Transient Replication

and Cheap Quorums

Prerequisites

- Eventual Consistency
- Quorums
- Consistent Hashing
- Anti-Entropy

Eventual Consistency

"The storage system guarantees that if no new updates are made to the object, eventually all accesses will return the last updated value."

- Werner Vogels. 2008. Eventually Consistent.

Anti-Entropy

$read(x) \rightarrow \emptyset$

$read(x) \rightarrow 1$

Read Monotonicity

Tunable Consistency

- •N: the number of nodes that store replicas of the data
- •W: the number of replicas that need to acknowledge the receipt of the update before the update completes
- •R: the number of replicas that are contacted when a data object is accessed through a read operation
 - Werner Vogels. 2008. Eventually Consistent.

W + R > N

Replication

$$W + R > N$$

Voting

$$W + R > N$$

Quorum

$$W = R = \lfloor N/2 \rfloor + 1$$

Fault Tolerance

$$N = 2F + 1$$

Cost of maintaining a Quorum

Cost of a Quorum

Witness Replicas

Version ID + Data Record

Version ID only

Upgradable Witnesses

Cost of topology change

Transient Replication

Cheap Quorums: Write

Cheap Quorums: Write

Cheap Quorums: Read

Cheap Quorums: Read

Repair

Repair

Consistent Hashing

Ring

Availability

$$A(n_f+m_t) \approx A(n_f+m_f)$$

Availability

Source: Pâris, Jehan-François. Voting with Witnesses: A Constistency Scheme for Replicated Files. 1986.

What TR is not

- Sloppy Quorums
- Hinted Handoff
- A way to reduce a number of replicas
- A way to reduce a quorum size

Summary

- No decrease in availability
- No impact on durability
- Up to 50% storage savings
- Lower message overhead
- Smaller write quorum
- Less overhead for reads

Transient Replication and Cheap Quorums

Browse files

Patch by Blake Eggleston, Benedict Elliott Smith, Marcus Eriksson, Alex Petrov, Ariel Weisberg; Reviewed by Blake Eggleston, Marcus Eriksson, Benedict Elliott Smith, Alex Petrov, Ariel Weisberg for CASSANDRA-14404

Co-authored-by: Blake Eggleston

bdeggleston@gmail.com>

Co-authored-by: Benedict Elliott Smith <benedict@apache.org>

Co-authored-by: Marcus Eriksson <marcuse@apache.org>

Co-authored-by: Alex Petrov <oleksandr.petrov@gmail.com>

½ trunk (#3)

5 people committed on Jul 6, 2018

1 parent 5b645de

commit f7431b432875e334170ccdb19934d05545d2cebd

References

- Gifford D. K. Weighted Voting for Replicated Data. 1979.
- J.-F. Pâris. Voting with Witnesses: A Consistency Scheme for Replicated Files. 1986.
- Divyakant Agrawal and Amr El Abbadi. Reducing Storage for Quorum Consensus Algorithms. 1988.

Database Internals

A Deep-Dive into How Distributed Data Systems Work

@ifesdjeen

Images attributed to their respective owners.