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. Why?

L AP ACK
L -AP-AC K

= LAPACK L APA--K
— Linear Algebra PACKage L-AP-A-CK

: : L A-P-ACK

— written in Fortran 90 LA A K

— highly optimized

= “The original goal of the LAPACK was to ... run efficiently on shared-
memory vector and parallel processors.”
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S How?

L APACK
L -AP-AC K

= LAPACK L AP A -C-K
1. invoke library code L -AP-A-CK
data into libra L AP-ACK

> passda i L -A-P A C K

3. access data from Java
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. Overview

= Existing
— Java Native Interface (JNI) & JNR library
— java.nio.DirectByteBuffer
— sun.misc.Unsafe (get*/set*)
= JDK9
— j.l.i.VarHandle views over ByteBuffers
= Future
— Project Panama
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Native Code
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. Native Code

A C K
-A C K
A -C K
-A -C K
A -P-ACK
-A -P A C K

= LAPACK
1. invoke library code
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JNI

@since 1.1
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. JNI

Usage scenario

class LibC {
User Code static native long getpid();

Java

C/native jlong INICALL Java_LibC_getpid(

JNIEnv* env, jclass c) {
Target Library

IhE‘_E—I
-

return getpid();
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JNI
Upcall

jlong INICALL Java_...(INIEnv* env,
jclass cls,
jobject obj) {

jmethodID mid = env->GetMethodID(cls, “m”, “(I)J3”);

jlong result = env->CallLongMethod(obj, mid, 10);
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JNI

Data access

jlong JINICALL Java_...(INIEnv* env,
jclass cls,
jobject obj) {

jfieldID fid = env->GetFieldID(cls, “f”, “J”);

jlong result = env->GetLongField(obj, fid);

env->SetLongField(obj, fid, 10);

jlong result
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. JNI

Native API: JNIEnv

= Operations on
— Classes
— Strings
— Arrays
— Monitors
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Java Frame | Native Frame

Java Heap Native Memory
GC roots '
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Java Frame

GC roots

Java Heap

Native Frame

Native Memory
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Java Heap

Native Memory

raw ptr
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Java Heap

Native Memory

raw ptr ptr jobject address
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Java Frame : : Native Frame

Java Heap Native Memory
GC roots | |
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. Anatomy of JNI call
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. Anatomy of JNI call

Safepoints
O
O Java Heap
0
o

Java I
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. JNI

= Pros
— seamless integration
= looks like a Java method
— rich native API to interact with Java

= Cons
— manual binding
— invocation overhead
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. JNI

Victim of its own success?
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. JNI

Sum array elements

jint INICALL Java_...(JINIEnv *env, jclass c, jobject arr) {
jint len = (*env)->GetArrayLength(env, arr);
jbyte* a = (*env)->GetPrimitiveArrayCritical(env, arr, 0);

return sum;

—m-mm
11.420.3 ns [IINIIOIOSAINS| 798+32ns 64151 s
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Critical JNI
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. Critical JNI

Sum array elements

jint INICALL JavaCritical ...(jint length, jbyte* first) {

return sum;

—mmm
114203 ns [IIOIORAINS] 798:32ns 64151 s
CriticaldNI  11.4¢0.3ns |[NIA2E0BNS] 680:22ns  636£12 s
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. Critical JNI

Limitations

= only static, non-synchronized methods supported
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. Critical JNI

Limitations

= only static, non-synchronized methods supported

= no JNIEnv*
— hence, no upcalls or access to Java heap

% . N _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved



. Critical JNI

Limitations

= only static, non-synchronized methods supported
= no JNIEnv*
= arguments: primitives or primitive arrays

— [I'=> (length, I*)

— null => (0, NULL)
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. Critical JNI

Limitations

= only static, non-synchronized methods supported
= no JNIEnv*
= arguments: primitives or primitive arrays
— [I'=> (length, I*)
— null => (0, NULL)
= No object arguments
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. Critical JNI

Limitations

= only static, non-synchronized methods supported
= no JNIEnv*
= arguments: primitives or primitive arrays
— [I'=> (length, I*)
— null => (0, NULL)
= No object arguments

= used only in optimized code
— 2 versions are needed: ordinary JNI & critical JNI versions
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. Hard cases

int printf(const char *format, ...)
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. Hard cases

void gsort(
void* base,
size t nel,
size t width,
int (*cmp)(const void*, const void*));
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JNR

Java Native Runtime
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. JNR

Usage scenario

public interface LibC {
@pid_t long getpid();

User-defined }

generated
on-the-fly

LibC lib = LibraryLoader

Java .create(LibC.class)
Joad("c");
Native
libc.getpid()
33 ORACLE
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. DEMO

= native call

— getpid
= structs

— gettimeofday
= upcalls

— qsort
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. JNR

= Pros
— automatic binding of native methods

= Cons
— manual interface extraction
= doesn’t scale
— still uses JNI to perform native calls
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Better JNI

Easier, safer, faster!

ORACLE
ved



“If non-Java programmers find some library
useful and easy to access, it should be
similarly accessible to Java programmers.”

John Rose, JVM Architect,

Oracle Corporation

ORACLE"

Copyright © 2016, Oracle and/or its affiliates. All rights reserved



Caribbean Sea

Project Panama
“Bridging the gap”

Chiriguf

Isla de
Coitm *

COLOMBIA

PACIFIC
OCEAN

100 km
100 miles
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. Better JNI

pid_t get pid();
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. Easier

Better JNI

User-defined

produced
by jextract

generated
on-the-fly

Library

41

public interface LibC {
long getpid();

LibC libc = Library
.load(LibC.class, “c”);

libc.getpid();
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. Easier

Better JNI

public interface LibC {
long getpid();

LibC libc = Library.load(LibC.class, “c” /* 1lib name */ );

libc.getpid();
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. Faster

Better JNI

callg 0x1057b2eb0 ; getpid entry
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Faster
Better JNI

MethodType mt = MethodType.methodType(int.class); // pid_ t

MethodHandle mh =
MethodHandles.lookup().findNative("getpid", mt);

int pid = (int)mh.invokeExact();

| getpid

JNI 13.7 £ 0.5 ns
Direct call 34+0.2ns
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. Safer

Better JNI

no crashes

no leaks

no hangs

no privilege escalation
no unguarded casts
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. Safety vs Speed
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. Safety vs Speed
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. Safety vs Speed
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. Safety vs Speed i

Reiitets MM = =z
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. Trust Levels

50

Better JNI

[SECURITY
CHECK

ALL PERSONS AND PROPERTY
ARE SUBJECT TO SEARCH

NO PACKAGES, BACKPACKS,
COOLERS OR PARCELS

@ NO WEAPONS OR FIREARMS
@ NO EXPLOSIVES OR FLAMMABLES
® NO KNIVES OR SHARP OBJECTS

® NO PEPPER SPRAY OR MACE

PLEASE REPORT ANY SUSPICIOUS
ACTIVITY TO SECURITY IMMEDIATELY

),

kL

Untrusted
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. Trust Levels
Better JNI

Trusted
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. Trust Levels
Better JNI

Privileged
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. Usage

Better JNI
jextract 4 metadata classes / | ) [
g‘header fi!’e platform ser API
groveller”) J_config. /| (Java Java
\ carrier Apps
names &

Java code carrier
(interfaces) S < types)
< JVM/runtime

5 . N _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved



. gettimeofday

Better JNI

/* time.h */

struct { struct {
time t tv_sec; int tz_minuteswest;
suseconds_t tv_usec; int tz_dsttime;

} timeval; } timezone;

int gettimeofday(struct timeval* tv, struct timezone* tz);
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. Carrier Types

= C = Java
char boolean
short byte
float C;) short
int o char
long int
long long long
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. Carrier Types

= C = Java
char boolean (uint8 t)
short byte (int8 _t)
float C;) short (intl6 _t)
int o char (uintl6_t)
long int (int32_t)
long long long (int64 _t)
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. $ jextract time.h
Better JNI

interface Time {

interface Timeval { interface Timezone {
long tv_sec$get(); int tz_ ...$get();
void tv_sec$set(long); void tz_...$set(int);
long tv usec$get(); int tz ...$get();
void tv_usec$set(long); void tz_...$set(int);
} }

int gettimeofday(Timeval, Timezone);
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. Foreign Layouts

= Native data requires special address arithmetic
— Native layouts should not be built into the JVM
— Native types are unsafe, so trusted code must manage the bits

= Solution: A metadata-driven Layout API

= As a bonus, layouts other than C and Java are naturally supported
— Network protocols, specialized in-memory data stores, mapped files, etc.
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. Better JNI

Data Layout

interface Timeval {

@Offset(offset=0L)
long tv_sec$get();

@O0ffset(offset=64L)
long tv_usec$get();

= work on Layout Definition Language (LDL) is in progress

— https://github.com/J9Java/panama-docs/blob/master/StateOfThelLDL.html
— http://cr.openjdk.java.net/~jrose/panama/minimal-ldl.html
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. Runtime

60

Better JNI

Library lib = Library.create(“c”);

lib.create(Time.class);
lib.create(Timeval.class);

Time time
Timeval tval

int res = time.gettimeofday(tval, null);

if (res == 0) {
long tv_sec = tval.tv_sec$get();
long tv_usec = tval.tv_usec$get();
} else { /* error handling */ }

Copyright © 2016, Oracle and/or its affiliates. All rights reserved
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. Runtime

Better JNI

Library 1lib = Library.create(“c”);

Time time
Timeval tval

lib.create(Time.class);
lib.create(Timeval.class);

int res = time.gettimeofday(tval, null);

if (res == 0) {
long tv_sec = tval.tv_sec$get();
long tv usec = tval.tv usec$get();

} else { /* error handling */ }
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. Runtime

62

Better JNI

Library lib = Library.create(“c”);

Time time = lib.create(Time.class);
Timeval tval = lib.create(Timeval.class);

int res = time.gettimeofday(tval, null);

if (res == 0) {
long tv_sec = tval.tv_sec$get();
long tv_usec = tval.tv_usec$get();
} else { /* error handling */ }

Copyright © 2016, Oracle and/or its affiliates. All rights reserved
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. Runtime

Better JNI

Library 1lib = Library.create(“c”);

lib.create(Time.class);
lib.create(Timeval.class);

Time time
Timeval tval

int res = time.gettimeofday(tval, null);

if (res == 0) {
long tv_sec = tval.tv_sec$get();
long tv_usec = tval.tv usec$get();
} else { /* error handling */ }
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. Resources

Explicit management

Timeval tval = null;

try {
tval = lib.create(Timeval.class);

int res = time.gettimeofday(tval, null);
if (res == 0) {
long tv_sec tval.tv_sec$get();
long tv_usec = tval.tv_usec$get();
} else { /* error handling */ }
} finally {
if (tval != null) {
lib.free(tval);
tval = null;

r}
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Resources
Try-with-resources

interface Timeval extends AutoCloseable { .. }

try (Timeval tval = lib.create(Timeval.class)) {
int res = time.gettimeofday(tval, null);

ORACLE
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. Resources

Scoped memory

try (Scope scope = lib.createScope()) {
TimeVal tval = scope.create(TimeVal.class);

int res = time.gettimeofday(tval, null);
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. Resources

Scoped memory

TimeVal tval = null;

try (Scope scope = lib.createScope()) {
tval = scope.create(TimeVal.class);
int res = time.gettimeofday(tval, null);
}
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. Resources

68

Scoped memory

TimeVal tval = null;

try (Scope scope = lib.createScope()) {
tval = scope.create(TimeVal.class);

int res = time.gettimeofday(tval, null);

¥

long tv_sec = tval.tv_sec$get(); // liveness checks!
long tv_usec = tval.tv_usec$get(); // liveness checks!
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. “Civilizer”

Better JNI

interface Timeval {
void gettimeofday(Timeval, Timezone) throws ErrNo;
}
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. “Civilizer”

Better JNI

interface Timeval {
void gettimeofday(Timeval, Timezone) throws ErrNo;
}

try (Timeval tval = lib.create(Timeval.class)) {
time.gettimeofday(tval, null); // throws exception
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. Variadic Function
Better JNI

int printf(const char *format, ...)
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. jextract + Civilizer
Better JNI

// int printf(const char *format, ...)
interface Stdio {

// ((Ran)
int printf(Pointer<Byte> format, byte[] args);
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. jextract + Civilizer
Better JNI

// int printf(const char *format, ...)
interface Stdio {

// ((Ran)
int printf(Pointer<Byte> format, byte[] args);

// “Civilized”
void printf(String format, Object.. args);
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. Optimize checks

void run(MyClass obj) {
obj.nativeFunc1(); // checks & state trans.
obj.nativeFunc?2(); // checks & state trans.
obj.nativeFunc3(); // checks & state trans.
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. Optimize checks

O
Q Java Heap
O
o

Java I
_________________________________________________________________________________________________________________________________ g
Native <
____________________________________________________________________________________________________________________________________ 2
o
VM ®

Native Memory
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. Optimize checks

O
Q Java Heap
O
o

Java I
_________________________________________________________________________________________________________________________________ g
Native <
____________________________________________________________________________________________________________________________________ <P
4

VM ®

Native Memory
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. Optimize checks

void run(MyClass obj) {
obj.f1(); // NPE
obj.f2(); // NPE
obj.f3(); // NPE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved
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. Optimize checks

void run(MyClass obj) {
if (obj == null) jump throwNPE_ stub;
call MyClass::f(obj);
call MyClass::f1(obj);
call MyClass::f3(obj);
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. Optimize checks

void run(MyClass obj) {
obj.nativeFunc1(); // checks & state trans.
obj.nativeFunc?2(); // checks & state trans.
obj.nativeFunc3(); // checks & state trans.
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. Optimize checks

void run(MyClass obj) {
if ('performChecks()) jump failed_stub;
call transJavaToNative();
MyClass::nativeFunc1(env, obj);
MyClass::nativeFunc2(env, obj);
MyClass::nativeFunc3(env, obj);
call transNativeToJava();
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Q Java Heap
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Native Memory
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Q Java Heap

Java

Native

VM

SIElS PEaly]

Native Memory
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. Better JNI

Easier, Safer, Faster!

= Native access between the JVM and native APIs
— Native code via FFls
— Native data via safely-wrapped access functions
— Tooling for header file API extraction and APl metadata storage
= Wrapper interposition mechanisms, based on JVM interfaces
— add (or delete) wrappers for specialized safety invariants

= Basic bindings for selected native APls
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Native Data
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. Native Data

A C K
-A C K
A -C K
-A -C K
A -P-ACK
-A -P A C K

=« LAPACK

L}
>
T U U O

rerrrereor
U
>

2. pass data into library
3. access data from Java
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JNI

@since 1.1
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NIO

@since 1.4
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NIO
“New 1/0”

= Provides access to the low-level I/O operations
— Buffers for bulk memory operations
= on-heap and off-heap
— Character set encoders and decoders
— Channels, a new primitive 1/O abstraction
— File interface
= supports locks and memory mapping of files
— Multiplexed, non-blocking I/O
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. java.nio.Buffer

= java.nio.ByteBuffer / CharBuffer / ...
- MappedByteBuffer extends ByteBuffer
= memory-mapped region of a file
— DirectByteBuffer extends MappedByteBuffer
= malloc’ed native memory
— HeapByteBuffer
= backed by byte][]
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. java.nio.DirectByteBuffer
Usage

ByteBuffer dbb = ByteBuffer.allocateDirect(size);
while (dbb.hasRemaining()) {

dbb.putInt(..); // init
}
LAPACK.square(dbb.address(), size); // invoke
dbb.rewind(); // reset position

while (dbb.hasRemaining()) {
int i = dbb.getInt(); // read result

¥
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. java.nio.DirectByteBuffer
Usage

ByteBuffer dbb = ByteBuffer. (size);
while (dbb.hasRemaining()) {
dbb.putInt(..); // init
}
LAPACK.square(dbb.address(), size); // invoke

dbb.rewind(); // reset position
while (dbb.hasRemaining()) {
int i = dbb.getInt(); // read result

¥
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. java.nio.DirectByteBuffer
Usage

ByteBuffer dbb = ByteBuffer. (size);
while (dbb.hasRemaining()) {

dbb.putInt(..); // init
}
LAPACK.square(dbb.address(), size); // invoke
dbb.rewind(); // reset position

while (dbb.hasRemaining()) {
int i = dbb.getInt(); // read result

¥
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. java.nio.DirectByteBuffer
Usage

ByteBuffer dbb = ByteBuffer.allocateDirect(size);
while (dbb.hasRemaining()) {

dbb.putInt(..); // init
}
LAPACK.square(dbb.address(), size); // invoke
dbb.rewind(); // reset position

while (dbb.hasRemaining()) {
int i = dbb.getInt(); // read result

¥
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. java.nio.DirectByteBuffer

Usage

while (dbb.hasRemaining()) {
int 1 = dbb.getInt(); // read result

¥
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. java.nio.DirectByteBuffer
Usage

ByteBuffer dbb = ByteBuffer. (size);
while (dbb.hasRemaining()) {
dbb.putInt(..); // init
}
LAPACK.square(dbb); // invoke

while (dbb.hasRemaining()) {
int i = dbb.getInt(); // read result

¥
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. java.nio.Buffer

- < 2GiB
— ByteBuffer.allocateDirect(int size)
— ByteBuffer.allocate(int size)
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. java.nio.Buffer

- < 2GiB

— ByteBuffer.allocateDirect(int size)
= Stateful

— Buffer.position

— not thread-safe
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. java.nio.Buffer

- < 2GiB
— ByteBuffer.allocateDirect(int size)
= Stateful
— Buffer.position
— not thread-safe
= Resource deallocation
— GC-based (Cleaner) memory management

% . - _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved



. java.nio.Buffer

- < 2GiB
— ByteBuffer.allocateDirect(int size)
= Stateful
— Buffer.position
— not thread-safe
= Resource deallocation
— GC-based (Cleaner) memory management
= Zeroing
— on initialization
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. java.nio.Buffer

= < 2GiB
— ByteBuffer.allocateDirect(int size)
= Stateful
— Buffer.position
— not thread-safe
= Resource deallocation
— GC-based (Cleaner) memory management
= Zeroing
— on initialization
= Bounds checking
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sun.misc.Unsafe

Anti-JNI
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. sun.misc.Unsafe

Concurrency primitives compareAndSwap*
Serialization allocatelnstance
Efficient memory management, allocateMemory/freeMemory
layout, and access get*/put*

Interoperate across the JVM

boundary SEHiaL
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. sun.misc.Unsafe

= Unsafe.get*/put”
— getint(Object base, long offset)
— putint(Object base, long offset, int value);
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. sun.misc.Unsafe

= Unsafe.get*/put”
— getint(Object base, long offset)
— putint(Object base, long offset, int value);

= double-register addressing mode
— getint(o, offset) == o + offset
— getInt(null, address) == address
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. sun.misc.Unsafe

= Unsafe.get*/put”
— getint(Object base, long offset)
— putint(Object base, long offset, int value);

= double-register addressing mode
— getint(o, offset) == o + offset
— getInt(null, address) == address

= long allocateMemory(long size) void freeMemory(long address)
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java.nio.DirectByteBuffer
Usage

long buf = UNSAFE.allocateMemory(size);
LAPACK.square(buf, size);

for (long 1 = 0; 1 < size; 1 =+ 4) {
int i = UNSAFE.getInt(null, buf + 1);
}
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UNSAFE.putint(new Obiject(), OL, 0)
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UNSAFE.putint(null, OL, 0)
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Object UNSAFE.getObject(long address)
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long UNSAFE.getAddress(long address)
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Unsafe =7= Fast
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Unsafe = Fast
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. Unsafe != Fast

public native Object allocatelnstance(Class<?> cls) throws ...;
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. Unsafe != Fast

114

Array index vs Raw offset

long[] base = new long][..];
int idx = .;
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. Unsafe != Fast

Array index vs Raw offset

long[] base = new longl[..];
int idx = ..;

// “Naive” version
long value = base[idx];
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. Unsafe != Fast

Array index vs Raw offset

long[] base = new longl[..];
int idx = .;

// “Nailve” version
long value = base[idx];

// Highly optimized

long offset = (((long) idx) << SCALE + OFFSET)
long value = Unsafe.getlLong(base, offset);
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. Unsafe != Fast

Array index vs Raw offset: 32-bit platform

long[] base = new long][..];
int idx = ..;

// “Nailve” version
long value = base[idx];

// Highly optimized

long offset = (((long) idx) << SCALE + OFFSET)
long value = Unsafe.getlLong(base, offset);
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. Unsafe != Fast

= Missing optimizations
— JDK-8078629: “VM should constant fold Unsafe.get*() loads from final fields”
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- How many of you have used the Unsafe API?

John Rose, JVM Architect, Oracle
JVM Language Summit 2014
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- How many of you have used the Unsafe API?

- A lot of you. Gosh. I'm sorry.

John Rose, JVM Architect, Oracle
JVM Language Summit 2014
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Open)DK

OpenDK FAQ
Installing
Contributing
Sponsoring
Developers' Guide

Mailing lists
IRC - Wiki

Bylaws - Census
Legal

JEP Process

search

Source code
Mercurial
Bundles (6)

Groups
(overview)

2D Graphics
Adoption

AWT

Build

Compiler
Conformance
Core Libraries
Governing Board
HotSpot
Internationalization
JMX

Members
Networking
NetBeans Projects

JEP 260: Encapsulate Most Internal APIs

Author
Owner
Created
Updated
Type
Status
Scope
Discussion
Effort
Duration
Priority
Reviewed by

Release
Issue

Summary

Mark Reinhold

Chris Hegarty

2015/08/03 18:29

2015/10/02 17:20

Feature

Candidate

JDK

jigsaw dash dev at openjdk dot java dot net
M

L

1

Alan Bateman, Alex Buckley, Brian Goetz, John Rose, Paul
Sandoz

9

8132928

Make most of the JDK's internal APIs inaccessible by default but leave a few critical,
widely-used internal APIs accessible, until supported replacements exist for all or
most of their functionality.
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. sun.misc.Unsafe
| Usecase | Examplemethods |

Concurrency primitives compareAndSwap*

allocatelnstance

Serialization
(ReflectionFactory.newConstructorForSeriaIization)
Efficient memory management, allocateMemory/freeMemory
layout, and access get*/put”

Interoperate across the JVM

boundary St
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. sun.misc.Unsafe
| Usecase | Replacement |

Concurrency primitives JEP 193 Variable Handles
Serialization Reboot JEP 187 Serialization
Improvements
Efficient memory management, Project Panama, Project Valhalla,
layout, and access Arrays 2.0, Better GC

Interoperate across the JVM

boundary Project Panama,

JEP 191 Foreign Function Interface

123 ) ] B ) ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved



java.lang.invoke.

VarHandle

@since 9

JEP 193: Variable Handles
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. VarHandle
ByteBuffer View

MethodHandles.Lookup:

VarHandle byteBufferViewVarHandle(Class<?> viewArrayClass,
boolean bigEndian) {..}

“Produces a VarHandle giving access to elements of a ByteBuffer
viewed as if it were an array of elements of a different primitive
component type to that of byte, such as int[] or long][].”
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. VarHandle
ByteBuffer View

VarHandle VH =

MethodHandles.byteBufferViewVarHandLle(
int[].class,
ByteOrder.nativeOrder() == ByteOrder.BIG ENDIAN);

ByteBuffer dbb = ByteBuffer.allocateDirect(size);
int v = (int) VH.get(dbb, idx);
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. java.nio.ByteBuffer vs VarHandle View

127

_ DirectByteBuffer VarHandle

Size

State

Resource management
Zeroing
Atomics/Fences/...
Bound checks

<2GiB <2GiB
GC-based No (delegates to DBB)
Yes No (delegates to DBB)

No
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. Optimized Bounds Checks
int[]

// null check + (index u< array.length)
return array[index];
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Optimized Bounds Checks

int[]: Unsafe access

// bounds and null check
if (index < @ || index >= array.length)
throw new ..();

long offset = BASE + (((long) index) << 2);
return UNSAFE.getInt(array, offset);
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. Optimized Bounds Checks

int[]: Unsafe access

// bounds (u<) and null check
index = Objects.checkIndex(index, array.length);

long offset = BASE + (((long) index) << 2);
return UNSAFE.getInt(array, offset);

@HotSpotIntrinsicCandidate
public static int checkIndex(int index, int length, ..);
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. Summary

= Existing
— Java Native Interface (JNI) & JNR library
— java.nio.DirectByteBuffer
— sun.misc.Unsafe (get*/set*)
= JDK9
— j.l.i.VarHandle views over ByteBuffers
= Future
— Project Panama
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. Foreign Function Interface
Pr OjeCt Panama Data Layout Control
Vector API
Arrays 2.0

O pe nl D K http://openjdk.java.net
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panama-dev@openijdk.java.net

Project Panama

http://hg.openjdk.java.net/panama/panama

O pe nl D K http://openjdk.java.net
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. Safe Harbor Statement
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The preceding is intended to outline our general product direction. It is
intended for information purposes only, and may not be incorporated into
any contract. It is not a commitment to deliver any material, code, or
functionality, and should not be relied upon in making purchasing
decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole
discretion of Oracle.
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