
Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

New	Locks	for	the	Old	Kernel	

Alex	Kogan	
Oracle	Labs	

alex.kogan@oracle.com	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Safe	Harbor	Statement	
The	following	is	intended	to	outline	our	general	product	direction.	It	is	intended	for	
information	purposes	only,	and	may	not	be	incorporated	into	any	contract.	It	is	not	a	
commitment	to	deliver	any	material,	code,	or	functionality,	and	should	not	be	relied	upon	
in	making	purchasing	decisions.	The	development,	release,	and	timing	of	any	features	or	
functionality	described	for	Oracle’s	products	remains	at	the	sole	discretion	of	Oracle.	

2	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Outline	

Background:	Locks,	Locks	in	the	Kernel,	NUMA	

CNA:	Compact	NUMA-aware	Lock	

BRAVO:	Biased	Reader-Writer	Locking	

Conclusion	

1	

2	

3	

4	

3	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Locks:	Quick	Background	

• Protect	access	to	the	shared	data	

• Remain	the	most	popular	synchronization	technique	
• …	and	the	topic	of	extensive	research	

• Performance	of	parallel	software	often	depends	on	the	efficiency	of	the	
locks	it	employs		

4	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Locks:	Quick	Background	(cont.)	

• Many	flavors:		
– exclusive	/	reader-writer	
– spinning	/	blocking	
– strictly	fair	/	unfair	/	long-term	fair	
– …	

•  Evolve	with	the	evolution	of	computing	architectures	
– we	live	in	the	era	of	multi-socket	architectures	with	NUMA	effects	à		
we	need	NUMA-aware	locks	

5	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

NUMA-aware	Locks	

• Access	by	a	core	to	a	local	memory	or	local	
cache	is	faster	that	accesses	to	a	remote	
memory	or	remote	cache	
– known	as	Non-Uniform	Memory	Access	(NUMA)	effect	

• Keep	the	lock	ownership	within	the	same	node	
– decrease	remote	cache	misses	and	inter-node	communication	
– non-FIFO	and	unfair	over	the	short	term	
Ø trade-off	short-term	fairness	for	better	performance	

6	

CPU	 CPU	

LLC	

MEMORY	

CPU	 CPU	

LLC	

MEMORY	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Locks	in	the	Kernel	

• Keep	evolving	
– spinlocks:	test-set	à	ticket	à	MCS	(sort-of)	

•  Fail	to	keep	up	with	the	latest	and	greatest	
– e.g.,	spinlocks	are	not	NUMA-aware,	read-write	locks	use	a	shared	counter	

• Very	specific	requirements	
– compact	
•  spinlock	state	must	occupy	at	most	4	bytes	

– fair		
– good	low	thread-count	performance	

7	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Hierarchical	NUMA-aware	Locks	

• Multiple	(2+)	layers	of	lock	hierarchy	

8	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Hierarchical	NUMA-aware	Locks	

• Multiple	(2+)	layers	of	lock	hierarchy	
• Acquire	intra-node	lock(s)	first,	then	compete	
for	the	root	lock	

9	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Hierarchical	NUMA-aware	Locks	

• Multiple	(2+)	layers	of	lock	hierarchy	
• Acquire	intra-node	lock(s)	first,	then	compete	
for	the	root	lock	
•  The	root	lock	stays	locked	by	threads	running	
on	the	same	socket	
– passing	the	intra-node	lock	passes	the	ownership	

10	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	Pitfalls	of	the	Hierarchical	Approach	

•  Longer	acquisition	path		
– multiple	atomic	instructions	

• Require	dynamic	initialization	to	ensure	portability	
– but	the	lack	of	standard	API	to	query	topology	hinders	portability	

•  SIZE:	space	proportional	to	#nodes	
– to	make	matters	worse,	each	low-level	lock	has	to	be	
placed	on	a	separate	cache	line	

11	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Where	(and	Why)	Size	Matters?	

• Concurrent	data	structures	with	one	lock-per-node/entry	
– E.g.,	binary	search	trees,	linked	lists,	etc.	

	
•  Systems	with	millions+	of	locks	
– E.g.,	Linux	Kernel	
•  spinlocks	are	embedded	in	every	inode	and	page	structure	
Ø one	lock	per	file	and	per	physical	page	
Ø strict	limit	of	4	bytes	(32bits)	on	the	spinlock	size	

	

12	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

CNA:	Compact	NUMA-aware	Lock	

• Requires	one	word	of	memory	
	
• Variant	of	a	(NUMA-oblivious)	MCS	lock	
– inherits	its	performance	features	
•  local	spinning,	one	atomic	operation	per	acquisition,	…	

• Performance	on-par	with	MCS	under	no	contention,	on-par	with	state-of-
the-art	hierarchical	NUMA-aware	locks	when	contended	

13	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

MCS	(Mellor-Crummey	and	Scott)	Lock	

• Organizes	waiting	threads	in	a	FIFO	queue	
•  The	shared	state	is	a	pointer	to	the	tail	of	the	queue	
•  Each	thread	has	a	record	that	it	inserts	into	the	queue	…
• …	and	then	spins	locally	on	a	flag	inside	the	record	
	

14	

			1	 			0	 			0	
tail	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

MCS	(Mellor-Crummey	and	Scott)	Lock	

• Organizes	waiting	threads	in	a	FIFO	queue	
•  The	shared	state	is	a	pointer	to	the	tail	of	the	queue	
•  Each	thread	has	a	record	that	it	inserts	into	the	queue	…
• …	and	then	spins	locally	on	a	flag	inside	the	record	
	

15	

			1	 			0	 			0	
tail	

			0	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

MCS	(Mellor-Crummey	and	Scott)	Lock	

• Organizes	waiting	threads	in	a	FIFO	queue	
•  The	shared	state	is	a	pointer	to	the	tail	of	the	queue	
•  Each	thread	has	a	record	that	it	inserts	into	the	queue	…
• …	and	then	spins	locally	on	a	flag	inside	the	record	
	

16	

			1	 			0	 			0	
tail	

			0	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

MCS	(Mellor-Crummey	and	Scott)	Lock	

• Organizes	waiting	threads	in	a	FIFO	queue	
•  The	shared	state	is	a	pointer	to	the	tail	of	the	queue	
•  Each	thread	has	a	record	that	it	inserts	into	the	queue	…
• …	and	then	spins	locally	on	a	flag	inside	the	record	
•  The	lock	is	passed	to	the	queue	successor	of	the	lock	holder	
	
	

17	

			1	 			0	 			0	
tail	

			0	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

MCS	(Mellor-Crummey	and	Scott)	Lock	

• Organizes	waiting	threads	in	a	FIFO	queue	
•  The	shared	state	is	a	pointer	to	the	tail	of	the	queue	
•  Each	thread	has	a	record	that	it	inserts	into	the	queue	…
• …	and	then	spins	locally	on	a	flag	inside	the	record	
•  The	lock	is	passed	to	the	queue	successor	of	the	lock	holder	
	
	

18	

			1	 			0	
tail	

			0	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

CNA:	a	NUMA-Aware	Variant	of	MCS	

• Organizes	waiting	threads	in	a	FIFO	queue	
•  The	shared	state	is	a	pointer	to	the	tail	of	the	queue	
•  Each	thread	has	a	record	that	it	inserts	into	the	queue	…
• …	and	then	spins	locally	on	a	flag	inside	the	record	
•  The	lock	is	passed	to	the	queue	successor	of	the	lock	holder	
	

19	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

CNA:	a	NUMA-Aware	Variant	of	MCS	

• Organizes	waiting	threads	in	two	queues	(“main”	and	“secondary”)	
•  The	shared	state	is	a	pointer	to	the	tail	of	the	queue	
•  Each	thread	has	a	record	that	it	inserts	into	the	queue	…
• …	and	then	spins	locally	on	a	flag	inside	the	record	
•  The	lock	is	passed	to	the	queue	successor	of	the	lock	holder	
	

20	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

CNA:	a	NUMA-Aware	Variant	of	MCS	

• Organizes	waiting	threads	in	two	queues	(“main”	and	“secondary”)	
•  The	shared	state	is	a	pointer	to	the	tail	of	the	main	queue	
•  Each	thread	has	a	record	that	it	inserts	into	the	queue	…
• …	and	then	spins	locally	on	a	flag	inside	the	record	
•  The	lock	is	passed	to	the	queue	successor	of	the	lock	holder	
	

21	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

CNA:	a	NUMA-Aware	Variant	of	MCS	

• Organizes	waiting	threads	in	two	queues	(“main”	and	“secondary”)	
•  The	shared	state	is	a	pointer	to	the	tail	of	the	main	queue	
•  Each	thread	has	a	record	that	it	inserts	into	the	main	queue	…
• …	and	then	spins	locally	on	a	flag	inside	the	record	
•  The	lock	is	passed	to	the	queue	successor	of	the	lock	holder	

22	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

CNA:	a	NUMA-Aware	Variant	of	MCS	

• Organizes	waiting	threads	in	two	queues	(“main”	and	“secondary”)	
•  The	shared	state	is	a	pointer	to	the	tail	of	the	main	queue	
•  Each	thread	has	a	record	that	it	inserts	into	the	main	queue	…
• …	and	then	spins	locally	on	a	flag	inside	the	record	
•  The	lock	is	passed	to	the	queue	successor	running	on	the	same	node	as	
the	lock	holder	
– waiting	threads	between	the	lock	holder	and	its	new	successor	are	moved	to	the	
secondary	queue	so	they	do	not	interfere	in	subsequent	lock	handovers	

23	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

CNA	in	Action	

24	

			1	 			0	 			0	

tail	

1	 2	 3	

			0	
4	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

CNA	in	Action	

25	

			1	 			0	 			0	

tail	

1	 2	 3	

			0	
4	

Thread	1:	unlock()	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

CNA	in	Action	

26	

			0	

				

tail	

			0	

4	

3	2	

ß	main	queue	

ß	secondary	queue	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

CNA	in	Action	

27	

			0	

				

tail	

			0	

4	

3	2	

ß	main	queue	

ß	secondary	queue	

5	

			0	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

CNA	in	Action	

28	

			0	

				

tail	

			0	

4	

3	2	

ß	main	queue	

ß	secondary	queue	

5	

			0	

Thread	4:	unlock()	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

CNA	in	Action	

29	

			0	

				

tail	

			0	

5	

3	2	

ß	main	queue	

ß	secondary	queue	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

CNA	in	Action	

30	

			0	

				

tail	

			0	

5	

3	2	

ß	main	queue	

ß	secondary	queue	

Thread	5:	unlock()	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

CNA	in	Action	

31	

			1	

tail	

			0	
3	2	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Avoiding	Starvation	

Move	waiting	threads	back	from	secondary	to	main	queue	
1.  When	the	main	queue	is	empty	/	does	not	have	threads	on	the	same	

node	as	the	lock	holder	

32	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Avoiding	Starvation	

Move	waiting	threads	back	from	secondary	to	main	queue	
1.  When	the	main	queue	is	empty	/	does	not	have	threads	on	the	same	

node	as	the	lock	holder	

33	

			0	

				 tail	

			0	

4	

3	2	

5	

			0	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Avoiding	Starvation	

Move	waiting	threads	back	from	secondary	to	main	queue	
1.  When	the	main	queue	is	empty	/	does	not	have	threads	on	the	same	

node	as	the	lock	holder	
2.  After	a	certain	number	of	“intra-node”	handovers	
– scan	the	main	queue	with	high	probability	rather	than	always	
– can	count	deterministically,	but	incurs	more	overhead	(cache	misses	to	update	count)	
– threshold	controls	fairness-VS-throughput	trade-off	

	

34	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Performance	Evaluation		

User-space:	
•  Implemented	CNA	as	a	user-level	library	
• Compared	to	MCS,	cohort	locks	(C-BO-MCS),	HMCS	lock	

Kernel-space:	
•  Integrated	into	the	slow	path	of	qspinlock,	Linux	kernel	spin-lock	

HW:	4-socket	x86	machine,	with	18	hyper-threaded	cores	per	sockets	
	 35	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

will-it-scale/open1_threads	

36	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

LevelDB/readrandom	

37	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

User-space:	LevelDB		

38	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Shuffle	Reduction	Optimization	

• Under	light	contention,	waiting	threads	can	be	moved	back	and	forth	
between	two	queues	
– creates	overhead	without	reaping	the	benefit	of	locality	

•  Solution:	when	the	secondary	queue	is	empty,	scan	the	main	queue	with	
low	probability	rather	than	always	
– reduces	the	amount	of	unnecessary	shuffling	when	the	contention	is	low,	while	
responding	fast	enough	when	the	contention	is	high	

39	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

User-space:	LevelDB		

40	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Wrap-up:	CNA	

41	

CNA	achieves	the	best	of	both	worlds:	
•  as	efficient	as	MCS	at	low	contention	
– but	better	at	high	contention	by	40-100%	

•  as	performant	as	state-of-the-art	NUMA-aware	locks	at	high	contention	
– but	its	state	requires	only	one	word	of	memory	

• Reduces	#remote	cache	misses	while	preserving	long-term	fairness	

•  Linux	kernel	patch	is	publicly	available	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Reader-Writer	Locks:	Quick	Background	

• Allow	shared	access	for	read-only	use	of	a	resource	
• Ubiquitous	in	modern	systems	

	

42	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Reader-Writer	Locks:	Quick	Background	

• Allow	shared	access	for	read-only	use	of	a	resource	
• Ubiquitous	in	modern	systems	

	
• Have	to	keep	track	of	the	presence	of	active	readers	

43	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	“shared	counter”	approach	

44	

0	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	“shared	counter”	approach	

45	

0	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	“shared	counter”	approach	

46	

3	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	“shared	counter”	approach	

47	

3	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	“shared	counter”	approach	

48	

3	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	“distributed”	approach	

49	

1	 1	 0	 1	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	“distributed”	approach	

50	

1	 1	 0	 1	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	Scalable	“Reader	Indicator”	Dilemma	

51	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	BRAVO	approach	

52	

Compact	&	
Scalable	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	BRAVO	approach	

53	

0	 0	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	BRAVO	approach	

54	

0	 0	

RBias	 Inhibit
Until	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	BRAVO	approach	

55	

0	 1	L1	

T1	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

0	

The	BRAVO	approach	

56	

1	L1	

T1	
HASH	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

0	

The	BRAVO	approach	

57	

L1	1	L1	

T1	
HASH	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	BRAVO	approach	

58	

L1	0	 1	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	BRAVO	approach	

59	

L1	

L1	

0	 1	L1	

HASH	

T2	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	BRAVO	approach	

60	

L1	

L1	

0	 1	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	BRAVO	approach	

61	

L1	

L1	

0	 1	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	BRAVO	approach	

62	

L1	

L1	

0	 1	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	BRAVO	approach	

63	

L1	

L1	

1	 1	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	BRAVO	approach	

L1	
L2	

L1	

L2	

0	 0	1	 1	L1	 L2	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	BRAVO	approach	

L1	
L2	

L1	

L2	

0	 0	1	 1	L1	 L2	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	BRAVO	approach	

66	

0	 1	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	BRAVO	approach	

67	

0	 0	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	BRAVO	approach	

68	

0	 0	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	BRAVO	approach	

69	

0	 0	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	BRAVO	approach	

70	

0	 0	

now	+	t	*	10	

=	t	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	BRAVO	approach	

71	

0	 0	T	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	BRAVO	approach	

72	

0	 0	T	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	BRAVO	approach	

73	

1	 0	T	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	BRAVO	approach	

74	

1	 1	T	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	BRAVO	approach	

75	

L1	

1	 1	T	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  Easy	to	integrate	with	existing	locks	

• Compact	

• Accelerates	reads	

• Handles	writes	gracefully	
	

76	

Evaluation	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

• Brandenburg-Anderson	(BA)	reader-writer	lock	

• POSIX	Pthread	reader-writer	lock	

•  Linux	kernel	rwsem	
	

77	

Evaluation:		Easy	to	integrate	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 78	

Evaluation:		Compact	

Locks	 Memory	footprint	
BA	 40	
BA	+	BRAVO	 40	+	12	+	32KB	(for	a	table)	
Per-CPU	 9216	(on	a	system	with	72	CPUs)	
Cohort-RW	 896	(dual-socket)	

Intel	Xeon	E5-2699	v3	CPU	
2	sockets	

72	logical	CPUs	in	total	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

1 2 5 10 20 50

0
e

+
0

0
2

e
+

0
4

4
e

+
0

4
6

e
+

0
4

8
e

+
0

4
1

e
+

0
5

Threads

A
g

g
re

g
a

te
 t

h
ro

u
g

h
p

u
t 

ra
te

 :
 o

p
s/

m
se

c

Cohort−RW
Per−CPU
BA
BRAVO−BA
pthread
BRAVO−pthread

79	

Evaluation:		Accelerates	reads	
RWBench	with	1	out	of	every	10000	are	writes	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 80	

Evaluation:		Handles	writes	gracefully	
RWBench	with	9	out	of	every	10	are	writes	

1 2 5 10 20 50

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

Threads

A
g
g
re

g
a
te

 t
h
ro

u
g
h
p
u
t 
ra

te
 :
 o

p
s/

m
se

c

Cohort−RW
Per−CPU
BA
BRAVO−BA
pthread
BRAVO−pthread



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 81	

Linux	Kernel	rwsem	

• Counter	+	waiting	queue	protected	by	a	spin	lock	

• Reader	atomically	increments	the	counter	and	checks	its	value	
	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 82	

Linux	Kernel	rwsem	

• Counter	+	waiting	queue	protected	by	a	spin	lock	

• Reader	atomically	increments	the	counter	and	checks	its	value	

•  Synchronization	bottleneck	in	the	kernel	(mmap_sem)	

	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 83	

Linux	Kernel	rwsem	

• Counter	+	waiting	queue	protected	by	a	spin	lock	

• Reader	atomically	increments	the	counter	and	checks	its	value	

•  Synchronization	bottleneck	in	the	kernel	(mmap_sem)	

•  Stress-test	with	will-it-scale:	page_fault	and	mmap	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 84	

Evaluation	with	will-it-scale	

page_fault	 mmap	

Intel	Xeon	E7-8895 v3	CPU	
4	sockets	

144	logical	CPUs	in	total	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

• Builds	into	any	existing	lock	
• Reads	are	accelerated	
• Avoids	write	overhead	
• Very	compact	

• Overall,	takes	the	“reader	indicator”	dilemma	away	
	

85	

BRAVO:	wrap-up	



Copyright	©	2020,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Conclusion	

86	

• Kernel	requirements	impede	adaptation	of	user-space	locks		
– some	considerations	we	did	not	talk	about:	real-time,	paravirt	

•  Same	techniques	can	still	be	used	
– trading	(some)	fairness	for	performance	
– eliminating	contention	bottlenecks	
– reducing	#cache	misses	in	lock	handover	

• Kernel	locks	remain	hot	
Thank	you!	
QUESTIONS?	


