
Working Software
and how to make it

@antonkeks

JPoint 2021

Tallinn, Estonia

Working Software over Comprehensive Documentation

Agile Manifesto, 2001

Craftsmanship Manifesto, 2009

Not only working software, but also well-crafted software

The problem is...

Many developers have no idea what

“Working Software”
or even

“Well-crafted Software“
actually means!!!

Working Software

● Fulfills business goals
● Has value for users
● Easy to use (usability for end-users)
● Easy to deploy, reliable (usability for admins)
● Easy to monitor / audit / trace bugs
● Easy to change / fix / maintain (usability for devs)
● Easy to add features to
● Easy to test (automatically), to keep it working
● Hard to break-in or steal data (security)
● Ideally, no extra work for anyone

besides changing code+tests

Another definition

Working software is fully integrated, tested, and
ready to be shipped to customers or deployed into
production.

That doesn't mean you tried it a couple times and it
ran without aborting. It means you created unit
tests, QA tests, and actually looked at output to
prove it works.

http://www.agile-process.org/working.html

http://www.agile-process.org/working.html

“Works on my ...” syndrome

Not enough tests or...

Hand-crafted environment
== evil || unprofessional

It doesn’t scale without automation

Like in alchemy

There’s always a secret
ingredient to make it run…

Some secret profile
Deps in local maven repo
DB should be running on some IP
JNDI resources...
Config params missing

Other rituals/magic needed

Usually the result of either

Lack of CI

or overly complex CI setup

(by those infrastructure specialists?)

“Doesn’t work even on my PC” syndrome

Some developers have no idea how to run their software

...and they still are trying to work on it

Microservices, Maven profiles, config, etc

Avoiding broken software problems

Take total control over you app’s build/environment/infrastructure

Don’t let infrastructure engineers do it for you
(they will introduce more complexity and slowness than needed)

DevOps made being a “sysadmin” unpopular, but now we have
e.g. Kubernetes engineers

Let’s look at the basics...

12 Factor Apps by Heroku - 12factor.net

I. Codebase
II. Dependencies
III. Config
IV. Backing services
V. Build, release, run
VI. Processes

VII. Port binding
VIII. Concurrency
IX. Disposability
X. Dev/prod parity
XI. Logs
XII. Admin processes

Modern compliance

Git + Docker + common sense

...provide most (but not all) for free

Docker fully controls build/run environments

Nothing undefined will leak in

Docker-compose is a good universal format

Kubernetes is not KISS - don’t depend on it

I. Codebase, II. Dependencies

One versioned codebase, many deploys

Explicitly declare and isolate dependencies

But fear them as hell!

Fewer is better - KISS

No hand-tuned build/run environments!

OS/utilities/system libraries are
also dependencies

Dockerfile FROM

III. Config, VII. Port binding

Read config from the environment (vars)

No test/prod/etc configs in git, because there may be many more + security

Docker can map to any external port

Default dev config for good DX

Working docker-compose.yml

IV. Backing services, X. Dev/prod parity

I.e. runtime dependencies

Treat backing services as attached resources

Internal/external are the same

No code changes to attach
to a different service/db/etc

docker-compose.yml example

services:
 myapp:
 build: . # will use local Dockerfile
 scale: 2
 environment:
 DB_HOST: db
 db:
 image: postgres:12-alpine
 environment:
 POSTGRES_DB: myapp

Use docker-compose.override.yml to map ports for local development

V. Build, release, run

Strictly separate build and run stages

One build for all (Except when building for different hardware/platforms)

No code changes in prod - PHP devs still do that!

Avoid shipping the compiler or other tools for security

Don’t build separately for dev/test/prod

Does your Jenkins look like this?

MyApp_build_pipeline_test
MyApp_build_pipeline_prod

Multi-stage Dockerfile

FROM openjdk:11 as build
COPY ...
RUN ./gradlew test package

FROM openjdk:11-jre # or use jlink to build a custom jre
COPY --from=build path/to/*.jar
EXPOSE 8080
CMD java -jar *.jar

VI. Processes, VIII. Concurrency

One or more stateless processes for scaling, no even sticky sessions

Quick startup, no local state

Scaling e.g. across multiple machines (horizontally)

Different process types can be scaled independently (web/batch)

External tools should handle crashes/restarts/etc

E.g. Systemd or Docker daemon

No Java app servers!
(which are slow and nightmare-ish anyway)

IX. Disposability

Robustness: Fast startup and graceful shutdown

Easier releases and scaling-up

(No Hibernate or complex Spring setup)

Also, no wasting time during development

For workers: idempotent operation

Robust against sudden death

X. Dev/prod parity

Keep development, staging, and production as similar as possible

Continuous deployment

All envs are really similar

Docker-compose gets you the
same backing services

XI. Logs

Treat logs as event streams

Provide context in every message

Debug logs are noise (mostly)

No file management, just stdout

Good for development, flexible to deploy

Machine parseable

XII. Admin processes

Run admin/management tasks as
one-off processes

Using the exactly same environment

docker exec -ti <container> script

App should start out-of-the-box
(batteries included)

Right after clone/checkout:

● From command-line
● From IDE, debugger, etc

DX: Developer Experience / Usability

Learn from many open-source projects:

Contributing should be easy

Good IDE, tools/scripts

Start with README (long = something’s wrong)

No waiting for anything

Apple UX vs DX

Good DX example

git clone <repo> && cd repo

cat README*

docker-compose up db -d

./gradlew run

- And it just works!
- Also tests just work and finish within seconds

./gradlew test

Tests should just run

Fast!

From IDE, under debugger if needed

One-by-one if needed

No external dependencies

No manual config

No f**ing extra spring/maven profiles

TDD gets you see your code “works” every minute or so

Fast tests?
Fast is 30 sec for 10 000 test cases

Unit tests are fast, they test your code only

You quickly understand why they fail

No Spring context initialization

No real server startup, no http requests

No overuse of Test Containers

Then, have some (also quick) integration tests as well

Selenide.org is great for UI tests

DB migrations

And other environment preparation should be automated

NO HAND-EXECUTED SQL SCRIPTS

Should be part of the code to build env from scratch, quickly

Should be done at runtime, not build time

Use Liquibase or Flyway, but not their Maven/Gradle plugins

Fast turnaround/feedback

Know instantly if you have broken anything

You control the project

Enjoy working on it

Complexity

Why do people like complex solutions?
you

Overengineering everywhere

Too many “moving parts”
== unreliable

Invest time into simplifying your code/solutions

It will pay back many times

First, you make it work, then you make it clean and simple

38

Clean code

Read the book by Uncle Bob

Boy Scout rule:

“Leave the campground
cleaner than you found it”

Avoid being negligent

Craft your code

Care for it

Framework jail

Be free

Control your frameworks & libraries

Always write your own main() method!

Every dependency should be replaceable

(can you control all those 1500 packages in your node_modules?)

Software Erosion

Bit rot

Uncle Bob:
“Software should get better over time,
 don’t accept it getting worse”

Active / Dormant

Heroku: Explicit (simple) Contracts to avoid
Dormant erosion

Docker will (hopefully) allow you to recreate
the build env after many years

Refactoring & Type safety

Constant refactoring prevents active erosion

Type safety enables easy automated refactoring

People avoid things that are not easy

Serious JavaScript development
moving to TypeScript

Python 3.5 added type hints

Kotlin is more type-safe than Java, etc

Well-Crafted Software

Doing it professionally and skillfully

Caring about your work and colleagues

Maintaining it in working order

Always striving for simpler solution

YAGNI = “You Ain’t Gonna Need It”

Iterative process

Our customers don't always know the best way how to solve their problem

Help them by demonstrating Working Software frequently

Anton Keks
@antonkeks

