
Exercises for Nonblocking Data Structures

Michael L. Scott

July 2019

1. Write an atomic counter class in C++11. Provide a constructor that initializes the counter to
zero. Provide two methods to increment the counter, one that uses fetch add internally and
the other that uses compare exchange strong. Benchmark these methods in a loop on an x86
processor, for varying numbers of concurrent threads and explain the observed performance.

In a similar vein, provide two methods to read the counter, one that uses memory order seq cst
to order itself with respect to previous and subsequent operations and the other that uses
memory order memory relaxed to avoid the cost of doing so. Again, benchmark these methods
in a loop on an x86 processor, for varying numbers of concurrent threads and explain the
observed performance.

2. Consider the code for the Treiber stack, shown on a slide in class and repeated below. (Note
that this code defers the problem of memory management to the caller of push and pop.)
What memory ordering annotations are required to make the code correct on a machine with
a relaxed memory model?

class stack
〈node*, int〉 top

void stack.push(node* n):
repeat

〈o, c〉 := top
n→next := o

until CAS(&top, 〈o, c〉, 〈n, c〉)

node* stack.pop():
repeat

〈o, c〉 := top
if o = null return null
n := o→next

until CAS(&top, 〈o, c〉, 〈n, c+1〉)
return o

Answer: It suffices for the CAS in push to be a release (to be ordered after all previous loads and

stores). For pop, the CAS should be both an acquire and a release, so it is ordered after all previous

loads and stores (in particular, those that read the previous state of the stack) and so it is ordered

before all subsequent loads and stores (in particular, those that might use the popped node). It’s

probably safe for the CAS in push not to be an acquire, because (presumably) the subsequent code in

the calling thread makes no further use of the pushed node.

3. Consider the following code for the M&S queue. What are the linearization points? What
memory ordering annotations are required to make this code correct on a machine with a
relaxed memory model?

1



type ptr = 〈node* p, int c〉 // counted pointer
type node

value val
ptr next

class queue
ptr head
ptr tail

void queue.init()
node* n := new node(⊥, null) // initial dummy node
head.p := tail.p := n

void queue.enqueue(value v):
node* w := new node(v, null); // allocate node for new value
ptr t, n
loop

t := tail.load() // counted pointers
n := t.p→next.load()
if t = tail.load() // are t and n consistent?

if n.p = null // was tail pointing to the last node?
if CAS(&t.p→next, n, 〈w, n.c+1〉) // try to add w at end of list

break // success; exit loop
else // tail was not pointing to the last node

(void) CAS(&tail, t, 〈n.p, t.c+1〉) // try to swing tail to next node
(void) CAS(&tail, t, 〈w, t.c+1〉) // try to swing tail to inserted node

value queue.dequeue():
ptr h, t, n
loop

h := head.load() // counted pointers
t := tail.load()
n := h.p→next.load()
value rtn
if h = head.load() // are h, t, and n consistent?

if h.p = t.p // is queue empty or tail falling behind?
if n.p = null return ⊥ // empty; return failure
(void) CAS(&tail, t, 〈n.p, t.c+1〉) // tail is falling behind; try to update

else // no need to deal with tail
// read value before CAS; otherwise another dequeue might free n
rtn := n.p→val.load()
if CAS(&head, h, 〈n.p, h.c+1〉) // try to swing head to next node

break // success; exit loop
free for reuse(h.p) // type-preserving
return rtn // queue was nonempty; return success

Answer: Execution of the enqueue method linearizes on the CAS of p→next. If the dequeue method
returns ⊥, execution linearizes on the load of tail (assuming that was ordered after the load of head).
If dequeue returns an actual value, execution linearizes on the CAS of tail.

There is no single correct set of memory order annotations. The safest approach is to put atomic

labels on head, tail, and all val and next fields, and access them with memory order seq cst in all cases.

Some of the resulting orderings might safely be relaxed via careful reasoning, but the performance

gain is probably not worth the risk of making a mistake. In addition, the ordinary accesses of the

2



new call in enqueue should be ordered before subsequent accesses (probably with a release fence), and

the ordinary accesses of the release call in dequeue should be ordered (perhaps with an acquire fence)

after the CAS of the final loop iteration.

4. The code in the previous example was written to use counted pointers and a type-preserving
allocator. Modify it to use hazard pointers.

Answer: The counter portions of the pointers can all be elided, of course. Since head and tail are
statically allocated, they don’t need hazard pointers.

The dequeue method needs to set a hazard pointer to the value read from head before defererencing
it, and a second to the value read from head→next before dereferencing that. These reservations can
be dropped at the end of the body of the while loop.

The enqueue method needs to set a hazard pointer to the value read from tail before defererencing

it, and a second to the value read from tail→next before defererencing that. These reservations can

again be dropped at the end of the body of the while loop. The free for reuse routine will presumably

be written to delay reclamation of any node for which a hazard pointer is outstanding.

5. (Hard) Consider the bounded obstruction free deque of Herlihy, Luchangco, and Moir, which
was sketched in class. (The original was published at ICDCS 2003.) How might you extend
this code to create an unbounded nonblocking deque comprising a linked list of arrays?

Answer: A solution to this problem can be found in the paper by Graichen, Izraelevitz, and Scott

at ICPP 2016.

3


