

Enhancing AR-Targeted Approaches in Advanced Prostate Cancer

JULY 2023

Learning objectives

- Examine the unmet need in advanced prostate cancer and novel approaches addressing that need
- Describe AR pathway, its associated downstream elements and the interaction between AR, CDK4/6 and cell cycle regulation
- Identify the biological parallels between breast and prostate cancer
- Describe the rationale for clinical trials investigating dual inhibition of AR and CDK4/6 in advanced prostate cancer

AR=androgen receptor; CDK=cyclin-dependent kinase.

Advanced prostate cancer is associated with cancer-specific mortality

- Prostate cancer (PCa) is the 2nd most common cancer and 5th leading cause of cancer-related death among men world-wide¹
- Most PCa cases are localised and not associated with cancer-specific mortality^{2,3}
- However, the incidence of metastatic advanced PCa is increasing and remains associated with cancer-specific mortality, despite recent advances^{3,4}

PCa=prostate cancer.

1. Sung H, Ferlay J, Siegel RL, et al. CA Cancer J Clin. 2021;71(3):209-249. 2. Siegel DA, O'Neil ME, Richards TB, et al. MMWR Morb Mortal Wkly Rep. 2020;69(41):1473-1480 3. Cancer.net, ASCO. Accessed June 2023. https://www.cancer.net/cancer-types/prostate-cancer/statistics.%20Accessed%20February%2028,%202022. 4. Hamid AA, Sayegh N, Tombal B, et al. Am Soc Clin Oncol Educ Book. 2023;43:e390166.

LOXO@Lilly

Androgen signaling is a key driver of PCa pathogenesis

- Androgens promote the growth and survival of prostate cells¹
- In PCa, due to abnormal androgen signaling, the androgen receptor drives the expression of target genes, promoting cancer cell survival and growth^{2,3}
- Androgen deprivation is the mainstay of advanced prostate cancer management^{2,3}

AR=androgen receptor; D=dihydrotestosterone; HSP=heat shock protein; P=progesterone; PCa=prostate cancer; T=testosterone.

1. Tan MH, Li J, Xu HE, Melcher K, Yong EL. *Acta Pharmacol Sin.* 2015;36(1):3-23. 2. He Y, Xu W, Xiao YT, Huang H, Gu D, Ren S. *Signal Transduct Target Ther.* 2022;7(1):198. 3. Brighi N, Conteduca V, Lolly C, et al. *Crit Rev Onc/Hem.* 2021;157.

Adapted from He Y et al. *Signal Transduct Target Ther.* 2022;7(1):198 Figure 2, and Tan MH et al. *Acta Pharmacol Sin.* 2015;36(1):3-23 Figure 1; Michmerhuizen AR et al. *NPJ Breast Cancer.* 2020;6:47 Figure 1

LOXO@Lilly

Advanced PCa ultimately progresses to mCRPC due to continued dependence on the AR signaling pathway

Adapted from Saad F, Bögemann M, Suzuki K, Shore N. Prostate Cancer Prostatic Dis. 2021;24(2):323-334 Figure 1

AR=androgen receptor; PCa=prostate cancer; US=united states; WW=world-wide.

1. Saad F, Bögemann M, Suzuki K, Shore N. Prostate Cancer Prostatic Dis. 2021;24(2):323-334. 2. Siegel DA, O'Neil ME, Richards TB et al. MMWR Morb Mortal Wkly Rep. 2020;69(41):1473-1480. 3. Vinuesa L, Parihar N. Clarivate, DRG. 2021. 4. Moreira DM, Howard LE, Sourbeer KN, et al. Clin Genitourin Cancer. 2017;15(1):60-66.e2.

In mCRPC, continued dependence on the AR signaling pathway is driven by AR reactivation

Nearly all patients with mCRPC experience disease progression and cancer-specific mortality³.

Patients with mCRPC have cancer that is **resistant to androgen deprivation**, highlighting the need for novel approaches to **improve disease control** and further **delay the need for chemotherapy initiation**, currently used to treat advanced disease².

AR=androgen receptor; CPRC=castration-resistant prostate cancer; mCPRC=metastatic castration-resistant prostate cancer.

1. He Y, Xu W, Xiao YT et al. Signal Transduct Target Ther. 2022;7(1):198. 2. Jernberg E, Bergh A, Wikström P. Endocr Connect. 2017;6(8):R146-R161. 3. Verry C, Vincendeau S, Massetti M, et al. Target Oncol. 2022;17(4):441-451.

Current and emerging approaches for mCRPC management aim to improve disease control

Not pictured: IO agents, which target the immune system to treat prostate cancer

ADT=androgen deprivation therapy; AR=androgen therapy; CDK=cyclin-dependent kinase; DHEA=dehydroepiandrosterone; D=dihydrotestosterone; HSP=heat shock protein; LH=luteinizing hormone; mCRPC=metastatic castration-resistant prostate cancer; P=phosphorylation; PARP=poly (ADP-ribose) polymerase; PARPi=poly (ADP-ribose) polymerase inhibitor; PCa=prostate cancer; PSMA=prostate specific membrane antigen; T=testosterone. Adapted from He Y et al. *Signal Transduct Target Ther.* 2022;7(1):198 Figures 1 and 2. Hamid AA et al. *Am Soc Clin Oncol Educ Book.* 2023;43:e390166 Figure 1. Michmerhuizen AR et al. *NPJ Breast Cancer.* 2020;6:47 Figure 1

LOXO@Lilly

The interaction between AR and other molecular pathways results in PCa cell cycle progression and cancer proliferation

- The proliferation, survival, differentiation, and motility of cancer cells are regulated by different intracellular signaling pathways¹
- Androgens and AR have regulatory roles in these pathways, which ultimately result in androgen regulation of the cell cycle pathway via AR signaling²

AR=androgen receptor; CDK=cyclin-dependent kinase; D=dihydrotestosterone; P=phosphorylation; PCa=prostate cancer; PI3K=phosphoinositide 3-kinase; Rb=retinoblastoma.

1. De Luca A, Maiello MR, D'Alessio A, et al. Expert Opin Ther Targets. 2012;16 Suppl 2:S17-S27. 2. Kase AM, Copland Iii JA, Tan W. Onco Targets Ther. 2020;13:10499-10513.

LOXO@Liley

Sustained cellular proliferation is a hallmark of cancer

- The cell cycle is controlled by protein kinase complexes consisting of cyclin-dependent kinases (CDKs) and their cyclin partners^{1,2}
- Overexpression of cyclins and CDKs promote sustained cellular proliferation, a hallmark of cancer³

CDK=cyclin-dependent kinase; R=restriction point.

1. Duronio RJ, Xiong Y. Cold Spring Harb Perspect Biol. 2013;5(3):a008904. 2. Mullany LK, White P, Hanse EA, et al. Cell Cycle. 2008;7(14):2215-2224. 3. Hanahan D. Cancer Discov. 2022;12(1):31-46.

Biological parallels between PCa and HR+ BCa: continued ER and AR signaling drive uncontrolled cellular proliferation by activating CDK4 and 6

Upregulation of cyclin D1 is a **mechanism of resistance** to hormone-targeted agents, ultimately leading to treatment resistance and cancer cell proliferation and survival⁴.

AR=androgen receptor; Bca=breast cancer; CDK=cyclin-dependent kinase; ER=estrogen receptor; HR+=hormone receptor positive; P=phosphorylation; PCa=prostate cancer; Rb=retinoblastoma protein.

1. Balk SP, Knudsen KE. Nucl Recept Signal. 2008;6:e001. 2. Wander SA, O'Brien N, Litchfield L, et al. Oncologist. 2022;27:811-821. 3. He Y, Xu W, Xiao YT, Huang H, Gu D, Ren S. Signal Transduct Target Ther. 2022;7(1):198. 4. Pal SK, Patel J, He M, et al. Cancer. 2018;124(6):1216-1224.

Dysregulation of the cell cycle in HR+ BCa is driven by ER signaling that can be blocked by targeting CDKs

- The ER signaling pathway and CDK4/6 interact synergistically to drive tumorigenesis in BCa¹
- Inhibition of CDK4/6 prevents Rb phosphorylation and G1-S phase cell cycle transition. Therefore, the cancer cell cannot re-enter the cell cycle, resulting in senescence and apoptosis²
- Dual inhibition of ER & CDK4/6 has proven to be a standard therapy in hormone receptor-positive breast cancer^{1,3}

BCa=breast cancer; CDK=cyclin-dependent kinase; CDK4/6i=cyclin-dependent kinase 4/6 inhibitor; ER=estrogen receptor; ERi=ER inhibitor; HR+=hormone receptor positive; P=phosphorylation; Rb=retinoblastoma protein.

1. Wander SA, O'Brien N, Litchfield L, et al. Oncologist. 2022;27:811-821. 2. Scheinberg T, Kench J, Stockler M, et al. BMJ Open. 2020;10:e033667. 3. Nabieva N, Fasching PA. Cancers (Basel). 2023;15(6):1763.

Based on the importance of CDK4 & 6 in BCa, and the biological parallels with prostate cancer, dual inhibition of AR and CDK4/6 is being actively investigated in PCa clinical trials

1. Brighi N, Conteduca V, Lolly C, et al. Crit Rev Onc/Hem. 2021;157.

LOXO@Lilly

Key takeaways

- Prostate cancer (PCa) primarily depends on androgens for growth. Therefore, androgen deprivation is the mainstay of advanced PCa management.
- PCa can become resistant to castration by re-activating AR signaling and continued dependence on the AR signaling pathway, resulting in mCRPC.
- Current and emerging approaches include targeting PSMA expression, co-targeting AR signaling and DNA repair through PARP inhibition, and co-targeting AR and associated downstream elements such as PI3K/AKT/mTOR or the cell cycle, which aim to improve disease control.
- Much like ER signaling in HR+ breast cancer (BCa), signaling through the AR pathway in PCa induces over-expression of D-type cyclins, and subsequent activation of CDK4/6 to sustain cellular proliferation, a hallmark of cancer.
- Dual inhibition of ER and CDK4/6 has proven to be a standard therapy in hormone receptor-positive breast cancer as these pathways
 interact synergistically to drive tumorigenesis.
- Due to the biological parallels between BCa and PCa, dual inhibition of AR and CDK4/6 is currently being investigated in clinical trials for the treatment of advanced PCa.

AR=androgen receptor; Bca=breast cancer; CDK=cyclin-dependent kinase; ER=estrogen receptor; HR+=hormone receptor positive; mCPRC=metastatic castration-resistant prostate cancer; PCa=prostate cancer; PI3K=phosphoinositide 3-kinase.

