see how that theorem is written in TLA+.

19



We have to show:

Any behavior satisfying SpecV satisfies Specsub
C

.

Let’s now see how that theorem is written in TLA+.

19



We have to show:

Any behavior satisfying SpecV satisfies Specsub
C

.

Let’s now see how that theorem is written in TLA+.

19



We have to show:

Any behavior satisfying SpecV satisfies Specsub
C

.

THEOREM SpecV ⇒ Specsub
C

Let’s now see how that theorem is written in TLA+.

19



We have to show:

Any behavior satisfying SpecV satisfies Specsub
C

.

THEOREM SpecV ⇒ Specsub
C

Let’s now see how that theorem is written in TLA+.

19



THEOREM SpecV ⇒ Specsub
C

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

25



THEOREM SpecV ⇒ Specsub
C

We will write the theorem in module Voting

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

25



THEOREM SpecV ⇒ Specsub
C

We will write the theorem in module Voting , so this is just Spec .

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

25



THEOREM SpecV ⇒ Specsub
C

We will write the theorem in module Voting , so this is just Spec .

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

25



THEOREM Spec ⇒ Specsub
C

We will write the theorem in module Voting , so this is just Spec .

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

25



THEOREM Spec ⇒ Specsub
C

To write Specsub
C

, module Voting must import the
definition of Spec from module Consensus .

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

25



THEOREM Spec ⇒ Specsub
C

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen
This imports all the definitions from Consensus .

25



THEOREM Spec ⇒ Specsub
C

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen
This imports all the definitions from Consensus .

But to prevent name clashes, the names of the imported definitions
must be changed.

25



THEOREM Spec ⇒ Specsub
C

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen
This imports all the definitions from Consensus with their names
prefixed by C ! .

For example Next is imported as C !Next .

25



THEOREM Spec ⇒ Specsub
C

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen
This imports all the definitions from Consensus with their names
prefixed by C ! .

For example Next is imported as C !Next .

25



THEOREM Spec ⇒ Specsub
C

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

The following kinds of symbols appear in module Consensus:

– TLA+ primitive operators

– Defined operators

– The declared symbols Value and chosen .

25



THEOREM Spec ⇒ Specsub
C

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

The following kinds of symbols appear in module Consensus:

– TLA+ primitive operators

– Defined operators

– The declared symbols Value and chosen .

25



THEOREM Spec ⇒ Specsub
C

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

The following kinds of symbols appear in module Consensus:

– TLA+ primitive operators such as ∧ ⊆ 2

– Defined operators

– The declared symbols Value and chosen .

25



THEOREM Spec ⇒ Specsub
C

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

The following kinds of symbols appear in module Consensus:

– TLA+ primitive operators such as ∧ ⊆ 2

They are meaningful in module Voting .

– Defined operators

– The declared symbols Value and chosen .

25



THEOREM Spec ⇒ Specsub
C

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

The following kinds of symbols appear in module Consensus:

– TLA+ primitive operators

– Defined operators

– The declared symbols Value and chosen .

25



THEOREM Spec ⇒ Specsub
C

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

The following kinds of symbols appear in module Consensus:

– TLA+ primitive operators

– Defined operators such as Next Inv

– The declared symbols Value and chosen .

25



THEOREM Spec ⇒ Specsub
C

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

The following kinds of symbols appear in module Consensus:

– TLA+ primitive operators

– Defined operators such as Next Inv IsFiniteSet ≤
– The declared symbols Value and chosen .

25



THEOREM Spec ⇒ Specsub
C

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

The following kinds of symbols appear in module Consensus:

– TLA+ primitive operators

– Defined operators such as Next Inv IsFiniteSet ≤
imported with EXTENDS

– The declared symbols Value and chosen .

25



THEOREM Spec ⇒ Specsub
C

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

The following kinds of symbols appear in module Consensus:

– TLA+ primitive operators

– Defined operators such as Next Inv IsFiniteSet ≤
They are imported (renamed) into Voting with their definitions.

– The declared symbols Value and chosen .

25



THEOREM Spec ⇒ Specsub
C

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

The following kinds of symbols appear in module Consensus:

– TLA+ primitive operators

– Defined operators

– The declared symbols Value and chosen .

25



THEOREM Spec ⇒ Specsub
C

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

The following kinds of symbols appear in module Consensus:

– TLA+ primitive operators

– Defined operators

– The declared symbols Value and chosen .
Those symbols have meanings in module Voting .
But how do we know those meanings are related
to their meanings in module Consensus ?
We have to say what expressions must be substituted for them.

25



THEOREM Spec ⇒ Specsub
C

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

The following kinds of symbols appear in module Consensus:

– TLA+ primitive operators

– Defined operators

– The declared symbols Value and chosen .
Those symbols have meanings in module Voting .
But how do we know those meanings are related
to their meanings in module Consensus ?
We have to say what expressions must be substituted for them.

25



THEOREM Spec ⇒ Specsub
C

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

The following kinds of symbols appear in module Consensus:

– TLA+ primitive operators

– Defined operators

– The declared symbols Value and chosen .
Those symbols have meanings in module Voting .
But how do we know those meanings are related
to their meanings in module Consensus ?
We have to say what expressions must be substituted for them.

25



THEOREM Spec ⇒ Specsub
C

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

25



THEOREM Spec ⇒ Specsub
C

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

25



THEOREM Spec ⇒ Specsub
C

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

25



THEOREM Spec ⇒ Specsub
C

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

These are the declared symbols of module Consensus .
The are expressions of module Voting .

25



THEOREM Spec ⇒ Specsub
C

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

These are the declared symbols of module Consensus .
The are expressions of module Voting .

25



THEOREM Spec ⇒ Specsub
C

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

This symbol is defined in Voting by

25



THEOREM Spec ⇒ Specsub
C

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

This symbol is defined in Voting by

25



THEOREM Spec ⇒ Specsub
C

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

This symbol is defined in Voting by

We can replace it by this, since the two are equivalent
in module Voting .

25



THEOREM Spec ⇒ Specsub
C

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

This symbol is defined in Voting by

We can replace it by this, since the two are equivalent
in module Voting .

25



THEOREM Spec ⇒ Specsub
C

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

This symbol is defined in Voting by

We can replace it by this, since the two are equivalent
in module Voting .

25



THEOREM Spec ⇒ Specsub
C

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

25



THEOREM Spec ⇒ Specsub
C

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

So we can now write Specsub
C

as C !Spec .

25



THEOREM Spec ⇒ C !Spec

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

So we can now write Specsub
C

as C !Spec .

25



THEOREM Spec ⇒ C !Spec

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

25



THEOREM Spec ⇒ C !Spec

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

THEOREM Spec ⇒ C !Spec

25



THEOREM Spec ⇒ C !Spec

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

THEOREM Spec ⇒ C !Spec

Of course, it has to go after the INSTANCE statement.

25



THEOREM Spec ⇒ C !Spec

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

We can make one final simplification.

When we substitute the same symbol for a symbol
we can omit that WITH clause.

25



THEOREM Spec ⇒ C !Spec

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

We can make one final simplification.

When we substitute the same symbol for a symbol
we can omit that WITH clause.

25



THEOREM Spec ⇒ C !Spec

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

We can make one final simplification.

When we substitute the same symbol for a symbol
we can omit that WITH clause.

25



THEOREM Spec ⇒ C !Spec

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

We can make one final simplification.

When we substitute the same symbol for a symbol
we can omit that WITH clause.

25



THEOREM Spec ⇒ C !Spec

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen

We can make one final simplification.

When we substitute the same symbol for a symbol
we can omit that WITH clause.

25



THEOREM Spec ⇒ C !Spec

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen
THEOREM Spec ⇒ C !Spec

25



THEOREM Spec ⇒ C !Spec

C
∆
= INSTANCE Consensus

WITH Value ← Value, chosen ← chosen
THEOREM Spec ⇒ C !Spec

This theorem asserts that algorithm Voting implements
the Consensus spec under its definition of consensus .

25



THEOREM Spec ⇒ C !Spec

The model checker can check this theorem.

We can also prove it, using a few simple proof rules.

The proof uses an invariant maintained by the
algorithm that explains why it is correct.

The invariant is defined in the Voting module.

25



THEOREM Spec ⇒ C !Spec

The model checker can check this theorem.

We can also prove it, using a few simple proof rules.

The proof uses an invariant maintained by the
algorithm that explains why it is correct.

The invariant is defined in the Voting module.

25



THEOREM Spec ⇒ C !Spec

The model checker can check this theorem.

We can also prove it, using a few simple proof rules.

The proof uses an invariant maintained by the
algorithm that explains why it is correct.

The invariant is defined in the Voting module.

25



THEOREM Spec ⇒ C !Spec

The model checker can check this theorem.

We can also prove it, using a few simple proof rules.

The proof uses an invariant maintained by the
algorithm that explains why it is correct.

The invariant is defined in the Voting module.

25



THEOREM Spec ⇒ C !Spec

The model checker can check this theorem.

We can also prove it, using a few simple proof rules.

The proof uses an invariant maintained by the
algorithm that explains why it is correct.

The invariant is defined in the Voting module.

25



THEOREM Spec ⇒ C !Spec

The model checker can check this theorem.

We can also prove it, using a few simple proof rules.

The proof uses an invariant maintained by the
algorithm that explains why it is correct.

The invariant is defined in the Voting module.

25



Safety and Liveness

I said this was a behavior satisfying the Consensus spec[
chosen = { }

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
- · · ·

The hour clock and everything else doesn’t stop
just because the Consensus “algorithm” stops.

Termination of a system execution is represented by
a behavior ending in all stuttering steps.

This makes the math simpler.

26



Safety and Liveness

I said this was a behavior satisfying the Consensus spec[
chosen = { }

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
- · · ·

The hour clock and everything else doesn’t stop
just because the Consensus “algorithm” stops.

Termination of a system execution is represented by
a behavior ending in all stuttering steps.

This makes the math simpler.

26



Safety and Liveness

I said this was a behavior satisfying the Consensus spec[
chosen = { }

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
- · · ·

because the spec allowed no step from this state.

That was wrong because it allows these steps.

The hour clock and everything else doesn’t stop
just because the Consensus “algorithm” stops.

Termination of a system execution is represented by
a behavior ending in all stuttering steps.

This makes the math simpler.

26



Safety and Liveness

I said this was a behavior satisfying the Consensus spec[
chosen = { }

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
- · · ·

because the spec allowed no step from this state.

That was wrong because it allows these steps.

The hour clock and everything else doesn’t stop
just because the Consensus “algorithm” stops.

Termination of a system execution is represented by
a behavior ending in all stuttering steps.

This makes the math simpler.

26



Safety and Liveness

I said this was a behavior satisfying the Consensus spec[
chosen = { }

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
- · · ·

The hour clock and everything else doesn’t stop
just because the Consensus “algorithm” stops.

Termination of a system execution is represented by
a behavior ending in all stuttering steps.

This makes the math simpler.

26



Safety and Liveness

I said this was a behavior satisfying the Consensus spec[
chosen = { }

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
- · · ·

The hour clock and everything else doesn’t stop
just because the Consensus “algorithm” stops.

Termination of a system execution is represented by
a behavior ending in all stuttering steps.

This makes the math simpler.

26



Safety and Liveness

I said this was a behavior satisfying the Consensus spec[
chosen = { }

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
- · · ·

The hour clock and everything else doesn’t stop
just because the Consensus “algorithm” stops.

Termination of a system execution is represented by
a behavior ending in all stuttering steps.

This makes the math simpler.

26



The spec Init ∧ 2[Next ]chosen of module Consensus

allows these behaviors:[
chosen = { }

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
- · · ·[

chosen = { }
]
-
[
chosen = { }

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
- · · ·[

chosen = { }
]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = {42}

]
- · · ·[

chosen = { }
]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = { }

]
- · · ·

qqq

27



The spec Init ∧ 2[Next ]chosen of module Consensus

allows these behaviors:[
chosen = { }

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
- · · ·[

chosen = { }
]
-
[
chosen = { }

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
- · · ·[

chosen = { }
]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = {42}

]
- · · ·[

chosen = { }
]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = { }

]
- · · ·

qqq

27



The spec Init ∧ 2[Next ]chosen of module Consensus

allows these behaviors:[
chosen = { }

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
- · · ·[

chosen = { }
]
-
[
chosen = { }

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
- · · ·[

chosen = { }
]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = {42}

]
- · · ·[

chosen = { }
]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = { }

]
- · · ·

qqq

27



The spec Init ∧ 2[Next ]chosen of module Consensus

allows these behaviors:[
chosen = { }

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
- · · ·[

chosen = { }
]
-
[
chosen = { }

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
- · · ·[

chosen = { }
]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = {42}

]
- · · ·[

chosen = { }
]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = { }

]
- · · ·

qqq

27



The spec Init ∧ 2[Next ]chosen of module Consensus

allows these behaviors:[
chosen = { }

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
- · · ·[

chosen = { }
]
-
[
chosen = { }

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
- · · ·[

chosen = { }
]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = {42}

]
- · · ·[

chosen = { }
]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = { }

]
- · · ·

qqq

27



The spec Init ∧ 2[Next ]chosen of module Consensus

allows these behaviors:[
chosen = { }

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
- · · ·[

chosen = { }
]
-
[
chosen = { }

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
- · · ·[

chosen = { }
]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = {42}

]
- · · ·[

chosen = { }
]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = { }

]
- · · ·

qqq

27



The spec Init ∧ 2[Next ]chosen of module Consensus

allows these behaviors:[
chosen = { }

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
- · · ·[

chosen = { }
]
-
[
chosen = { }

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
- · · ·[

chosen = { }
]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = {42}

]
- · · ·[

chosen = { }
]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = { }

]
- · · ·

qqq
Behaviors that take an arbitrary number of stuttering steps
before a value is chosen.

27



The spec Init ∧ 2[Next ]chosen of module Consensus

allows these behaviors:[
chosen = { }

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
- · · ·[

chosen = { }
]
-
[
chosen = { }

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
- · · ·[

chosen = { }
]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = {42}

]
- · · ·[

chosen = { }
]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = { }

]
- · · ·

qqq
It also allows a behavior containing only stuttering steps

describing an execution that terminates without choosing a value.

27



The spec Init ∧ 2[Next ]chosen of module Consensus

allows these behaviors:[
chosen = { }

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
- · · ·[

chosen = { }
]
-
[
chosen = { }

]
-
[
chosen = {42}

]
-
[
chosen = {42}

]
- · · ·[

chosen = { }
]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = {42}

]
- · · ·[

chosen = { }
]
-
[
chosen = { }

]
-
[
chosen = { }

]
-
[
chosen = { }

]
- · · ·

qqq
It also allows a behavior containing only stuttering steps

describing an execution that terminates without choosing a value.

27



Init ∧ 2[Next ]chosen

28



Init ∧ 2[Next ]chosen

This formula says what steps are allowed to occur.

It doesn’t say what steps must occur.

28



Init ∧ 2[Next ]chosen

This formula says what steps are allowed to occur.

It doesn’t say what steps must occur.

28



Init ∧ 2[Next ]chosen

An assertion of what is allowed to happen is called a
safety property.

An assertion of what must happen is called a
liveness property.

To specify that a value must be chosen, we’d have to
conjoin a liveness property to the spec.

That’s easy to do, but I won’t do it.

Adding the requirement that a value must be chosen
produces a spec that we can’t implement.

28



Init ∧ 2[Next ]chosen

An assertion of what is allowed to happen is called a
safety property.

An assertion of what must happen is called a
liveness property.

To specify that a value must be chosen, we’d have to
conjoin a liveness property to the spec.

That’s easy to do, but I won’t do it.

Adding the requirement that a value must be chosen
produces a spec that we can’t implement.

28



Init ∧ 2[Next ]chosen

An assertion of what is allowed to happen is called a
safety property.

An assertion of what must happen is called a
liveness property.

To specify that a value must be chosen, we’d have to
conjoin a liveness property to the spec.

That’s easy to do, but I won’t do it.

Adding the requirement that a value must be chosen
produces a spec that we can’t implement.

28



Init ∧ 2[Next ]chosen ∧ . . .

An assertion of what is allowed to happen is called a
safety property.

An assertion of what must happen is called a
liveness property.

To specify that a value must be chosen, we’d have to
conjoin a liveness property to the spec.

That’s easy to do, but I won’t do it.

Adding the requirement that a value must be chosen
produces a spec that we can’t implement.

28



Init ∧ 2[Next ]chosen ∧ . . .

An assertion of what is allowed to happen is called a
safety property.

An assertion of what must happen is called a
liveness property.

To specify that a value must be chosen, we’d have to
conjoin a liveness property to the spec.

That’s easy to do, but I won’t do it.

Adding the requirement that a value must be chosen
produces a spec that we can’t implement.

28



Init ∧ 2[Next ]chosen ∧ . . .

An assertion of what is allowed to happen is called a
safety property.

An assertion of what must happen is called a
liveness property.

To specify that a value must be chosen, we’d have to
conjoin a liveness property to the spec.

That’s easy to do (TLA+ is great for specifying liveness), but I won’t do it.

Adding the requirement that a value must be chosen
produces a spec that we can’t implement.

28



Init ∧ 2[Next ]chosen ∧ . . .

An assertion of what is allowed to happen is called a
safety property.

An assertion of what must happen is called a
liveness property.

To specify that a value must be chosen, we’d have to
conjoin a liveness property to the spec.

That’s easy to do, but I won’t do it.

Adding the requirement that a value must be chosen
produces a spec that we can’t implement.

28



Init ∧ 2[Next ]chosen

An assertion of what is allowed to happen is called a
safety property.

An assertion of what must happen is called a
liveness property.

To specify that a value must be chosen, we’d have to
conjoin a liveness property to the spec.

That’s easy to do, but I won’t do it.

Adding the requirement that a value must be chosen
produces a spec that we can’t implement.

28



The FLP Theorem

Impossibility of Distributed Consensus with One Faulty Process

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson

Journal of the ACM, 1985

It’s impossible to implement consensus with the requirement
that a value is eventually chosen in a distributed system in which
any single process may fail by stopping.

The Paxos consensus algorithm is useful because

– It never chooses more than one value no matter
how many processes stop.

– It has a very high probability of choosing a value if
not too many processes stop.

30



The FLP Theorem

Impossibility of Distributed Consensus with One Faulty Process

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson

Journal of the ACM, 1985

It’s impossible to implement consensus with the requirement
that a value is eventually chosen in a distributed system in which
any single process may fail by stopping.

The Paxos consensus algorithm is useful because

– It never chooses more than one value no matter
how many processes stop.

– It has a very high probability of choosing a value if
not too many processes stop.

30



The FLP Theorem

Impossibility of Distributed Consensus with One Faulty Process

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson

Journal of the ACM, 1985

It’s impossible to implement consensus with the requirement
that a value is eventually chosen in a distributed system in which
any single process may fail by stopping.

The Paxos consensus algorithm is useful because

– It never chooses more than one value no matter
how many processes stop.

– It has a very high probability of choosing a value if
not too many processes stop.

30



The FLP Theorem

Impossibility of Distributed Consensus with One Faulty Process

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson

Journal of the ACM, 1985

It’s impossible to implement consensus with the requirement
that a value is eventually chosen in a distributed system in which
any single process may fail by stopping.

The Paxos consensus algorithm is useful because

– It never chooses more than one value no matter
how many processes stop.

– It has a very high probability of choosing a value if
not too many processes stop.

30



The FLP Theorem

Impossibility of Distributed Consensus with One Faulty Process

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson

Journal of the ACM, 1985

It’s impossible to implement consensus with the requirement
that a value is eventually chosen in a distributed system in which
any single process may fail by stopping.

The Paxos consensus algorithm is useful because

– It never chooses more than one value no matter
how many processes stop.

– It has a very high probability of choosing a value if
not too many processes stop.

30



The FLP Theorem

Impossibility of Distributed Consensus with One Faulty Process

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson

Journal of the ACM, 1985

It’s impossible to implement consensus with the requirement
that a value is eventually chosen in a distributed system in which
any single process may fail by stopping.

The Paxos consensus algorithm is useful because

– It never chooses more than one value no matter
how many processes stop.

– It has a very high probability of choosing a value if
not too many processes stop.

30



The FLP Theorem

Impossibility of Distributed Consensus with One Faulty Process

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson

Journal of the ACM, 1985

It’s impossible to implement consensus with the requirement
that a value is eventually chosen in a distributed system in which
any single process may fail by stopping.

The Paxos consensus algorithm is useful because

– It never chooses more than one value no matter
how many processes stop.

– It has a very high probability of choosing a value if
not too many processes stop.

30



The FLP Theorem

Impossibility of Distributed Consensus with One Faulty Process

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson

Journal of the ACM, 1985

It’s impossible to implement consensus with the requirement
that a value is eventually chosen in a distributed system in which
any single process may fail by stopping.

The Paxos consensus algorithm is useful because

– It never chooses more than one value no matter
how many processes stop.

– It has a very high probability of choosing a value if
not too many processes stop.

30



The FLP Theorem

Impossibility of Distributed Consensus with One Faulty Process

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson

Journal of the ACM, 1985

It’s impossible to implement consensus with the requirement
that a value is eventually chosen in a distributed system in which
any single process may fail by stopping.

The Paxos consensus algorithm is useful because

– It never chooses more than one value no matter
how many processes stop.

– It has a very high probability of choosing a value if
not too many processes stop.

30



The FLP Theorem

Impossibility of Distributed Consensus with One Faulty Process

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson

Journal of the ACM, 1985

It’s impossible to implement consensus with the requirement
that a value is eventually chosen in a distributed system in which
any single process may fail by stopping.

The Paxos consensus algorithm is useful because

– It never chooses more than one value no matter
how many processes stop.

– It has a very high probability of choosing a value if
not too many processes stop.

30


