Working with Native Libraries
in Java

ViIadimir lvanov
HotSpot JVM Compiler @iwanOwww

Oracle Corp. OpendJDK: vlivanov
14.10.2016

. Why?

L APACK
L -AP-AC K

= LAPACK L AP A € -K
— Linear Algebra PACKage L -AP-A-CK

L A-P-ACK

L -A-P A CK

2 . - _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Why?

L AP ACK
L -AP-AC K

= LAPACK L APA--K
— Linear Algebra PACKage L-AP-A-CK

: : L A-P-ACK

— written in Fortran 90 LA A K

— highly optimized

= “The original goal of the LAPACK was to ... run efficiently on shared-
memory vector and parallel processors.”

’ . - _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

S How?

L APACK
L -AP-AC K

= LAPACK L AP A -C-K
1. invoke library code L -AP-A-CK
data into libra L AP-ACK

> passda i L -A-P A C K

3. access data from Java

4 _ o _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Overview

= Existing
— Java Native Interface (JNI) & JNR library
— java.nio.DirectByteBuffer
— sun.misc.Unsafe (get*/set*)
= JDK9
— j.l.i.VarHandle views over ByteBuffers
= Future
— Project Panama

° . — _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Native Code

¥ . - _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Native Code

A C K
-A C K
A -C K
-A -C K
A -P-ACK
-A -P A C K

= LAPACK
1. invoke library code

]
>
UV U U

ol ol ol o o
U
>

! . . _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

JNI

@since 1.1

s . - _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. JNI

Usage scenario

class LibC {
User Code static native long getpid();

Java

C/native jlong INICALL Java_LibC_getpid(

JNIEnv* env, jclass c) {
Target Library

IhE‘_E—I
-

return getpid();

_ o _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

JNI
Upcall

jlong INICALL Java_...(INIEnv* env,
jclass cls,
jobject obj) {

jmethodID mid = env->GetMethodID(cls, “m”, “(I)J3”);

jlong result = env->CallLongMethod(obj, mid, 10);

Copyright © 2016, Oracle and/or its affiliates. All rights reserved

ORACLE

JNI

Data access

jlong JINICALL Java_...(INIEnv* env,
jclass cls,
jobject obj) {

jfieldID fid = env->GetFieldID(cls, “f”, “J”);

jlong result = env->GetLongField(obj, fid);

env->SetLongField(obj, fid, 10);

jlong result

R . - _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. JNI

Native API: JNIEnv

= Operations on
— Classes
— Strings
— Arrays
— Monitors

12 . N _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Java Frame | Native Frame

Java Heap Native Memory
GC roots '

3 . N _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Java Frame

GC roots

Java Heap

Native Frame

Native Memory

Copyright © 2016, Oracle and/or its affiliates. All rights reserved

ORACLE

Java Heap

Native Memory

raw ptr

15 . - _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Java Heap

Native Memory

raw ptr ptr jobject address

16 . N _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Java Frame : : Native Frame

Java Heap Native Memory
GC roots | |

v . - _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Anatomy of JNI call

O

Q Java Heap
o)
o
Java I
___ 6
. O
o
VM @

Native Memory

18 . - _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Anatomy of JNI call

Safepoints
O
O Java Heap
0
o

Java I
___ g
Native <
£
___ o
VM O

Native Memory

19 ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. JNI

= Pros
— seamless integration
= looks like a Java method
— rich native API to interact with Java

= Cons
— manual binding
— invocation overhead

20 . N _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. JNI

Victim of its own success?

2 . N _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. JNI

Sum array elements

jint INICALL Java_...(JINIEnv *env, jclass c, jobject arr) {
jint len = (*env)->GetArrayLength(env, arr);
jbyte* a = (*env)->GetPrimitiveArrayCritical(env, arr, 0);

return sum;

—m-mm
11.420.3 ns [IINIIOIOSAINS| 798+32ns 64151 s

2 . -) ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Critical JNI

2 . - _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Critical JNI

Sum array elements

jint INICALL JavaCritical ...(jint length, jbyte* first) {

return sum;

—mmm
114203 ns [IIOIORAINS] 798:32ns 64151 s
CriticaldNI 11.4¢0.3ns |[NIA2E0BNS] 680:22ns 636£12 s

2 . -) ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Critical JNI

Limitations

= only static, non-synchronized methods supported

% . N _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Critical JNI

Limitations

= only static, non-synchronized methods supported

= no JNIEnv*
— hence, no upcalls or access to Java heap

% . N _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Critical JNI

Limitations

= only static, non-synchronized methods supported
= no JNIEnv*
= arguments: primitives or primitive arrays

— [I'=> (length, I*)

— null => (0, NULL)

z . N _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Critical JNI

Limitations

= only static, non-synchronized methods supported
= no JNIEnv*
= arguments: primitives or primitive arrays
— [I'=> (length, I*)
— null => (0, NULL)
= No object arguments

2 . N _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Critical JNI

Limitations

= only static, non-synchronized methods supported
= no JNIEnv*
= arguments: primitives or primitive arrays
— [I'=> (length, I*)
— null => (0, NULL)
= No object arguments

= used only in optimized code
— 2 versions are needed: ordinary JNI & critical JNI versions

2 . - _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Hard cases

int printf(const char *format, ...)

_ o _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Hard cases

void gsort(
void* base,
size t nel,
size t width,
int (*cmp)(const void*, const void*));

. - _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

JNR

Java Native Runtime

32 . N _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. JNR

Usage scenario

public interface LibC {
@pid_t long getpid();

User-defined }

generated
on-the-fly

LibC lib = LibraryLoader

Java .create(LibC.class)
Joad("c");
Native
libc.getpid()
33 ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. DEMO

= native call

— getpid
= structs

— gettimeofday
= upcalls

— qsort

3 . N _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. JNR

= Pros
— automatic binding of native methods

= Cons
— manual interface extraction
= doesn’t scale
— still uses JNI to perform native calls

% . N _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Better JNI

Easier, safer, faster!

ORACLE
ved

“If non-Java programmers find some library
useful and easy to access, it should be
similarly accessible to Java programmers.”

John Rose, JVM Architect,

Oracle Corporation

ORACLE"

Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Caribbean Sea

Project Panama
“Bridging the gap”

Chiriguf

Isla de
Coitm *

COLOMBIA

PACIFIC
OCEAN

100 km
100 miles

38 . -) ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

39

WORK IN
ROGRESS

Copyright © 2016, Oracle and/or its affiliates. All rights reserved

ORACLE

. Better JNI

pid_t get pid();

40 . N _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Easier

Better JNI

User-defined

produced
by jextract

generated
on-the-fly

Library

41

public interface LibC {
long getpid();

LibC libc = Library
.load(LibC.class, “c”);

libc.getpid();

_ o _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Easier

Better JNI

public interface LibC {
long getpid();

LibC libc = Library.load(LibC.class, “c” /* 1lib name */);

libc.getpid();

42 . N _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Faster

Better JNI

callg 0x1057b2eb0 ; getpid entry

4 . N _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Faster
Better JNI

MethodType mt = MethodType.methodType(int.class); // pid_ t

MethodHandle mh =
MethodHandles.lookup().findNative("getpid", mt);

int pid = (int)mh.invokeExact();

| getpid

JNI 13.7 £ 0.5 ns
Direct call 34+0.2ns

a4 . .) ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Safer

Better JNI

no crashes

no leaks

no hangs

no privilege escalation
no unguarded casts

% . N _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Safety vs Speed

46 . N _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Safety vs Speed

a7 . .) ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Safety vs Speed

48 . - _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Safety vs Speed i

Reiitets MM = =z
49 . N _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Trust Levels

50

Better JNI

[SECURITY
CHECK

ALL PERSONS AND PROPERTY
ARE SUBJECT TO SEARCH

NO PACKAGES, BACKPACKS,
COOLERS OR PARCELS

@ NO WEAPONS OR FIREARMS
@ NO EXPLOSIVES OR FLAMMABLES
® NO KNIVES OR SHARP OBJECTS

® NO PEPPER SPRAY OR MACE

PLEASE REPORT ANY SUSPICIOUS
ACTIVITY TO SECURITY IMMEDIATELY

),

kL

Untrusted

Copyright © 2016, Oracle and/or its affiliates. All rights reserved

ORACLE

. Trust Levels
Better JNI

Trusted

51 . -) ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Trust Levels
Better JNI

Privileged

ght © 2016, Oracle and/or its affiliates. All rights reserved

ORACLE

. Usage

Better JNI
jextract 4 metadata classes / |) [
g‘header fi!’e platform ser API
groveller”) J_config. /| (Java Java
\ carrier Apps
names &

Java code carrier
(interfaces) S < types)
< JVM/runtime

5 . N _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. gettimeofday

Better JNI

/* time.h */

struct { struct {
time t tv_sec; int tz_minuteswest;
suseconds_t tv_usec; int tz_dsttime;

} timeval; } timezone;

int gettimeofday(struct timeval* tv, struct timezone* tz);

54 . - _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Carrier Types

= C = Java
char boolean
short byte
float C;) short
int o char
long int
long long long

® . N _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Carrier Types

= C = Java
char boolean (uint8 t)
short byte (int8 _t)
float C;) short (intl6 _t)
int o char (uintl6_t)
long int (int32_t)
long long long (int64 _t)

% . N _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. $ jextract time.h
Better JNI

interface Time {

interface Timeval { interface Timezone {
long tv_sec$get(); int tz_ ...$get();
void tv_sec$set(long); void tz_...$set(int);
long tv usec$get(); int tz ...$get();
void tv_usec$set(long); void tz_...$set(int);
} }

int gettimeofday(Timeval, Timezone);

57 . - _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Foreign Layouts

= Native data requires special address arithmetic
— Native layouts should not be built into the JVM
— Native types are unsafe, so trusted code must manage the bits

= Solution: A metadata-driven Layout API

= As a bonus, layouts other than C and Java are naturally supported
— Network protocols, specialized in-memory data stores, mapped files, etc.

%8 . - _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Better JNI

Data Layout

interface Timeval {

@Offset(offset=0L)
long tv_sec$get();

@O0ffset(offset=64L)
long tv_usec$get();

= work on Layout Definition Language (LDL) is in progress

— https://github.com/J9Java/panama-docs/blob/master/StateOfThelLDL.html
— http://cr.openjdk.java.net/~jrose/panama/minimal-ldl.html

59

. - _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Runtime

60

Better JNI

Library lib = Library.create(“c”);

lib.create(Time.class);
lib.create(Timeval.class);

Time time
Timeval tval

int res = time.gettimeofday(tval, null);

if (res == 0) {
long tv_sec = tval.tv_sec$get();
long tv_usec = tval.tv_usec$get();
} else { /* error handling */ }

Copyright © 2016, Oracle and/or its affiliates. All rights reserved

ORACLE"

. Runtime

Better JNI

Library 1lib = Library.create(“c”);

Time time
Timeval tval

lib.create(Time.class);
lib.create(Timeval.class);

int res = time.gettimeofday(tval, null);

if (res == 0) {
long tv_sec = tval.tv_sec$get();
long tv usec = tval.tv usec$get();

} else { /* error handling */ }

61 . -) ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Runtime

62

Better JNI

Library lib = Library.create(“c”);

Time time = lib.create(Time.class);
Timeval tval = lib.create(Timeval.class);

int res = time.gettimeofday(tval, null);

if (res == 0) {
long tv_sec = tval.tv_sec$get();
long tv_usec = tval.tv_usec$get();
} else { /* error handling */ }

Copyright © 2016, Oracle and/or its affiliates. All rights reserved

ORACLE"

. Runtime

Better JNI

Library 1lib = Library.create(“c”);

lib.create(Time.class);
lib.create(Timeval.class);

Time time
Timeval tval

int res = time.gettimeofday(tval, null);

if (res == 0) {
long tv_sec = tval.tv_sec$get();
long tv_usec = tval.tv usec$get();
} else { /* error handling */ }

& . -) ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Resources

Explicit management

Timeval tval = null;

try {
tval = lib.create(Timeval.class);

int res = time.gettimeofday(tval, null);
if (res == 0) {
long tv_sec tval.tv_sec$get();
long tv_usec = tval.tv_usec$get();
} else { /* error handling */ }
} finally {
if (tval != null) {
lib.free(tval);
tval = null;

r}

64 . -) ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Resources
Try-with-resources

interface Timeval extends AutoCloseable { .. }

try (Timeval tval = lib.create(Timeval.class)) {
int res = time.gettimeofday(tval, null);

ORACLE

65
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Resources

Scoped memory

try (Scope scope = lib.createScope()) {
TimeVal tval = scope.create(TimeVal.class);

int res = time.gettimeofday(tval, null);

66 . N _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Resources

Scoped memory

TimeVal tval = null;

try (Scope scope = lib.createScope()) {
tval = scope.create(TimeVal.class);
int res = time.gettimeofday(tval, null);
}

o7 . N _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Resources

68

Scoped memory

TimeVal tval = null;

try (Scope scope = lib.createScope()) {
tval = scope.create(TimeVal.class);

int res = time.gettimeofday(tval, null);

¥

long tv_sec = tval.tv_sec$get(); // liveness checks!
long tv_usec = tval.tv_usec$get(); // liveness checks!

. - _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. “Civilizer”

Better JNI

interface Timeval {
void gettimeofday(Timeval, Timezone) throws ErrNo;
}

69 . N _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. “Civilizer”

Better JNI

interface Timeval {
void gettimeofday(Timeval, Timezone) throws ErrNo;
}

try (Timeval tval = lib.create(Timeval.class)) {
time.gettimeofday(tval, null); // throws exception

70 . - _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Variadic Function
Better JNI

int printf(const char *format, ...)

_ o _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. jextract + Civilizer
Better JNI

// int printf(const char *format, ...)
interface Stdio {

// ((Ran)
int printf(Pointer<Byte> format, byte[] args);

& . N _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. jextract + Civilizer
Better JNI

// int printf(const char *format, ...)
interface Stdio {

// ((Ran)
int printf(Pointer<Byte> format, byte[] args);

// “Civilized”
void printf(String format, Object.. args);

. - _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Optimize checks

void run(MyClass obj) {
obj.nativeFunc1(); // checks & state trans.
obj.nativeFunc?2(); // checks & state trans.
obj.nativeFunc3(); // checks & state trans.

_ o _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Optimize checks

O
Q Java Heap
O
o

Java I
___ g
Native <
__ 2
o
VM ®

Native Memory

75 ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Optimize checks

O
Q Java Heap
O
o

Java I
___ g
Native <
__ <P
4

VM ®

Native Memory

7 . N _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Optimize checks

void run(MyClass obj) {
obj.f1(); // NPE
obj.f2(); // NPE
obj.f3(); // NPE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved

ORACLE

. Optimize checks

void run(MyClass obj) {
if (obj == null) jump throwNPE_ stub;
call MyClass::f(obj);
call MyClass::f1(obj);
call MyClass::f3(obj);

_ o _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Optimize checks

void run(MyClass obj) {
obj.nativeFunc1(); // checks & state trans.
obj.nativeFunc?2(); // checks & state trans.
obj.nativeFunc3(); // checks & state trans.

_ o _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Optimize checks

void run(MyClass obj) {
if ('performChecks()) jump failed_stub;
call transJavaToNative();
MyClass::nativeFunc1(env, obj);
MyClass::nativeFunc2(env, obj);
MyClass::nativeFunc3(env, obj);
call transNativeToJava();

_ o _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved Q

81

Q Java Heap
O
o

Java I
___ g
Native <
__ <P
=

VM ®

Native Memory

Copyright © 2016, Oracle and/or its affiliates. All rights reserved

ORACLE

82

Q Java Heap

Java

Native

VM

SIElS PEaly]

Native Memory

Copyright © 2016, Oracle and/or its affiliates. All rights reserved

ORACLE

. Better JNI

Easier, Safer, Faster!

= Native access between the JVM and native APIs
— Native code via FFls
— Native data via safely-wrapped access functions
— Tooling for header file API extraction and APl metadata storage
= Wrapper interposition mechanisms, based on JVM interfaces
— add (or delete) wrappers for specialized safety invariants

= Basic bindings for selected native APls

8 . - _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Native Data

84 . - _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Native Data

A C K
-A C K
A -C K
-A -C K
A -P-ACK
-A -P A C K

=« LAPACK

L}
>
T U U O

rerrrereor
U
>

2. pass data into library
3. access data from Java

8 . N _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

JNI

@since 1.1

8 . N _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

NIO

@since 1.4

87 . N _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

NIO
“New 1/0”

= Provides access to the low-level I/O operations
— Buffers for bulk memory operations
= on-heap and off-heap
— Character set encoders and decoders
— Channels, a new primitive 1/O abstraction
— File interface
= supports locks and memory mapping of files
— Multiplexed, non-blocking I/O

8 . - _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. java.nio.Buffer

= java.nio.ByteBuffer / CharBuffer / ...
- MappedByteBuffer extends ByteBuffer
= memory-mapped region of a file
— DirectByteBuffer extends MappedByteBuffer
= malloc’ed native memory
— HeapByteBuffer
= backed by byte][]

89 . - _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. java.nio.DirectByteBuffer
Usage

ByteBuffer dbb = ByteBuffer.allocateDirect(size);
while (dbb.hasRemaining()) {

dbb.putInt(..); // init
}
LAPACK.square(dbb.address(), size); // invoke
dbb.rewind(); // reset position

while (dbb.hasRemaining()) {
int i = dbb.getInt(); // read result

¥

% . -) ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. java.nio.DirectByteBuffer
Usage

ByteBuffer dbb = ByteBuffer. (size);
while (dbb.hasRemaining()) {
dbb.putInt(..); // init
}
LAPACK.square(dbb.address(), size); // invoke

dbb.rewind(); // reset position
while (dbb.hasRemaining()) {
int i = dbb.getInt(); // read result

¥

o1 . -) ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. java.nio.DirectByteBuffer
Usage

ByteBuffer dbb = ByteBuffer. (size);
while (dbb.hasRemaining()) {

dbb.putInt(..); // init
}
LAPACK.square(dbb.address(), size); // invoke
dbb.rewind(); // reset position

while (dbb.hasRemaining()) {
int i = dbb.getInt(); // read result

¥

92 . -) ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. java.nio.DirectByteBuffer
Usage

ByteBuffer dbb = ByteBuffer.allocateDirect(size);
while (dbb.hasRemaining()) {

dbb.putInt(..); // init
}
LAPACK.square(dbb.address(), size); // invoke
dbb.rewind(); // reset position

while (dbb.hasRemaining()) {
int i = dbb.getInt(); // read result

¥

% . -) ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. java.nio.DirectByteBuffer

Usage

while (dbb.hasRemaining()) {
int 1 = dbb.getInt(); // read result

¥

o4 . - _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. java.nio.DirectByteBuffer
Usage

ByteBuffer dbb = ByteBuffer. (size);
while (dbb.hasRemaining()) {
dbb.putInt(..); // init
}
LAPACK.square(dbb); // invoke

while (dbb.hasRemaining()) {
int i = dbb.getInt(); // read result

¥

% . -) ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. java.nio.Buffer

- < 2GiB
— ByteBuffer.allocateDirect(int size)
— ByteBuffer.allocate(int size)

% . N _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. java.nio.Buffer

- < 2GiB

— ByteBuffer.allocateDirect(int size)
= Stateful

— Buffer.position

— not thread-safe

o7 . N _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. java.nio.Buffer

- < 2GiB
— ByteBuffer.allocateDirect(int size)
= Stateful
— Buffer.position
— not thread-safe
= Resource deallocation
— GC-based (Cleaner) memory management

% . - _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. java.nio.Buffer

- < 2GiB
— ByteBuffer.allocateDirect(int size)
= Stateful
— Buffer.position
— not thread-safe
= Resource deallocation
— GC-based (Cleaner) memory management
= Zeroing
— on initialization

9 . - _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. java.nio.Buffer

= < 2GiB
— ByteBuffer.allocateDirect(int size)
= Stateful
— Buffer.position
— not thread-safe
= Resource deallocation
— GC-based (Cleaner) memory management
= Zeroing
— on initialization
= Bounds checking

100]) B i ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

sun.misc.Unsafe

Anti-JNI

101]) B i ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. sun.misc.Unsafe

Concurrency primitives compareAndSwap*
Serialization allocatelnstance
Efficient memory management, allocateMemory/freeMemory
layout, and access get*/put*

Interoperate across the JVM

boundary SEHiaL

102 _ o _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. sun.misc.Unsafe

= Unsafe.get*/put”
— getint(Object base, long offset)
— putint(Object base, long offset, int value);

103]) B i ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. sun.misc.Unsafe

= Unsafe.get*/put”
— getint(Object base, long offset)
— putint(Object base, long offset, int value);

= double-register addressing mode
— getint(o, offset) == o + offset
— getInt(null, address) == address

104]) B i ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. sun.misc.Unsafe

= Unsafe.get*/put”
— getint(Object base, long offset)
— putint(Object base, long offset, int value);

= double-register addressing mode
— getint(o, offset) == o + offset
— getInt(null, address) == address

= long allocateMemory(long size) void freeMemory(long address)

105 _ o _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

java.nio.DirectByteBuffer
Usage

long buf = UNSAFE.allocateMemory(size);
LAPACK.square(buf, size);

for (long 1 = 0; 1 < size; 1 =+ 4) {
int i = UNSAFE.getInt(null, buf + 1);
}

106]) B i ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

UNSAFE.putint(new Obiject(), OL, 0)

_ o _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

UNSAFE.putint(null, OL, 0)

108)] B) ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Object UNSAFE.getObject(long address)

. - _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

long UNSAFE.getAddress(long address)

_ o _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Unsafe =7= Fast

111 _ . _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Unsafe = Fast

12]) B i ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Unsafe != Fast

public native Object allocatelnstance(Class<?> cls) throws ...;

13 _ . _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Unsafe != Fast

114

Array index vs Raw offset

long[] base = new long][..];
int idx = .;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved

ORACLE

. Unsafe != Fast

Array index vs Raw offset

long[] base = new longl[..];
int idx = ..;

// “Naive” version
long value = base[idx];

115 _ o) ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Unsafe != Fast

Array index vs Raw offset

long[] base = new longl[..];
int idx = .;

// “Nailve” version
long value = base[idx];

// Highly optimized

long offset = (((long) idx) << SCALE + OFFSET)
long value = Unsafe.getlLong(base, offset);

116 _ . _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Unsafe != Fast

Array index vs Raw offset: 32-bit platform

long[] base = new long][..];
int idx = ..;

// “Nailve” version
long value = base[idx];

// Highly optimized

long offset = (((long) idx) << SCALE + OFFSET)
long value = Unsafe.getlLong(base, offset);

17 _ o) ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Unsafe != Fast

= Missing optimizations
— JDK-8078629: “VM should constant fold Unsafe.get*() loads from final fields”

118 _ . _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

- How many of you have used the Unsafe API?

John Rose, JVM Architect, Oracle
JVM Language Summit 2014

ORACLE"

Copyright © 2016, Oracle and/or its affiliates. All rights reserved

- How many of you have used the Unsafe API?

- A lot of you. Gosh. I'm sorry.

John Rose, JVM Architect, Oracle
JVM Language Summit 2014

. -) ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

121

Open)DK

OpenDK FAQ
Installing
Contributing
Sponsoring
Developers' Guide

Mailing lists
IRC - Wiki

Bylaws - Census
Legal

JEP Process

search

Source code
Mercurial
Bundles (6)

Groups
(overview)

2D Graphics
Adoption

AWT

Build

Compiler
Conformance
Core Libraries
Governing Board
HotSpot
Internationalization
JMX

Members
Networking
NetBeans Projects

JEP 260: Encapsulate Most Internal APIs

Author
Owner
Created
Updated
Type
Status
Scope
Discussion
Effort
Duration
Priority
Reviewed by

Release
Issue

Summary

Mark Reinhold

Chris Hegarty

2015/08/03 18:29

2015/10/02 17:20

Feature

Candidate

JDK

jigsaw dash dev at openjdk dot java dot net
M

L

1

Alan Bateman, Alex Buckley, Brian Goetz, John Rose, Paul
Sandoz

9

8132928

Make most of the JDK's internal APIs inaccessible by default but leave a few critical,
widely-used internal APIs accessible, until supported replacements exist for all or
most of their functionality.

_ o _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. sun.misc.Unsafe
| Usecase | Examplemethods |

Concurrency primitives compareAndSwap*

allocatelnstance

Serialization
(ReflectionFactory.newConstructorForSeriaIization)
Efficient memory management, allocateMemory/freeMemory
layout, and access get*/put”

Interoperate across the JVM

boundary St

122]] o) ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. sun.misc.Unsafe
| Usecase | Replacement |

Concurrency primitives JEP 193 Variable Handles
Serialization Reboot JEP 187 Serialization
Improvements
Efficient memory management, Project Panama, Project Valhalla,
layout, and access Arrays 2.0, Better GC

Interoperate across the JVM

boundary Project Panama,

JEP 191 Foreign Function Interface

123)] B) ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

java.lang.invoke.

VarHandle

@since 9

JEP 193: Variable Handles

. - _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. VarHandle
ByteBuffer View

MethodHandles.Lookup:

VarHandle byteBufferViewVarHandle(Class<?> viewArrayClass,
boolean bigEndian) {..}

“Produces a VarHandle giving access to elements of a ByteBuffer
viewed as if it were an array of elements of a different primitive
component type to that of byte, such as int[] or long][].”

125 _ o _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. VarHandle
ByteBuffer View

VarHandle VH =

MethodHandles.byteBufferViewVarHandLle(
int[].class,
ByteOrder.nativeOrder() == ByteOrder.BIG ENDIAN);

ByteBuffer dbb = ByteBuffer.allocateDirect(size);
int v = (int) VH.get(dbb, idx);

126]) B i ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. java.nio.ByteBuffer vs VarHandle View

127

_ DirectByteBuffer VarHandle

Size

State

Resource management
Zeroing
Atomics/Fences/...
Bound checks

<2GiB <2GiB
GC-based No (delegates to DBB)
Yes No (delegates to DBB)

No

. N _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Optimized Bounds Checks
int[]

// null check + (index u< array.length)
return array[index];

128]) B i ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Optimized Bounds Checks

int[]: Unsafe access

// bounds and null check
if (index < @ || index >= array.length)
throw new ..();

long offset = BASE + (((long) index) << 2);
return UNSAFE.getInt(array, offset);

129

. - _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Optimized Bounds Checks

int[]: Unsafe access

// bounds (u<) and null check
index = Objects.checkIndex(index, array.length);

long offset = BASE + (((long) index) << 2);
return UNSAFE.getInt(array, offset);

@HotSpotIntrinsicCandidate
public static int checkIndex(int index, int length, ..);

130]) B i ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Summary

= Existing
— Java Native Interface (JNI) & JNR library
— java.nio.DirectByteBuffer
— sun.misc.Unsafe (get*/set*)
= JDK9
— j.l.i.VarHandle views over ByteBuffers
= Future
— Project Panama

131]) B i ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Foreign Function Interface
Pr OjeCt Panama Data Layout Control
Vector API
Arrays 2.0

O pe nl D K http://openjdk.java.net

_ o _ ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

panama-dev@openijdk.java.net

Project Panama

http://hg.openjdk.java.net/panama/panama

O pe nl D K http://openjdk.java.net

133)] B) ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

. Safe Harbor Statement

134

The preceding is intended to outline our general product direction. It is
intended for information purposes only, and may not be incorporated into
any contract. It is not a commitment to deliver any material, code, or
functionality, and should not be relied upon in making purchasing
decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole
discretion of Oracle.

_ o , ORACLE
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

