Jack Vanlightly @vanlightly

Distributed Systems Showdown

@ TLA+ vs Real Code

... and why we model

www.jack-vanlightly.com
@vanlightly

Jack Vanlightly

Principal Software Engineer

splunk>

zf; BookKeeper
-\

ZXPULSAR

http://www.jack-vanlightly.com

Jack Vanlightly @vanlightly

What we’ll cover...

Why do modelling at all?

Quick look at TLA+

Quick look at Maelstrom/Jepsen

Case study to compare them

o Modelling a distributed log storage system

Jack Vanlightly @vanlightly

Why do modelling and verification anyway?

Jack Vanlightly @vanlightly

Transaction Flow
-31: Transactional Streaming

All transaction implementations can be shaped using these key components/concepts described

t ’ in the above sections.
B Suon a t’ O - ,
k . 2.2a)— Transaction
| Bulfer
This document outli f g ansactlonal messaging at Apache Pulsar.
Transactions are used for antics of Apache Pulsar and
processiré s at Pulsar Fundlons |
The highest mes ny he Pulsar currently provides is “exactl
e pal |t|o

producing at one singl\ ucer . Users are guaranteed

@2
message produced to one single pamtlon Vi empotent Produce rsi exactl
once, without data loss. There is no “atomicity” when produce sages 33a
to multiple partitions. For instance, a publish failure cai the nd if . St x
the producer doesn't retry or has exha ted its retry, wrmen to e ®)— Transaction
pulsar. On the consumer side, rt operation, which erI 2.1)——o R A2

|cate messages. Pulsar only 1f——s! D (1a) 5
Similarly, Pulsar Functions only gu: tees exactly-once processil i Ia

result in message redelivery he
idempotent function. It can’'t guarantee processing multiple even! g ‘ a m
Broker s

guarantees at-least-once consul
can happen exactly. For example, if a function accepts multig
(Acknowledgement)

(e.g. windowing functions), the function can fail between p
acknowledging the incoming messages, or even between
will cause all (or some) incoming messages being re-deliver®
result is generated.

Users of Pulsar and Pulsar Functions will greatly beneﬁt from transactional semantic support. ﬂ‘eﬂ‘tﬁl
Every message written or processed will wrthout duplicates and
out data ag»gl llures A transactional 9
iﬁ lications usrng Pulsar or Pulsar Functions ray s@uare boxes represent distinct brokers.
S

egiiel |t cope which Pulsar can provide. - The gray rounded boxes represent logical components which can be running inside a
broker or as a separated service (e.g. like how we run function worker as part of broker)
Use Cases - All the blue boxes represent logs. The logs can be a pulsar topic, a bookkeeper ledger,

(2.4a) Cursor

Zreprocessed, and a new
Ledger

Jack Vanlightly @vanlightly

Why do modelling at all? %
@ multiple man-years

/\"\Q F| N\ S\/\eﬁ\

—

— -

)

—

Jack Vanlightly @vanlightly

Roundabout Design Document

=,

t: ck the free flow of traffic which causes unnecessary extra wait

trai i
MEA pol due to their stop/start nature.

a new form of intersection which is more free flowing, causing less pollution and

leSs accidents | c
The R 0

dabou ‘oposed type of circular intersection or junction in which road traffic is
perf@led to flow in one direction around a central island, and priority is typically given to traffic
Irea@y’in the junction.

Compared to stop signs, traffic signals, roundabouts will reduce the likelinood and severity of

collisions greatly by reducing traffic speeds and minimizing T-bone and head-on collisions. Variations
on the basic concept include integration with tram or train lines, two-way flow, higher speeds and
many others.

Traffic exiting the roundabout comes from one direction, instead of three, simplifying the pedestrian's
visual environment. Traffic moves slowly enough to allow visual engagement with pedestrians,
encouraging deference towards them. Other benefits include reduced driver confusion associated
with perpendicular junctions and reduced queuing associated with traffic lights. They allow U-turns
within the normal flow of traffic, which often are not possible at other forms of junction. Moreover,
since vehicles that run on gasoline averagely spend less time idling at roundabouts than at signalled
intersections, using a roundabout potentially leads to less pollution. When entering vehicles only
need to give way, they do not always perform a full stop; as a result, by keeping a part of their
momentum, the engine will produce less work to regain the initial speed, resulting in lower
emissions. Research has also shown that slow-moving traffic in roundabouts makes less noise than
traffic that must stop and start, speed up and brake.

Jack Vanlightly @vanlightly

Jack Vanlightly @vanlightly

ate——

2
» X
O\t B B
g

Jack Vanlightly @vanlightly

MQ ; 3
“‘9"" b N ;&P G,\f‘\"‘f-"'m

=y . AR

-

- T
=g ,.'-jig{r).\,\‘i.“'-"‘.“‘ s

Jack Vanlightly @vanlightly

e e A > ”
iz - ~E : v ™

“~>
3 Y- - SR DR 1 e
s & g

Voo s
oo Uriegs

Al Brdge

|

Y
S ey

)\

= do,

>
s
c
=
=
[}
>
a,
>
praw)
-
o
c
©
>
V4
O
(o}
o

Jack Vanlightly @vanlightly

Jack Vanlightly @vanlightly

Why do modelling at all?

multiple man-years

-een e o e e e o . .

Jack Vanlightly @vanlightly

What properties should our models have?

Small
Malleable

Reduced to core
behaviour

Free of
extraneous
clutter

‘Easy” to
internalize

Verifiable

“Living” doc?

Jack Vanlightly @vanlightly

Modelling and Verification with Two Different Tools

f €

{’ “'
o
Py,
P g
i :
’ &
' 74
e ';
L
bi)
7
A

A Quick Look at

LA+

Jack Vanlightly @vanlightly

Jack Vanlightly @vanlightly

TLA+ Specifications
ConS{o\/&S + mu)fad“a r\o> _‘__ N PF&M‘\Q S}
X \/OU‘\ O\L\QS A(JHOHS ‘

— Prog;f}

Jack Vanlightly @vanlightly

TLA+ Arbitrary Levels of Abstractlon

-~ — o -— -— - = - — — -

" Provies I
//V\ b&«\’é\\‘ \\

D D D /‘ QD = \. ‘

| \ﬂ CoorAnr\O}ij/\/‘ j \ :
« D@m ;

) - e — —— -
! . lrcmsadwn L/ S&omge
' ' Co r\)WDL ery

| Dchff~%DDD\

Jack Vanlightly @vanlightly

TLA+ Algorithmic Thinking

e Describe what not how
o Free from low-level programming considerations
o Imagine when drawing a design on a whiteboard having to describe
threading models, error handling, network buffers, memory
management...

Jack Vanlightly @vanlightly

TLA+ States and Actions

e State: A snapshot in (virtual) time of the variables
e Action: Takes us from one state to another (state transition)

Action

e

counterl = counter1 =

counter? counter?2

Current state Next state

S 2

State transitions and behaviours in TLA+

Jack Vanlightly @vanlightly

Invariants (something bad that must not happen)

Invariants map to states.

Jack Vanlightly @vanlightly

Liveness (something good that should eventually happen)

Liveness maps to behaviours.

Something we want

Counters can now decrement as well Liveness property: Eventually both counters reach 2

Summary TLA+

Model
anything

Arbitrary
Levels of
Abstraction

Global view of
state

Algorithmic > Easier to
Thinking reason about
\ Free of
Multiple programming
verification considerations
options
Proofs Model checking

(TLAPS)

(TLC, Apalache)

Jack Vanlightly @vanlightly

A Quick Look at Jepsen
And Maelstrom

https://jepsen.io
https://github.com/jepsen-io/jepsen
https://qithub.com/jepsen-io/maelstrom

https://jepsen.io
https://github.com/jepsen-io/jepsen
https://github.com/jepsen-io/maelstrom

Jack Vanlightly @vanlightly

Jepsen Tests

e Test distributed data systems,
checking against specific
transaction isolation and
consistency levels

https://jepsen.io/consistency

Jepsen Tests

Jepsen Tests

Checker:

Op
Write
Read
Write
CAS
CAS
Read

Linearizable KV

eg Val
1

WMN W

R
1
1
1
1
1
1

Not a linearizable history

Result

OK

1

OK

Fail (correct)
OK

3 (wrong)

Jack Vanlightly @vanlightly

Maelstrom

Network in/out
is stdin/stdout

Maelstrom forwards
messages between
nodes.

Maelstrom perturbs
the system (nemesis)

Your code (Python,
Ruby, Java, C++,
Rust, Go etc)

I

I

| Binary run as a
: sub-process per
I

I

\ -

e N — — T
e cas

desired node.

I
I
I
I
I
I
I
I
I
|

Maelstrom Workloads and Services

e Workloads:

(@)

(@)

(@)

(@)

(@)

G-counter (eventually consistent counter)
G-set (grow-only set)

Lin-kv (linearizable kv store)

Pn-counter (eventually consistent counter)
Txn-list-append (transactional)

e Services:

O

O

O

Lin-kv (linearizable KV store)

Seq-kv (sequentially consistent KV store)
Lww-kv (Last-write-wins KV store)
Lin-tso (linearizable timestamp oracle)

Jack Vanlightly @vanlightly

Jack Vanlightly @vanlightly

Maelstrom Results

e Pass/Fail P) g
e Log of message passing f T
e Visualization of message Ty
. fead(;keyg
passing \/\\
oﬂ-“a\“e i

e Maelstrom logs 4/’(_,[,»,_—/

e Node logs st thay
e Statistics L eeocsssn

https://github.com/jepsen-io/maelstrom/blob/main/doc/05-datomic/02-shared-state.md

Jack Vanlightly @vanlightly

Maelstrom Demos

e Ruby, Python, Clojure

e Systems:
o Raft
o Datomic
o CRDTs

e Lanqguages:
o Raft, Python: 1 file, 593 lines
o Raft, Ruby: 1 file, 683 lines
o Datomic list append, Ruby: 1 file, 610 lines

Summary Maelstrom/Jepsen

Oriented towards
distributed data
systems

Runs your
code (any
language)

Verification via
input vs output

Network
stdin/stdout
Json messages.

Workloads
and checkers

Verification via
simulation with
perturbations

Jack Vanlightly @vanlightly

A First Take

-

TLA+

Arbitrary
Levels of
Abstraction

Multiple
specifications at
different levels

State is a

bunch of

variables
(global state)

Invariants based
on internal and
distributed state

Maelstrom

Black-box
(checking)

Invariants based
on input vs
output

\

Abstraction boundary
must offer verifiable
input vs output

TLA+

No wall clock
time

Can abstract
complex parts
of the system

Things can
just happen

e

Maelstrom

Truly
distributed

Runs in the
really real-world
(time exists!)

.
-

Jack Vanlightly @vanlightly

Causality
(No magic
allowed!)

l

More things
must be
modelled

Jack Vanlightly @vanlightly

TLA+ Maelstrom

Algorithmic
thinking

Memory

Programming! | — model

; N

Threading &
concurrency

Error handling

TLA+

State is a
bunch of
variables

Invariants based
on internal and
distributed state

Maelstrom

Bad internal
states

Sometimes
lead to

Jack Vanlightly @vanlightly

\Sfiould lead to

Bad histories

Valid histories

Jack Vanlightly @vanlightly

State enumeration vs simulation

e (ateqgorize actions into:

o Control plane (leader elections etc)
o Data plane (steady state of replication)

e TLC explores state space, every possible sequence of actions explored
(within constraints of state space size)
e Maelstrom uses simulation and perturbations

Jack Vanlightly @vanlightly

.] . Control Data
State enumeration vs simulation plane plane
Distribution of actions is not equal |

TLA+ with TLC

e State space explored
e Things can happen at any
time

e One sequence equal to any

(AR

L
Bz (IMMMENRARA

control-plane sequences \ ///,

Perturbations

Jack Vanlightly @vanlightly

My Experiment

The Distributed
Log Storage System

(aka %ngkKeepeg)

Jack Vanlightly @vanlightly

Abstractions \
ey [LLTIIILIT D]
| A

Lo segmeds (TTVY]) -

A(,?,,_,_,,\ gz_gr’\(.‘\",
il _“\ ik
SQSMQA"'S b /
b3 (1T T 1)

v PEN
ebdata zu‘:,sb?L, LJ‘/ dOS(

Jack Vanlightly @vanlightly

Serving Layer (stateless)
/ C_,S_/j

e

< © © ©
.000

rent
s

Jack Vanlightly @vanlightly

Segment Chaining Invariants

Segment with data (51[N ,/////J/‘L sz i }/‘r S/

outside of segment chain

3 unr

More thanh one en
© an o OP @CLOSEDJV’_\"SE‘ 0'5“ S"’lOPEM

seﬁmen+ in the chain

Temporol ordering @— 1 F@V@H st t3

Jack Vanlightly @vanlightly

Segment Invariants i

Metadota and bookies ‘/
cannot diverge bl [(o|112]3] G816)

(segment truncation) b EILI213] w816)

b3 (E[L[e)3elste)

@

Jack Vanlightly @vanlightly

A First Look at
the Two Models

TLA+... A Tale of Two Specs

Things | didn't model:

Discovery

Leader election algorithm
Failure detection

Reads

352 lines

Things | did model:

Leader changes

Message passing

o Non-deterministic
ordering

o Message loss

922 lines

/

Jack Vanlightly @vanlightly

m@_{udoe@\ ‘
S‘\'Ofe, y Cr Qm)ce

ég R roend
: - '+Q
W
\\\/ ‘é/ FQ/\(,Q,
Sﬁbﬂkge

!

/%Zbdm&ﬁ

Stere / recover
ogen

s /7] o f\’\ close

write \l/ \ﬁ/ fe(,ouef&

) & 6

TLA+ Segment Chaining

= LedgerChaining.tla > {} LedgerChaining > @ Next

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

Next ==

\E c \
\/
\/
\/
\/
\/
\/
\/
\/
N/
\/
\/
\/
\/

(*
Types
*)

ClientStat

in Clients :

LeaderChosen(c)
BecomeLeader(c)

Abdicate(c)
GetLastLedger(c)
LedgerAlreadyClosed(c)
CloselLastlLedgerSuccess(c)
CloseLastLedgerBadVersion(c)
Createledger(c)
AppendLedgerSuccess(c)
AppendLedgerBadVersion(c)
WriteToLedger(c)
CloseOwnLedgerSuccess(c)
CloseOwnLedgerBadVersion(c)

uses == {

WAITING,

GET_MD_FOR _CLOSING,
CLOSE_LAST LEDGER,
PENDING CREATE_LEDGER,
PENDING APPEND LEDGER,

Status

Jack Vanlightly @vanlightly

Checking LedgerChaining.tla / LedgerChaining.cfg

Success: Fingerprint collision probability: 3.7E-8

Start: 02:51:35 (May 22), end: 02:51:59 (May 22)

States

Time Diameter Found Distinct Queue

00:00:00 0 1 1 1

00:00:03 18 182949 49270 16199

00:00:23 40 2207914 375963 0

Coverage

Module Action Total Distinct
LedgerChaining Init 1 1
LedgerChaining LeaderChosen 751926 98150
LedgerChaining Becomeleader 105957 60233
LedgerChaining Abdicate 540012 84673
LedgerChaining GetlLastLedger 317871 45893
LedgerChaining LedgerAlreadyClosed 91287 43376
LedgerChaining CloselastledgerSuccess 23184 12303
LedgerChaining CloselLastledgerBadVersion 65952 8236
LedgerChaining CreateLedger 233514 4610
LedgerChaining AppendLedgerSuccess 6174 3496
LedgerChaining AppendlLedgerBadVersion 9612 1186
LedgerChaining WriteTolLedger 10116 5083
LedgerChaining CloseOwnledgerSuccess 10116 5117
LedgerChaining CloseOwnledgerBadVersion 42192 3606

Jack Vanlightly @vanlightly

TLA+ Segment Lifecycle

o

852 Next ==

853 * Bookies

854 \/ BookieSendsAddConfirmedResponse
855 \/ BookieSendsAddFencedResponse
856 \/ BookieSendsFencingReadlLacResponse
857 \/ BookieSendsReadResponse

858 ¥ WL

859 \/ WlCreatesLedger

860 \/ W1SendsAddEntryRequests

861 \/ W1ReceivesAddConfirmedResponse
862 \/ W1lReceivesAddFencedResponse

863 \/ W1lChangesEnsemble

864 \/ WlTriesInvalidEnsembleChange
865 \/ W1SendsPendingAddOp

866 \/ WlCloselLedgerSuccess

867 \/ WlCloselLedgerFail

868 * W2

869 \/ W2PlaceInRecovery

870 \/ W2ReceivesFencingReadLacResponse
871 \/ W2SendsReadRequests

872 \/ W2ReceivesNonFinalRead

873 \/ W2CompletesReadSuccessfully

874 \/ W2CompletesReadWithNoSuchEntry
875 \/ W2WritesBackEntry

876 \/ W2ReceivesAddConfirmedResponse
877 \/ W2ChangesEnsemble

878 \/ W2TriesInvalidEnsembleChange
879 \/ W2SendsPendingAddOp

880 \/ W2ClosesLedger

881

TLA+ Segment Lifecycle - State Space

Model params
Rep factor 3

4 nodes

1 entry

Hardware
12 workers
64 GB RAM
124 GB Storage

Performance
250000 states/s
67M states

14M unique states
4 2 hour running

[=] Statistics

State space progress (click column header for graph)

Jack Vanlightly @vanlightly

Time

04:34:50
04:34:11
04:33:11
04:32:11
04:31:11
04:30:11
04:2%:11
04:28:11
04:27:11
04:26:11
04:25:11
04:24:11
04:23:11
04:22:11
04:21:11
04:20:11
04:19:11
04:18:11

Diameter

44
42
42
42
42
4
4
4
41
41
41

55858888

States Found

67,489,121
67,352,439
67,112,666
66,361,608
66,623,232
66,401,660
66,143,750
65,900,260
65,664,396
65,430,993
65,210,851
64,981,871
64,721,050
64,472,754
64,228,815
63,996,126
63,759,021
63,528,157

Distinct States
13,902,117
13,884,287
13,847,390
13,810,072
13,770,314
13,731,173
13,694,102
13,657,520
13,616,891
13,578,257
13,540,252
13,499,089
13,462,658
13,423,369
13,383,489
13,351,003
13,310,841
13,270,583

Queue Size

0
49,388
103,737
152,153
192,803
230,816
275,458
304,088
335,555
361,370
382,242
423,459
474,543
494,788
511,752
533,832
558,358
576,412

Jack Vanlightly @vanlightly

Maelstrom - A Linearizable KV Store

Follower Leader

KV:

4%
1->6
2->0
3->2
Cursor: 4

1->4

2>0 - Maelstrom

3->2 —_—— clients
Committed: 7
Applied: 6

Maelstrom - One Model to Rule Them All!

Things | didn't model:
o .7

Things | did model:

e Metadata store (not distributed)
o Session management
o Discovery
o Leader election
o Failure detection

e Bookie nodes
o Store and retrieve what they are told
o Fencing

e KV Store node
o KV store
o Log reader/writer (segment chaining)
o Ledger handle (segment lifecycle)
o Projects log into linearizable KV store

m Replicates reads & writes

Maelstrom - One Model to Rule Them All!

How big?

e -~6000 lines of Java

e 52 files

e Utility code = 779 lines
o Futures O Timeouts
o Logging o Field names
o Delays o Return codes
o Etc

e Nodes

o Shared: 491 lines
m send, receive, shared data model, proxying
Session management: 183 lines
Bookie node: 482 lines
Metadata store node: 482 lines
KV Store Node: 717
m BKclient (segment lifecycle):1543 lines
m Log reader/writer: (segment chaining): 1148 lines
m KV store: 445

O O O O

Maelstrom - Single-Threaded Event Loop

Metadata store:

Expire session

Bookie:
Expire long poll reads

New session/
keep alive

Resume
delayed Handle
task message
timeout

KV store:
Check Leadership
Start Writer
CloselLastLogSegment
Start Catch Up Reader
Catch Up Reads
Replicate
ApplyOp
AppendNoOp
StartReader
Reads

Handle
incoming
message

Jack Vanlightly @vanlightly

Jack Vanlightly @vanlightly

KV Store Node

@0verride
public void initialize(JsonNode initMsg) { sendInitOk(initMsg); }

@0verride Bookie Node

public boolean roleSpecificAction() { @Override
public boolean roleSpecificAction() {

return sessionManager.maintainSession()
Il checkLeadership() return sessionManager.maintainSession()
PR < Il expireLongPollLacReads();
|| initiateNewWriterSequence()
Il closeLastLogSegment()

|| startCatchUpReader()

Il keepCatchingUp() Metadata Store Node
Il startWriter()

|| writerSegmentNoLongerOpen()
Il replicate()

Il applyop() }
|| appendNoOp()

|| startReader()

|| keepReading();

@0verride
public boolean roleSpecificAction() {
return sessionsExpired();

public void handleRequest(JsonNode request) {
if (mayBeRedirect(request)) {
return;

try {

Jack Vanlightly @vanlightly

String type = request.get(Fields.B0ODY).get(Fields.MSG_TYPE).asText();

switch (type) {
case Commands.PRINT_STATE:
printState();
break;
case Commands.Metadata.SESSION_NEW:
handleNewSession(request);
break;

case Commands.Metadata.SESSION_KEEP_ALIVE:

handleKeepAlive(request);
break;

case Commands.Metadata.GET_LEADER_ID:
handleGetLeaderId(request);
break;

case Commands.Metadata.GET_LEDGER_ID:
handleGetLedgerId(request);
break;

case Commands.Metadata.GET_LEDGER_LIST:
handleGetLedgerList(request);
break;

case Commands.Metadata.LEDGER_READ:
handleReadLedger(request);
break;

case Commands.Metadata.LEDGER_UPDATE:
handleUpdateLedger(request);
break;

case Commands.Metadata.LEDGER_CREATE:
handleCreatelLedger(request);
break;

case Commands.Metadata.LEDGER_LIST_UPDATE:
handlelLedgerListUpdate(request);
break;

Jack Vanlightly @vanlightly

No Blocking Code

private CompletableFuture<Void> createWiritableLedgerHandle() {
CompletableFuture<Void> future = new CompletableFuture<>();

ledgerManager.getAvailableBookies() CompletableFuture<List<String>>
.thenApply(this: :checkForCancellation)
.thenCompose((List<String> availableBookies) -> createledgerMetadata(availableBookies))
.thenApply(this: :checkForCancellation)
.thenCompose((Versioned<LedgerMetadata> vlm) -> appendTolLedgerList(vlm))
.thenApply(this: :checkForCancellation)
.whenComplete((Versioned<LedgerMetadata> vlm, Throwable t) -> {
if (t == null) {
writeHandle = new LedgerWriteHandle(ledgerManager, messageSender, vlm);
logger.logDebug(text: "Created new ledger handle for writer");
writeHandle.printState();
future.complete(value: null);
} else if (isError(t)) {
future.completeExceptionally(t);
} else {
future.complete(value: null);

B);

return future;

Jack Vanlightly @vanlightly

Local Invariants - Looking inside the box again

Local invariants -> Crash the node

KV Store Metadata Store Bookies
Cursor ahead of Last Carr: not have more ?
Entry than one open -
segment

Op Ids are ordered
and contiguous

No uncommitted
entries below
committed index

Jack Vanlightly @vanlightly

My experiences, mine!

e Maelstrom
o Spent more time than I'd like on getting all the asynchronous code to

work correctly:

m Each node single-threaded to avoid complexity of multi-threading within a single
node

m Uses an event loop to trigger actions, respond to replies, timeout requests, implement
non-blocking delays

m Chaining non-blocking calls
Handling, propagating errors correctly
Building in timeouts, delays into the event loop

Jack Vanlightly @vanlightly

Choice of Language

Ruby, Python

Java, C++

Statically typed, fast,
good for distributed data Elegant, |
system Good for modelling

Jack Vanlightly @vanlightly

Model Checking
Wins and Fails

king Win
del Chec

| Protocol Defect! Mo

inds Rea

TLA+ Fin

iants
TLC Model Checker B B
Seq

Kies
dota and bo©
Yo
Me

iverge oy
connot ‘i sruncofi
(segme!

*)
Nt is vi late 1f, on edger ; Closeq € wrj has *)
* ntr no; ledge (by bookje) that €r en than *)
(* €ndpojnt of the S Storeq 1n the p tad. t *)
(* Th is Mgence , d loss *)
(**t*&****** * *****t*t*&* * **** * *t*tJr*****&I*#******tt****&*&&t******-‘t)
NoblvergenceBetwee WriterA dMetaData ==

IF ta\statu STA 0SEp

THEN UE

ELsg \A jg \in 3 Wl 1lac

id

Jack Vanlightly @vanlightly

TLA+ Real-life Defect - Model Checking Win

28 CPU threads, 100GB RAM, NVMe SSD

’Invariant NoDivergenceBetweenWriterAndMetaData is wviolated.

Rep factor 3, 3 Bookies, 1 entry

State space progress (click column header for graph)

Time Diameter States Found Distinct States Queue Size
00:00:22 22 1,577,889 376,929 42951 |
00:00:14 16 156,524 52,618 24 514

00:00:11 0 1 1 1

Jack Vanlightly @vanlightly
TLA+ Model Checking Win
Invariant NoDivergenceBetweenWriterAndMetaData is violated.

Error-Trace Exploration

Error trace makes it clear:

Error-Trace A fd
e What invariant got Naroe Volue
v & <|nitial predicate= State (num = 1)
i ' B b entries (B1={l@@B2=>{)
VIOl ated & b fenced (B1:> FALSE @@ B2 > FALSE)
L. B b lac (B1:>0@@B2:>0)
e The specific sequence 5 messages
8 meta fragments << ==
= meta last entry 0
of state steps that leads = meta status Ni
@ meta version 0
H ; H 2wl [meta_version |-> Nil, status |-> Nil, curr_fragment |-> Nil, pending_add_ops |-> {}, lap |->..
to th € VIO l ation Wlth th € g5 w2 [meta_version |-> Nil, status |-> Nil, curr_fragment |-> Nil, pending_add_ops |-> {}, lap |->..
v & <\W1CreatesLedger line 161, col 5t State (num = 2)
i B b entries (B1>{}@@B2:>{})
States ! nVO|Ved & b fenced (B1 = FALSE @@ B2 = FALSE)
8 b lac (B1:>0 @@ B2 :>0)
B messages << >>
8 meta fragments <<[id |-= 1, ensemble |-= {B1, B2}, first_entry_id |-> 1]>>
© meta last entry 0
B meta status STATUS_OPEN
B meta version 1
2 wi [meta_version |-> 1, status |-> STATUS_OPEN, curr_fragment |-= [id |-= 1, ensemble |-> ...
2 w2 [meta_version |-> Nil, status |-> Nil, curr_fragment |-> Nil, pending_add_ops |-> {}, lap |->..

v & <\W1SendsAddEntryRequests line 1 State (num = 3)
B b entries B1>={}@@B2>{})

Maelstrom - Checking Win

| made mistake after mistake after _ \(_e\.
mistake during the implementation... W
Maelstrom usually f i M/Sf

y found them in qke/
under 5 minutes, sometimes an \ .
hour. M\G'\'O‘\Le'

Showed lower level mistakes that the

higher level TLA+ specification could Mi9+0k8!
not flag.
g | _\0‘\(_6\-
Great insight into the kinds of M7
mistakes that could get implemented Mig+67/< /
in the real implementation. €.

Jack Vanlightly @vanlightly

Maelstrom - Checking Fail? Or Jack Fail...

Couldn’t start checking until whole system modelled.

A long time passed until | could start getting confidence
via the checking (then huge volume of mistakes to fix).

- = Could have started with a non distributed KV Store, then slowly
add components as | went, checking along the way.

Maelstrom - Checking Fail

Ran it for 10 days... did not find this
defect.

Hard-coded losing a key message on
EVERY SINGLE leader failover... nope.

Hard-coded dropping session keep-alives
after 3 seconds in order to trigger leader
failover every 3 seconds ... nope.

Hard-coded 100 ms delay between

message sends to each bookie to increase

probability of overlap... Yes! After only 1
hour! (local invariant not jepsen)

segment \nvariants

]) o
MOJQ(
Metadoto and bookes .
+ diverge W
(c;;\;\r?\er\’r +runca’r\or0 it ’” amgl’

w3 ’

¢L°sE° P e g
2k Lg?" W PN

Turned off local invariant checking to see
if Jepsen would detect it... Yes! After 5
days.

%

Re-enabled local invariants, removed
hard-coded delay and used Maelstrom
random network latency of 10 ms...

... ran for 5 days and finally yes.

Jack Vanlightly @vanlightly

Features

Performance

Observabil'ﬂry
Securier
Operations
In+ear‘a+ion9
Languaﬂe Clients

CIari’ry
SimPlici+y

From model to implementation

Jack Vanlightly @vanlightly

You've already taken the first steps when using
Maelstrom

e Shows you what you need to log
o Good logging is a necessity not an afterthought!
e The power of the network shim
o Not sure I'd give up the convenience of Maelstrom, even with my implementation.

e The model likely has shown you insights into real mistakes that could be
made in the implementation.
e But..

o Simplicity vs performance - can you reuse the model code at all?
o Does the model and implementation even have the same language?

The Good Parts

TLA+

Like sketching
Free flowing

One file,
can keep it in
my head

Maelstrom

It's just coding
in my chosen
language!

Easy to
inspect the
network

Model checker
found defects
fast

Error traces
relatively easy
to parse

Simple to run
(no servers,
no k8s etc)

Checking found
most defects within
5 minutes to an
hour

Jack Vanlightly @vanlightly

The Challenges

TLA+ Maelstrom
Analysis is Boilerplate!
New to TLA+? time
Expect a steep consuming!
learning curve /
Can be larger,
Battling the Custom more complex
state space workloads
require Clojure
(learning curve) / \
S(;Jc.ceig! Less free Hard to keep
risit: flowing in my head

Use them for their strengths

TLA+

TLA+ is abstract, and
that is its strength

Maelstrom

Maelstrom is truly
distributed in true time

Jack Vanlightly @vanlightly

Blurs the line
of model and
prototype

Focus on what
not how

Free of clutter

Insights directly
related to coding
the solution

Hopefully makes
you do better

logging

Possibly useful beyond
model/prototype stage

Design doc -> TLA+ -> Maelstrom prototype -> Impl

Jack Vanlightly @vanlightly

Modelling is not
a Silver Bullet!

Jack Vanlightly @vanlightly

https://jepsen.io
https://github.com/jepsen-io/jepsen
https://qithub.com/jepsen-io/maelstrom

BookKeeper TLA+ Specifications
https://qithub.com/Vanlightly/bookkeeper-tlaplus

My Distributed Log Maelstrom Model
https://qgithub.com/Vanlightly/maelstrom-playground

)

Art Director and lllustrator: My son! Attend the TLA+
workshop!!!

https://jepsen.io
https://github.com/jepsen-io/jepsen
https://github.com/jepsen-io/maelstrom
https://github.com/Vanlightly/bookkeeper-tlaplus
https://github.com/Vanlightly/maelstrom-playground

