JPoint 2021

Working Software

and‘how to‘'make’it

codeborne

wellcrafted software

@ahtenkeks

Agile Manifesto, 2001

Working Software over Comprehensive Documentation

THAT MEANS NO MORE
PLANNING AND NO MORE
DOCUMENTATION. JUST

START WRITING CODE

AND COMPLAINING.

WERE GOING TO
TRY SOMETHING
CALLED AGILE
PROGRAMMING.

I'M GLAD THAT
IT HAS A WAS YOUR

NAME. TRAINING.

scottadams @acl.com

07 22007 Scott Adams, Inc./Dist by UFS, Inc

E
o
o
ol
e
o
2
5
;

Craftsmanship Manifesto, 2009

Not only working software, but also well-crafted software

. /' codeborne

well-crafted software

I .‘

f‘:’s‘;'jw wlrM M' \‘H
‘1"'. J’,e! i\
s 1!‘“ \ “ ”‘l g

| i i

‘ f
_|![," | ‘ﬁ‘ il
‘\ RS s

The problem is...

Many developers have no idea what

“Working Software”

or even

“Well-crafted Software”

actually means!!!

Mauudecr, 6/19Thb!

Mbl — c000111eCTBO ITPOrPaMMUCTOB, KOTOPbIe BIOBO/Ib HAMYUH/INCEH C Pa3HOOOPa3HBIMU METO/[0JIOTUSMU pa3paboTKH.

Hac y»ke TOIIIHUT U OT 3KCTpeMasIbHOTO NTPOrpaMMHUpOBaHus, U oT Ckpama, 1 oT KanbaHa, 1 Boo011je OT BCero, UTo HarpsiMyro He
CBSI3aHO C HaNMCcaHueM O/IATh Koja.

MBpI BBICTYTIaeM 3a TO, UTOOBI OTKA3aThCs OT BCeX CYII[e CTBYIOIIUX MeTO/0JIOTHI Pa3paboTKy B I10J1b3y OHOM, CaMOU MPOCTOM U
eTMHCTBEeHHO BepHOU. JTa MeTO/[0JIOTHSI Ha3bIBAETCS «IHIIU KO/ 0/1Th»!

Yto MBI Jje/iaeM B
YTo roBopAT MeHe/KepbI? YTo UM HY)KHO Ha caMoM jesie? .
[MpoxykTrBHas KOMaHAHast pabora || ComHu pabouux uacoe 8 Hedeio MbI nuieM Koj 619Th!
KauecTBeHHbBIe NTPOAYKTHI 100% nokpbimue koda 1oHUM-mecmamu MpbI nuieM Kop 019Th!

Working Software

Fulfills business goals

Has value for users

Easy to use (usability for end-users)
Easy to deploy, reliable (usability for ad
Easy to monitor / audit / trace bugs
Easy to change / fix / maintain (usability f
Easy to add features to
Easy to test (automatically), to keep it wa
Hard to break-in or steal data (security)
|deally, no extra work for anyone
besides changing code+tests

Vo7
® Uncle Bob Martin
Sl @unclebobmartin

It is more important for code to be changeable than
that it work. Code that does not work, but that is easy
to change, can be made to work with minimum effort.
Code that works but that is hard to change will soon
not work and be hard to get working again.

12:46 PM - Nov 7, 2019 - Twitter for iPad

926 Retweets 2.5K Likes

Another definition

Unfinished
Working software is Fully integrated, tested, and Features
ready to be shipped to customers or deployed into ot I ortant
production. Features
. . . . Iterative
That doesn't mean you tried it a couple times and it Planning
ran without aborting. It means you created unit /hearboat \
tests, QA tests, and actually looked at output to Working Honest

Software Plans

prove it works.
Team
Empowerment
http://www.aqile-process.org/working.html

Daily Commumcatlon

http://www.agile-process.org/working.html

Maslow's hierarchy of needs Pyramid for Software quality

Su«es sful

y A

Food, Water, Shelter, Breathing

“Works on my ..."” syndrome

‘How it works’

Not enough tests or... THE

CDI"lPUTEH

Hand-crafted environment N A LADYB.RD BOOK
== evil || unprofessional NE '

It doesn’t scale without automation Essential

OH! REALLYZ® I

Like in alchemy

There's always a secret
ingredient to make it run...

Some secret profile

Deps in local maven repo

DB should be running on some IP
JNDI resources...

Config params missing

Other rituals/magic needed

Usually the result of either
Lack of CI

or overly complex Cl setup

(by those infrastructure specialists?)

“Doesn’t work even on my PC" syndrome

Some developers have no idea how to run their software
...and they still are trying to work on it

Microservices, Maven profiles, config, etc

PUSH |
If That Doesn’t Work a

{ PULL
E If That Doesn’t Work

We Must Be 9'239,.":

Avoiding broken software problems

Take total control over you app’s bUild/environment/inFrastructure¢‘

Don’t let infrastructure engineers do it for you L
(they will introduce more complexity and slowness than ne,e_\.‘\sietl@\\ -

>

e.g. Kubernetes engineers ' gy

Let's look at the basics... s

MY CoMAITER DoESN'T

worK! THE UARp 7o You

PRIVL CRASIED!) BACK LP? WIVZ 11T
WUAT Do T o 2! GONNA BLOW?!

;by Heroku 12Fact

X. Dev/prod |
_ Xl. Logs :
3 -\ XIl. Admin proce
|

Modern compliance

Q} 1t
Git + Docker + common sense

...provide most (but not all) for free

Docker fully controls build/run environments docker-

Nothing undefined will leak in

)

YR
Ty
177

Docker-compose is a good universal format

Kubernetes is not KISS - don’t depend on it

K

|. Codebase, Il. Dependencies

One versioned codebase, many deploys
Explicitly declare and isolate dependencies
But fear them as hell!

Fewer is better - KISS
No hand-tuned build/run environments!

OS/utilities/system libraries are
also dependencies

Dockerfile FROM

I1l. Config, VII. Port binding

Read config from the environment (vars)
No test/prod/etc configs in git, because there may be many more + security

Docker can map to any extefnal
!
Default dev config for gooc D

N\

Working docker-compo

IV. Backing services, X. Dev/prod parity

l.e. runtime dependencies

Treat backing services as attachedresources

Internal/external are the same

No code changes to attach
to a different service/db/etc

docker-compose.yml example

services:

myapp :
build: . # will use local Dockerfile
scale: 2
environment:

DB_HOST: db

db:
image:. postgres:12-alpine
environment:

POSTGRES_DB: myapp

Use docker-compose.override.yml to map ports for local development

e-'.

|lc§ sepa:ately For dev/test/m

i L

(e g gy s menem ap e

a*" ur Jenkins look l|ke ?
—— this?

Fferént hard

> e

o e mem S

7|
N e E—

N ——

»ﬂyApp build plpellne test
s MyApp bmld plpellne prod

{\\\\X\\.\\f\ ~ j?é g

A

\
N\

\\

3 \ 1
A\
M“j\-;\\ __ '\}'\

\

Multi-stage Dockerfile

FROM openjdk:11 as build
COPY ...
RUN ./gradlew test package

FROM openjdk:11-jre # or use jlink to build a custom jre
COPY --from=build path/to/*.jar

EXPOSE 86086

CMD java -jar *.jar

VI. Processes, VIII. Concurrency

One or more stateless processes for scaling, no even sticky sessions

\ "
e - o
Quick startup, no local state . v " A ’
b Y , ! \\ } i
Scaling e.g. across multiple machines (horlzontally) e =‘

Different process types can be scaled ind

External tools should handle crashes/resta

AQ’!‘(WQ }fy%?

E.g. Systemd or Docker daemon

No Java app servers!
(which are slow and nightmare-ish anyway) /..~ } r

|X. Disposability

Robustness: Fast startup and graceful shutdown
Easier releases and scaling-up

(No Hibernate or complex Spring setup)

Also, no wasting time during development

For workers: idempotent operation

Robust against sudden death

X. Dev/prod parity

Keep development, staging, and production as similar as possible
Continuous deployment
All envs are really similar

Docker-compose gets you the
same backing services

Xl. Logs

Treat logs as event streams

Provide context in every message

Debug logs are noise (mostly)

No file management, just stdout

Good for development, flexible to deploy

Machine parseable

XIl. Admin processes

Run admin/management tasks as
one-off processes

Using the exactly same environment

docker exec -ti <container> script

App should start out-of-the-box

(batteries included)

Right after clone/checkout:

e From command-line
e From IDE, debugger, etc

DX: Developer Experience / Usability

Learn from many open-source projects:
Contributing should be easy

Good IDE, tools/scripts

Start with README (long = something’'s wrong)

No waiting for anything

Apple UX vs DX

Good DX example

git clone <repo> && cd repo
cat README*
docker-compose up db -d

./gradlew run

- And it just works!
- Also tests just work and finish within seconds

./gradlew test

Tests should just run

Fast!
From IDE, under debugger if needed
One-by-one if needed

No external dependencies

No manual config
No f**ing extra spring/maven profiles

TDD gets you see your code “works” every minute or so

Fast tests?

Fast is 30 sec for 10 000 test cases

Unit tests are fast, they test your code only
You quickly understand why they fail '
No Spring context initialization
No real server startup, no http reque
No overuse of Test Containers
Then, have some (also quick) integrat

Selenide.org is great for Ul tests

ﬁg ';; ¢ 4 ' -
oo el .
- “

*
o
AP
.v'

“
4 -

% NS
* e
-

DB migrations

And other environment prepa :_‘o;,v- |
NO HAND-EXECUTED SQ
Should be part of the code
Should be done at runtim

Use Liquibase or Flyway, b

Fast turnaround/feedback

Know instantly if you have broken anything
You control the project

Enjoy working on it

Complexity

Why do peeople like complex solutions?

Overengineering everywhere

Too many “moving parts”
== unreliable

It will pay back many times

First, you make it work, then you make it clean and simple

“Make everything as
simple as possible,
but not simpler.”
—Albert Einstein

38

Clean code

Read the book by Uncle Bob
Boy Scout rule:

“Leave the campground
cleaner than you found it”

Avoid being negligent
Craft your code

Care forit

ALY, Roman Elizarov
&8 @relizarov
-

Kotlin has shown me the light of how you could be
writing code so that it is concise, full of substance, free
of tenuous repetition. Now | have an extreme

Intolerance to any form of boilerplate code. | see
boilerplate everywhere, constantly thinking about how |
can abstract it.

9:59 AM - Apr 1, 2021 - Twitter Web App

38 Retweets 4 Quote Tweets 394 Likes

|
Fram worajail

t
i

Be free |

Software Erosion

Bit rot

Dormant erosion

Docker will (hopefully) allow you to recreate
the build env after many years

Refactoring & Type safety

Constant refactoring prevents active erosion
Type safety enables easy automated refactoring

. . ;'r'vs{“ ‘ ”.‘:-'-‘.;. \ S f--"’/’vl
People avoid things that are not easy r“‘\ Se v e 0"‘«

Serious JavaScript development
moving to TypeScript

Python 3.5 added type hints

Kotlin is more type-safe than Java, etc =

Well-Crafted SoFt

Doing it professionally and ;kl lfg
Caring about your work and colleagt
Maintaining it in working order

Always striving for simpler solution

YAGNI = “You Ain’t Gonna Need It”

—

Ilterative process

Our customers don't always know the best way how to solve their problem

Help them by demonstrating Working Software frequently

//codeborne

well-crafted software

Anton Keks

@antonkeks

