
Crowdsourced bug
detection in production:
GWP-ASan and beyond
Matt Morehouse, Mitch Phillips, Kostya Serebryany

C++ Russia / November 2020

Agenda
● C++ memory safety landscape

● GWP-ASan, a sampling-based bug detector for production
○ Algorithm
○ Deployment

● Can GWP-ASan become a security mitigation?

● Applying the same approach to other bug classes?

● A few words about Arm Memory Tagging Extension (Arm MTE)

https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf

Memory safety bugs, sanitizers, fuzzing, hardening
● Use-after-free, buffer-overflow, etc: > 50% of CVEs across the industry [1] [2]
● Static analysis: useful, but misses many cases
● Dynamic analysis (e.g. ASan, HWASan, Valgrind):

○ Finds everything that happens in a test, but tests cover too little
○ Production deployment near-impossible due to overheads (some still do it, “prod canaries”)

● Fuzzing (libFuzzer, AFL, Syzkaller, etc): improves test coverage
○ Finds 10x more bugs than testing, but still not everything

● Hardening (e.g. Control Flow Integrity, hardened malloc, etc)
○ Blocks certain exploitation techniques (e.g. ROP); does not address the root cause

● (near future) Hardware extensions like Arm MTE: detect bugs in production
○ Huge step forward, but will not be available everywhere for many years

https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/MTE-iSecCon-2018.pdf
https://www.youtube.com/watch?v=PjbGojjnBZQ
https://security.googleblog.com/2019/08/adopting-arm-memory-tagging-extension.html

● “GWP-ASan Will Provide Allocation Sanitization”

● Also: GWP: Google-Wide Profiling + ASan: AddressSanitizer
○ GWP-ASan is neither GWP nor ASan, but the name reflects well what it is.

● Probabilistic memory safety error detector (heap only)
○ Detects heap-buffer-overflow and heap-use-after-free.

What is GWP-ASan?

https://research.google/pubs/pub36575/
https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf

Background: Electric Fence
● Detects heap-buffer-overflows using guard pages.

 Guard Page Guard Page Guard Page Allocation Allocation

https://linux.die.net/man/3/efence

Background: Electric Fence
● Detects heap-buffer-overflows using guard pages.
● Detects use-after-frees by mprotect-ing freed memory.

 Guard Page Guard Page Guard Page Allocation Freed

Background: Electric Fence
● Detects heap-buffer-overflows using guard pages.
● Detects use-after-frees by mprotect-ing freed memory.

 Guard Page Guard Page Guard Page Allocation Freed

Background: Electric Fence (since ~ 1987)
● + Detects bugs!
● + No compiler instrumentation.

○ Can be enabled at link-time (-lefence) or runtime (LD_PRELOAD=/usr/lib/libefence.so.0).

● - Really expensive.
○ Heap fragmentation (~100x)

■ Each allocation needs a full 4KB page for buffer overflow detection.
○ Slow (~100x)

■ Most mallocs and frees require a system call to mmap or mprotect.

GWP-ASan = Electric Fence + Sampling

malloc()

return GuardedAlloc();

// Normal malloc
 ...
return alloc;

ShouldSample()

0.001%

99.999%

● Randomly guard a tiny fraction of allocations (e.g. 1/100,000).
○ Make overhead as low as we want.

GWP-ASan at Google

● Chrome: on-by-default
○ for Windows and macOS only

○ Example bug

● Google server-side applications: on-by-default

● Android R: on-by-default for system processes, opt-in for apps

○ Developing an Android App with native code? Please try it now!

● Linux Kernel: coming soon (kfence)

Deployment Status

https://chromium.googlesource.com/chromium/src/+/master/docs/gwp_asan.md
https://bugs.chromium.org/p/chromium/issues/detail?id=1112511
https://developer.android.com/ndk/guides/gwp-asan
https://lwn.net/Articles/830877/

Results
● Chrome

○ 140+ bugs

over past ~ 1.5 years.

● Google Production

○ 2000+ bugs

over past ~ 1.5 years.

● Android R

○ 80+ bugs
Just started

https://bugs.chromium.org/p/chromium/issues/list?can=1&q=Hotlist%3DGWP-ASan

Using GWP-ASan

Available in LLVM
● GWP-ASan lives in LLVM / compiler-rt.

● Comes with Scudo Hardened Allocator (-fsanitize=scudo)*
○ * x86/x86_64 only

● Simple integration with any other memory allocator.

https://github.com/llvm-mirror/compiler-rt/tree/master/lib/gwp_asan
https://llvm.org/docs/ScudoHardenedAllocator.html

Scudo Example
$ cat buggy_code.cc

#include <iostream>

#include <string>

#include <string_view>

int main() {

 std::string s = "Hellooooooooooooooo ";

 std::string_view sv = s + "World\n";

 std::cout << sv;

}

$ clang++ -g -std=c++17 -fsanitize=scudo buggy_code.cc && ./a.out

Hellooooooooooooooo World

$ for((i=0; i<1000; i++)); do GWP_ASAN_OPTIONS=SampleRate=500 ./a.out >/dev/null | symbolize.sh; done

*** GWP-ASan detected a memory error ***

Use after free at 0x7fb4b941e000 (0 bytes into a 41-byte allocation at 0x7fb4b941e000) by thread 140162 here:

 ...

 #9 /usr/lib/gcc/x86_64-linux-gnu/8.0.1/../../../../include/c++/8.0.1/string_view:547

 #10 /tmp/buggy_code.cpp:8

0x7f76bb8bafd0 was deallocated by thread 103932 here:

 ...

 #7 /tmp/buggy_code.cpp:8

Integrating with a Memory Allocator
static gwp_asan::GuardedPoolAllocator GuardedAllocator;

void initMalloc() {

 ...

 gwp_asan::options::Options Opts = … // Configure as desired.

 GuardedAllocator.init(Opts);

}

void *malloc(size_t Size) {

 ...

 if (PREDICT_FALSE(GuardedAllocator.shouldSample()))

 if (void *Ptr = GuardedAllocator.allocate(Size))

 return Ptr;

 ...

}

void free(void *Ptr) {

 ...

 if (PREDICT_FALSE(GuardedAllocator.pointerIsMine(Ptr)))

 return GuardedAllocator.deallocate(Ptr);

 ...

}

Also available via …
● TCMalloc:

○ https://github.com/google/tcmalloc/blob/master/docs/gwp-asan.md

● Chromium:
○ https://chromium.googlesource.com/chromium/src/+/master/docs/gwp_asan.md

https://github.com/google/tcmalloc
https://github.com/google/tcmalloc/blob/master/docs/gwp-asan.md
https://chromium.googlesource.com/chromium/src/+/master/docs/gwp_asan.md

Small print
● GWP-ASan itself is small and simple

○ You can use one of our implementations: TCMalloc, LLVM, or Chrome
○ Or you can implement your own, like Mozilla does

● The hardest part is the bug reporting pipeline, which will be project-specific
○ Collect, symbolize, aggregate the reports
○ Track them over time, confirm fixes
○ Ignore false positives (e.g. due to cosmic rays - no kidding)
○ But, don’t ignore one-off reports
○ Make sure user privacy is not compromised

https://github.com/google/tcmalloc/blob/master/docs/gwp-asan.md
http://llvm.org/docs/GwpAsan.html
https://chromium.googlesource.com/chromium/src.git/+/master/docs/gwp_asan.md
https://bugzilla.mozilla.org/show_bug.cgi?id=1523268

GWP-ASan as part of the developer workflow
● GWP-ASan is the last resort, you better find bugs the other ways

○ A.k.a. “Shift Left”

● Learn from GWP-ASan reports:
○ Focus your fuzzing on components with GWP-ASan reports
○ Do the postmortems, figure out why the bug crept into production
○ Make sure you have regression tests for all fixes
○ Find common bug patterns and handle them statically

■ E.g. -Wdangling-gsl handles some of the cases with std::use_after_free std::string_view

https://landing.google.com/sre/sre-book/chapters/postmortem-culture/
https://github.com/isocpp/CppCoreGuidelines/issues/1038

Can GWP-ASan become a security mitigation?
● Not a hardening tool in the usual sense

○ 99999 attack attempts out of 100000 will succeed
○ Better if an exploit chains multiple memory safety vulnerabilities

● But does this change the economics for exploit developers?
○ Today: exploit development is expensive, the same exploit is used on many targets for a long

period of time
○ With wider use of GWP-ASan: the cost remains the same, the number of successful attacks

before detection drops. Unstable exploits become even less usable

● What can we do to make the detection
○ more likely?
○ less predictable?

Research: improve detection w/o increasing cost
● Help is welcome!

● Statistical tricks, e.g. guard the least frequent allocations?

● Machine learning? What allocations are more likely to be involved in a
use-after-free or buffer overflow?

What about other bug classes?
● UBSan-like checks (e.g. integer overflows, etc)

○ Existing solutions rely on compiler instrumentation
○ Can’t easily sample at run-time
○ Maybe use debug registers to stop at arbitrary instructions?
○ Maybe sample at compile time (cover all the code eventually, assuming frequent releases)

● Stack-buffer-overflow, use-after-return
○ Don’t know how to detect w/o compiler instrumentation

● Use of uninitialized memory
○ Perhaps, easier/cheaper to just initialize everything (work in progress)

● Anything else?

● Data races: coming soon, stay tuned!

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

Memory Tagging: Arm MTE

Arm Memory Tagging Extension (MTE)

● Announced by Arm on 2018-09-17

● Doesn’t exist in hardware yet
○ Will take several years to appear

● “Hardware-ASAN on steroids”
○ RAM overhead: 3%-5%
○ CPU overhead: (hoping for) low-single-digit %

24

https://community.arm.com/processors/b/blog/posts/arm-a-profile-architecture-2018-developments-armv85a

ARM Memory Tagging Extension (MTE)

● 64-bit only

● Two types of tags
○ Every aligned 16 bytes of memory have a 4-bit tag stored separately
○ Every pointer has a 4-bit tag stored in the top byte

● LD/ST instructions check both tags, raise exception on mismatch

● New instructions to manipulate the tags

25

Allocation: tag the memory & the pointer

● Stack and heap

● Allocation:
○ Align allocations by 16
○ Choose a 4-bit tag (random is ok)
○ Tag the pointer
○ Tag the memory (optionally initialize it at no extra cost)

● Deallocation:
○ Re-tag the memory with a different tag

26

Heap-use-after-free

char *p = new char[20]; // 0xa007fffffff1240

-32:-17 -16:-1 0:15 16:31 32:47 48:64

27

Heap-use-after-free

char *p = new char[20]; // 0xa007fffffff1240

delete [] p; // Memory is retagged ⇒ ;

p[0] = … // heap-use-after-free ≠ ;

-32:-17 -16:-1 0:15 16:31 32:47 48:64

-32:-17 -16:-1 0:15 16:31 32:47 48:64

28

Heap-buffer-overflow

char *p = new char[20]; // 0xa007fffffff1240

-32:-17 -16:-1 0:15 16:31 32:47 48:64

29

Heap-buffer-overflow

char *p = new char[20]; // 0xa007fffffff1240

p[32] = … // heap-buffer-overflow ≠ ;

-32:-17 -16:-1 0:15 16:31 32:47 48:64

30

Probabilities of bug detection

int *p = new char[20];

p[20] // undetected, same granule (*)

p[32], p[-1] // 93%-100% (15/16 or 1)

p[100500] // 93% (15/16)

delete [] p; p[0] // 93% (15/16)

31

Buffer overflows within a 16-byte granule

● Typically, not security bugs if heap/stack is 16-byte aligned in
production

● Still, logical bugs

● Only so-so solutions for testing:
○ Malloc may optionally align right (tricky on ARM, more tricky on x86_64)
○ Put magic value on malloc, check on free (detects only overwrites, with delay)
○ Tag the last granule with a different tag, handle in the signal handler (SLOW)

MTE Overhead

○ RAM: 3% - 5% (measured)

○ Code Size: 2%-4% (measured)

○ CPU: 0% - 5% (estimated)

○ Power: ?

MTE Usage Models

● Testing in lab
○ Better & cheaper than ASAN

● Testing in production aka crowdsourced bug detection
○ possibly with per-process or per-allocation sampling
○ actionable deduplicated bug reports

● Always-on security mitigation
○ with per-process knobs

Is probabilistic detection OK for security mitigation?

● Enough retries may allow an MTE bypass in some cases (e.g. UAF)

● BUT:
○ Software could block the restarts on first MTE report (i.e. no retries)
○ The vendors gets actionable bug report on first failed attempt
○ Extra security layers can be built on top of MTE (e.g. MarkUs-GC)

https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/MarkUs-GC.md

Legacy code

● MTE will work on legacy code w/o recompilation
○ Libc-only change
○ Will find and mitigate heap OOB & UAF (~90% of all bugs)

No more uses of uninitialized memory

● Tagging the memory during allocation also initializes it
○ MTE always-on => no more uninitialized memory
○ MTE only during testing => uninitialized memory remains

● Can initialize all memory today, at ~ the same cost as full MTE

https://reviews.llvm.org/D54604

Try GWP-ASan today, ask your CPU vendor for MTE
● GWP-ASan:

○ chromium.googlesource.com/chromium/src.git/+/master/docs/gwp_asan.md
○ github.com/google/tcmalloc/blob/master/docs/gwp-asan.md
○ developer.android.com/ndk/guides/gwp-asan
○ llvm.org/docs/GwpAsan.html
○ llvm.org/devmtg/2019-10/talk-abstracts.html#lit1

● Arm MTE:
○ 2019-08-02 Android blog post
○ 2019-08 Arm whitepaper
○ Security analysis by Microsoft.

https://chromium.googlesource.com/chromium/src.git/+/master/docs/gwp_asan.md
https://github.com/google/tcmalloc/blob/master/docs/gwp-asan.md
https://developer.android.com/ndk/guides/gwp-asan
http://llvm.org/docs/GwpAsan.html
http://llvm.org/devmtg/2019-10/talk-abstracts.html#lit1
https://security.googleblog.com/2019/08/adopting-arm-memory-tagging-extension.html
https://developer.arm.com/architectures/cpu-architecture/a-profile#mte
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20memory%20tagging.pdf

