
Trino(Presto)DB:
Zero Copy Lakehouse

Artem Aliev

Huawei

Artem Aliev

• Huawei Cloud Hybrid Integration Platform
• Expert and solution architect

• 20+ years in Software Development
• Big data platforms integrations
• Apache Hadoop, Spark, Cassandra, TinkerPop
• Storage optimizations
• JVM development

• SpbU teacher

artem.aliev@gmail.com

mailto:artem.aliev@gmail.com

Application scenarios

• Data enrichment and composition services

• Multi-datasource, multi-cloud, micro service environment

• Exploration analytic
• What else we have for analyses?

• Fraud/Security breach detection and prevention

• ML model inference

Application scenarios

• Data enrichment and composition services

• Multi-datasource, multi-cloud, micro service environment

• Exploration analytic
• What else we have for analyses?

• Fraud/Security breach detection and prevention

• ML model inference

Requirements

• Interactive queries (join queries)
• Seconds for analytics

• Sub-seconds for user services

• Different Data Sources
• SQL/NoSQL databases

• S3 files and Hadoop Systems

• REST Services

• Consistent up-to-date results

• Open Source

select distinct i_name, i_price

from warehouse

join district on (w_id = d_w_id)

join customer on (d_w_id = c_w_id and d_id = c_d_id)

join orders on (o_w_id = w_id and o_d_id = d_id and o_c_id = c_id)

join order_line on (o_w_id = ol_w_id and o_d_id = ol_d_id and o_id = ol_o_id)

join stock on (ol_supply_w_id = s_w_id and ol_i_id = s_i_id)

join item on (s_i_id = i_id)

where w_id = 50 and c_id = 101;

Example (tpc-c)
Show user history for the
given warehouse.

Warehouse
100 rows

History
3 000 000

rows

District
1000 rows

Stock
10 000 000

rows

Item
100 000

rows

New-Order
900 000 rows

Order-Line
30 000 000 rows

Customer
3 000 000 rows

Order
3 000 000 rows

seconds

MPP DB 20-80

Tuned Trino 4

Postgres 0.7

Traditional Stack

• Data Lake
• Hive, Spark, Impala, Trino, Drill, Dremio*

• Data warehouse
• ClickHouse, Greenplum, Vertica*

• Data marts
• Postgres, Mysql, ClickHouse

ETL/ELT from sources to data marts

• Nightly by batches

• Streaming
• Fast

• Need special database to enrich and join data in the stream
• Redis, Cassandra, etc..

• Eager enrichments

• Both fights with:
• Data source model changes

• Loading failures

• Inconsistent loading

Databricks Solution: Lakehouse

Databricks Solution: Lakehouse

NO ETL!

• Big Data as usual DataBase

• Direct request to Data Sources

Micro service architecture support

• A lot of small exotic databases

• “Agile” development with a lot of schema changes

• REST API data access only

• Pay per request
• Google API, etc

Feature requirements summary

• Schema changes tolerance

• Advanced pushdowns to data sources and optimizations
• Legacy databases are still better in indexing

• No ETL
• Extreme: No caches, local materialized views, reflections, etc.

• Avoid full scans

• REST endpoint support

• Open Source

Candidate tested

• Postgres with FDW
• Very old and unsupported plugins
• Pushdowns works only with other Postgres

• Drill – schema-free for Hadoop
• Not in active development
• Optimizer is not good

• TrinoDB
• Very easy REST connector development

• Dremio -- not really Open Source

• Hive, Spark – files and manual jdbc only

The winner is: Presto

• Facebook develop Presto at 2012 and release to OS at 2013

• 2019
• PrestoDB supported by Facebook in Linux Foundation

• https://github.com/prestodb/presto
• PrestoSQL supported by Starburst

• 2020 Renamed to TrinoDB
• https://github.com/trinodb/trino

• 2020 OpenLooKeng from Huawei
• https://gitee.com/openlookeng/hetu-core

• Cloud Services

https://github.com/prestodb/presto
https://github.com/trinodb/trino
https://gitee.com/openlookeng/hetu-core

TrinoDB/PrestoDB

• SQL

• 30+ connectors

• Easy to develop new connectors

• Dynamic Catalog
• Represent data as tables

• In schema, in catalog

• Common type system
• Type conversions for columns

• Query planner is types aware

Classical Distributed Architecture

Adding Datasouce

• Just drop a property file into etc/catalog directory

• File name is a catalog name

• Schemas and tables will be loaded from the connector

connector.name=postgresql

connection-url=jdbc:postgresql://localhost:5432/tpcc

connection-user=postgres

connection-password=password

Great Optimization Engine

• Cost based optimizations (CBO)
• Hive connector only

• Pushdowns
• Predicate

• Optimizer propagates constants through joins
• Dynamic filtering support for joins (base on CBO)

• Projection
• Aggregation!
• JOIN*
• TOP-N and LIMITs

• ORDER BY ... LIMIT N or ORDER BY ... FETCH FIRST N ROWS

select distinct i_name, i_price

from warehouse

join district on (w_id = d_w_id)

join customer on (d_w_id = c_w_id and d_id = c_d_id)

join orders on (o_w_id = w_id and o_d_id = d_id and o_c_id = c_id)

join order_line on (o_w_id = ol_w_id and o_d_id = ol_d_id and o_id = ol_o_id)

join stock on (ol_supply_w_id = s_w_id and ol_i_id = s_i_id)

join item on (s_i_id = i_id)

where w_id = 50 and c_id = 101;

Highly-Selective Join
Show user history for given
warehouse.

Warehouse
100 rows

History
3 000 000

rows

District
1000 rows

Stock
10 000 000

rows

Item
100 000

rows

New-Order
900 000 rows

Order-Line
30 000 000 rows

Customer
3 000 000 rows

Order
3 000 000 rows

seconds

MPP DB 20-80

Tuned Trino 4

Postgres 0.7

Nested Loop Join

Nested Loop Join

First Attempt: Dynamic Filtering

• Collect ids from the right side

• Push ids to the left side join

• CBO is recommended

• Hive and Memory supported

• JDBC PR #7968

https://github.com/trinodb/trino/issues/7968

Secret Index Joins for Thrift Connector

• Is used to integrate external storage system without connector.

• Just wrap you service with ThriftServer

• Works for REST API!

• Wrapping JDBC

Is inconvenient

Apache Thrift overview

• Thrift is Remote Procedure Call Server development framework

• Development:
• Describe interface in .thrift file.

• Generate service interface and client code:

thrift --gen java TrinoThriftService.thrift

• Implement interfaces for the server

• Trino example ThriftTpchServer

https://github.com/trinodb/trino/blob/master/docs/src/main/sphinx/include/TrinoThriftService.thrift
https://github.com/trinodb/trino/blob/master/plugin/trino-thrift-testing-server/src/main/java/io/trino/plugin/thrift/server/ThriftTpchServer.java

Adding Index to JDBC connector

• Just add ;)

• Not in open source yet

Fixed:

• From 80 sec to 4

REST API and micro services

• Faceboook use(d) ThriftService
• Create thrift server for your microservices

• trino-example-http connector
• Modify for your needs

• Don’t forget about Index Provider

• We developed simple configurable connector for our internal services

Zero Copy Done!

• No need to build huge data lake with a lot of servers a head of time

• Single node TrinoDB could do data exploration

Let see other features:

Security

• HTTPS with TLS 1.2, 1.3

• User auth: Password,LDAP,Oauth,Kerberos,JWT,Certificate

• Access Control
• up to table operations

• System operations

Administration

• Web UI for monitoring

• JMX monitoring

• Resource groups
• Memory, CPU limits

• Queues

• Spill to disk support

Dynamic datasource reconfiguration

• Static property files by default

• PR: #12605

• OpenLooKeng fork

https://github.com/prestodb/presto/pull/12605

Caching

• Alluxio FS cache for Hive

• Memory connector

Indexing for Hive

• OpenLooKeng exclusive feature

• Bloom, Btree, MinMax,Bitmap indexes

https://openlookeng.io/docs/docs/indexer/overview.html

High Availability

• OpenLooKeng
• Active-Active base on distributed cache

• Use standard approaches for microservices
• K8s

Try it: Lakehouse microserivce

#> docker run -p 8080:8080 --name trino trinodb/trino

Connect cli:

#> docker exec -ti trino trino

For “production” usage just store catalog in the git and mount it into the docker

#> docker run --rm -p 8080:8080 \

-v /opt/trino_catalog_git:/etc/trino/catalog \

--name trino trinodb/trino

Run some commands

Sample data the right way

Web UI

System catalog

JMX support

• A lot of System Mbeans

And so on and so far

