

Chronic Lymphocytic Leukemia Overview

Table of Contents

Background and Epidemiology

CLL cellular origins	<u>4</u>
Manifestations of CLL	<u>5</u>
Incidence, prevalence, and overall survival	Z
Risk factors associated with CLL	<u>8</u>
Biology and Cytogenetics	
Role of BCR signaling in CLL	<u>10</u>
CLL pathophysiology	<u>11</u>
IGHV mutational status	<u>12</u>
Overview of chromosomal abnormalities	<u>13</u>
TP53 aberrations and use of cytogenetic testing	<u>14</u>

Detection, Diagnosis, and Complications

Signs and symptoms of CLL	<u>16</u>
Initial clinical evaluation	<u>17</u>
Establishing a CLL diagnosis	<u>18</u>
Complications of CLL	<u>19</u>

Staging and Prognosis

Rai and Binet staging systems	<u>21</u>
CLL International Prognostic Index	<u>22</u>
Prognostic biomarkers in CLL	<u>23</u>
CLL Overview Summary	<u>24</u>

CLL Overview and Classification

1

Introduction to CLL

Overview of CLL and Cellular Origins¹⁻³

- CLL is a largely indolent lymphoproliferative disease characterized by the proliferation and accumulation of morphologically mature, but immunologically dysfunctional B lymphocytes¹
- CLL is highly heterogeneous and mutational patterns and gene expression profiles divide CLL into two clinically and pathologically distinct groups corresponding with cellular origins of^{2,3}
- Naïve B cells (no antigen exposure)
- Post-GC B cells (memory B cell)
- Mutated-*IGHV* CLL is thought to derive from post-GC B cells, whereas unmutated-IGHV CLL is thought to derive from pre-GC naïve B cells or a separate lineage of precursors³
- Primary disease sites include peripheral blood, spleen, lymph nodes, and bone marrow¹

From Koues OI, et al. Trends Genet. 2015.2

CLL=chronic lymphocytic leukemia; DLBCL=diffuse large B-cell lymphoma; FL=follicular lymphoma; GC=germinal center; NHL=non-Hodgkin lymphoma.

1. Mukkamalla SKR, et al. StatPearls Publishing; 2022 Jan-Available from: https://www.ncbi.nlm.nih.gov/books/NBK470433/. 2. Koues OI, et al. Trends Genet. 2015 Dec;31(12): 720-731. 3. Fabbri G, Dalla-Favera R.. Nat Rev Cancer. 2016;16(3):145-162.

Understanding CLL and SLL

Different Manifestations of the Same Disease

CLL and SLL are denoted as "CLL/SLL" because they are different manifestations of the same disease, both originating from B lymphocytes with identical pathological and immunophenotypic characteristics¹

- CLL represents the leukemic form in which malformed B lymphocytes accumulate in the **blood and bone marrow**^{1,2}
- SLL represents the lymphoproliferative form in which malformed B lymphocytes accumulate in the **lymph nodes**^{1,2}

CLL=chronic lymphocytic leukemia; SLL=small lymphocytic lymphoma.

1. Mukkamalla SKR, et al. StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470433/.

2. Lymphoma Action. Accessed September 29, 2022. https://lymphoma-action.org.uk/types-lymphoma/chronic-lymphocytic-leukaemia-cll-and-small-lymphocytic-lymphoma-sll#what-is

2 Epidemiology of CLL

CLL Incidence, Prevalence, and Overall Survival

Incidence

Recently reported age-adjusted incidence of 4.7 per 100,000 per year in the US population¹

- CLL represents 1.1% of all new cancer cases in the US¹
- Approximately 0.6% of men and women will be diagnosed with CLL at some point during their lifetime¹

Prevalence

In 2019, there were an estimated 200,766 people living with CLL in the US^1

Overall Survival and Mortality

While the incidence of CLL has been stable over the last two decades, mortality has been declining^{1,2}

- CLL is estimated to cause 4,410 deaths in 2022, representing 0.7% of all cancer deaths
 - From 2016-2020, the CLL mortality rate was 1.1 per 100,000 persons/year
- The 5-year relative survival has steadily increased²
 - In 1975, the 5-year relative survival was 65.1%, and it is now 87.9% based on data from 2012-2018^{1,2}

Similar epidemiology of CLL has been reported in Europe, while lower incidences have been reported in Asian countries²

1. SEER. Cancer Stat Facts: Leukemia – Chronic lymphocytic Leukemia (CLL) Accessed September 30, 2022. https://seer.cancer.gov/statfacts/html/clyl.html 2. Hallek M, Al-Sawaf O. Am J Hematol. 2021;96(12):1679-1705.

Risk Factors Associated with Development of CLL

Age

The median age at diagnosis is 70 years and incidence has been shown to rapidly increase with age^{1,2}

- Only 9.1% of patients with CLL are younger than 45 years¹
- CLL is extremely rare in children²

Gender

Race

CLL is more common in men (1.9:1 male-to-female ratio)¹

However, studies have shown that women more commonly have a more aggressive form of CLL than men²

The incidence of CLL varies by geographic location and race²

- The incidence of CLL is highest among the Caucasian population and Western countries²
- East Asians, Asian Indians, and Amerindians have a 5to 10-fold *lower* age-adjusted incidence rate of CLL compared to persons of predominately European descent³

Genetics

CLL has a genetic basis and is known to develop in families²

- Age at diagnosis in second-generation offspring is nearly 20 years younger compared to the parent
- First-degree relatives of CLL patients have double the risk for CLL

Other

- Systemic exposure to medical radiation, petroleum, pesticides/chemical fertilizers, metals, and detergents⁴
- Pneumonia⁴
- Tobacco use and cigarette smoke²
- Agent Orange or herbicides used during military service (recognized by the Veterans Affairs)²

Correlative studies have shown associations between certain risk factors (specific exposures) and CLL-specific chromosomal aberrations⁴

1. Hallek M, Al-Sawaf O. Am J Hematol. 2021;96(12):1679-1705. 2. Mukkamalla SKR, et al. StatPearls Publishing; 2022 Jan-Available from: https://www.ncbi.nlm.nih.gov/books/NBK470433/ 3. Yang S, Varghese AM, Sood N, et al. Leukemia. 2021;35(2):433-439. 4. Karakosta M, et al. Arch Environ Occup Health. 2016;71(6):317-329.

³ Pathophysiology of CLL

BCR Signaling in the Pathogenesis of CLL

- BCR signaling is an essential component of normal B-cell development as well as malignant B-cell survival¹
- CLL cell survival is associated with continuous or repetitive BCR signaling²
 - Activated BCR signaling is an antigen-dependent process utilizing the canonical NF-kB pathway¹
 - Antigen binding by surface immunoglobulin initiates BCR signaling, resulting in coupling and autophosphorylation of the CD79A/CD79B heterodimer¹
 - This recruits a signaling cascade including LYN, SYK, BTK, PLCγ2, and PKC, which lead to activation of NF-κB, PI3K, and ERK¹
- Acquisition of *BTK* and/or *PLCG2* mutations can occur any time during the disease course, leading to covalent BTKi resistance¹
 - BTK mutations most commonly substitute the C481 residue with serine, leading to loss of covalent BTKi binding
 - Most PLCG2 mutations affect the N-terminal autoinhibitory SH2 domain

BCR=B-cell receptor; BTKi=Bruton's tyrosine kinase inhibitor; CLL=chronic lymphocytic leukemia; NF-kB, nuclear factor-κB; PI3K=phosphatidylinositol 3-kinase; PLCγ2=phospholipase C γ2; PKC=protein kinase C. 1. Ahn IE, Brown JR. *Front Immunol.* 2021;12:687458. 2. Hallek M, AI-Sawaf O. *Am J Hematol.* 2021;96(12):1679-1705.

From Ahn IE et al. Front Immunol. 2021.7

Pathophysiology of CLL

Molecular Pathogenesis in Development and Progression of CLL¹⁻³

- CLL may originate from post-germinal center B cells (*IGHV-M*) or pre-germinal center naive B cells (*IGHV-UM*) or a separate lineage of precursor B cells¹
- The pathogenesis of CLL begins with an asymptomatic precursor state referred to as MBL, defined as the presence of a clonal B-cell population in the peripheral blood^{1,2}
 - MBL results from genetic mutations, antigenic stimulation, and cytogenetic abnormalities²
- Overt leukemic transformation of these B cells due to either genetic or microenvironmental changes results in progression to CLL²
 - MBL progresses to overt CLL at a rate of ~1-2% per year³

From Fabbri G, Dalla-Favera R. Nat Rev Cancer. 2016.1

BCR=B-cell antigen receptor; GC=germinal center; HSC=hematopoietic stem cell; *IGHV*:M=*IGHV* mutated; *IGHV*:UN=*IGHV* unmutated; MBL=monoclonal B-cell lymphocytosis. 1. Fabbri G, Dalla-Favera R. *Nat Rev Cancer*. 2016;16(3):145-162. 2. Mukkamalla SKR, et al. *StatPearls Publishing*; 2022 Jan-Available from: https://www.ncbi.nlm.nih.gov/books/NBK470433/. 3. Hallek M, Al-Sawaf O. *Am J Hematol*. 2021;96(12):1679-1705.

CLL IGHV Mutational Status

CLL can be classified into two subgroups based on the presence or absence of mutations in *IGHV* genes which reflect the stage of normal B-cell differentiation from which they originate^{1,2}

- IGHV-UM CLL arising from naive B cells, is associated with high-risk genetic lesions and a dismal outcome
- IGHV-M CLL arising from post-GC B cells, is associated with low-risk genetic lesions and a favorable outcome

The high level of mutations that arise in *IGHV* in the germinal center are part of normal maturation of antibodies and unlike mutations in certain genes, are *not pathological*²

IGHV:M=Ig heavy chain variable region mutated; *IGHV*:UN=Ig heavy chain variable region unmutated; MBL=monoclonal B-cell lymphocytosis. 1. Fabbri G, Dalla-Favera R. *Nat Rev Cancer*. 2016;16(3):145-162. 2. Kipps TJ et al. *Nat Rev Dis Primers*. 2017;3:16096.

IGHV-Unmutated CLL (~40%)	IGHV-Mutated CLL (~60%)
Poor prognosis	Good prognosis
Biased slg repertoire	Biased sig repertoire
More often stereotyped BCR	 Less frequently stereotyped
Low-affinity poly- or self-	BCR
reactive BCR	Oligo- or – mono-reactive BCR
High-risk genetic lesions	 Low-risk genetic lesions
Higher degree of clonal evolution	 Lower degree of clonal evolution

From Fabbri G, Dalla-Favera R. Nat Rev Cancer. 2016.1

Overview of Chromosomal Abnormalities in CLL

Approximately 80% of patients with CLL carry at least one of four chromosomal alterations: del(13q), del(11q), trisomy 12, or del(17p)

Abnormality	Description	Frequency	Associated Risk	
Del(13q)	Deletions of the long arm of chromosome 13; the critical region of del(13q14) contains miRNAs that regulate apoptosis and cell cycle progression	55% of patients with CLL	Isolated del(13q14) is cha course	aracterized by a benign disease
Del(11q)	Deletions of the long arm of chromosome 11; frequently encompasses 11q23 which harbors the <i>ATM</i> gene	25% of advanced disease ^a 10% of early disease	Typically associated with progression, and reduced	bulky lymphadenopathy, rapid I OS
Trisomy 12	Three copies of chromosome 12; the genes involved in the pathogenesis of CLL carrying trisomy 12 are largely unknown		Associated with an intern	nediate prognosis
Del(17p)	Deletions of the short arm of chromosome 17; the 17p13 harbors the <i>TP53</i> gene which encodes tumor suppressor protein P53	5-8% of chemotherapy- naïve patients with CLL	Patients with CLL carrying prognosis and marked re chemotherapies	
^a Chemotherapy-naï	ive disease.		ATM	SF3B1 FBXW7
copy numb	also 44 recurrently mutated genes and 11 recur ber variations identified in CLL, involved in RNA export, MYC activity, and MAPK signaling inclu	processing	RPS15	MYD88 CHD2
		ZNF	TP53	NOTCH1

PTPN11

ARID1A

IKZF3 ZMYM3

Hallek M, Al-Sawaf O. Am J Hematol. 2021;96(12):1679-1705.

TP53 Aberrations and Cytogenetic Testing in CLL

- TP53 encodes the tumor suppressor protein p53 which regulates the cell cycle and apoptosis¹
- Aberrations in *TP53* can arise through deletion of the *TP53* locus on chromosome 17 (17p13.1) or via mutations¹
- Del(17p) is found in 5–8% of chemotherapy-naïve patients, and more commonly in those with unmutated *IGHV* status^{2,3}
 - Del(17p) almost always leads to loss of functional p53 protein, with 80% of patients with del(17p) harboring TP53 mutations on the second allele¹

Del(17p)/*TP53* mutations lead to increased genomic instability, poor prognosis, and marked resistance to genotoxic chemotherapies^{2,3}

CLL=chronic lymphocytic leukemia; del(17p)=deletions of the short arm of chromosome 17.

1. Campo E, et al. Haematologica. 2018;103(12):1956-1968. 2. Hallek M, Al-Sawaf O. Am J Hematol. 2021;96(12):1679-1705. 3. Fabbri G, Dalla-Favera R. Nat Rev Cancer. 2016;16(3):145-162. 4. Hallek M, et al. Blood. 2018;131(25):2745-2760.

Clinical Presentation and Diagnosis of CLL

4

Clinical Presentation and Symptoms of CLL

- CLL is usually asymptomatic and discovered via routine blood tests that reveal abnormal lymphocytosis¹
- Approximately 5-10% of CLL cases will present with B symptoms such as¹

Unexplained fevers (>100.5°)

Unintentional weight loss (≥10% of body weight over a period of 6 months or less)

- Drenching night sweats with no evidence of infection
- Additional symptoms include:

Early satiety

Extreme fatigue

- ^a Direct seeding of leukemic cells in the skin, is relatively rare in CLL, occurring in around 4% of patients.
- 1. Mukkamalla SKR, et al. StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470433/. 2. Gordon MJ, Ferrajoli A. Am J Hematol. 2022;97 Suppl 2:S26-S34
- LOXO@Lilly

- Lymphadenopathy is a frequent abnormal physical finding with common sites including cervical, supraclavicular, and axillary lymph nodes (50-90% of cases)¹
- Additional signs and symptoms include¹
 - Splenomegaly: 25-55% of cases
 - Hepatomegaly: 15-25% of cases

Extranodal Involvement

- Extranodal involvement may be a manifestation of advanced stage CLL, occurring in 0.3 per 100,000 person-years²
- Cutaneous manifestations are relatively common in CLL (25%) and include purpura, infections, non-melanoma skin cancers, vasculitis, and Sweet's syndrome^{2,a}
- Less common involvement includes the liver, kidneys, GI tract, CNS, and cardio-pulmonary¹

Initial Clinical Evaluation of CLL¹⁻⁵

History and Physical Examination

- Measurement of liver, spleen, and palpable lymph nodes
- Assessment of B symptoms and evaluation of performance status
- Additional imaging if extranodal or bulky disease is suspected

- CBC with differential, comprehensive metabolic panel, and LDH
- Uric acid, β2M, and hepatitis testing
- FISH CLL panel to detect +12, del11q, del13q, del17p
- p53 sequencing and IGHV mutation status

Histopathology

- Hematopathology review of peripheral blood smear
- Bone marrow aspiration/biopsy and lymph node biopsy may be done as part of diagnostic workup

Immunophenotyping

- An adequate panel for flow cytometry includes kappa/lambda, CD5, CD10, CD19, CD20 (dim), CD23, and CD200
- Cytospin for cyclin D1 or FISH for t(11;14); t(11q;v) aids in differential diagnosis to exclude other CD5+ B-cell malignancies

Additional Workup
 Quantitative immunoglobulins, reticulocyte count, haptoglobin, or Coombs test

β2M=β2 microglobulin; CBC=complete blood count; FISH=fluorescence in situ hybridization. LDH=lactate dehydrogenase.

1. Hallek M. Am J Hematol. 2019;94(11):1266-1287. 2. Hallek M, Al-Sawaf O. Am J Hematol. 2021;96(12):1679-1705. 3. Kay NE, et al. Blood Rev. 2022;54:100930. 4. Lynch DT, et al. Rotator cuff tendonitis. In: StatPearls. NCBI Bookshelf version. StatPearls Publishing: 2023. Accessed November 28, 2023. https://www.ncbi.nlm.nih.gov/books/NBK536985/. 5. Mukkamalla SKR, et al. StatPearls Publishing; 2022 Jan-Available from: https://www.ncbi.nlm.nih.gov/books/NBK470433/.

Establishing a Diagnosis of CLL

Diagnosis of CLL is established by blood counts, blood smears, and immunophenotyping of circulating B lymphocytes¹

Diagnostic Test	Finding Necessary for Establishing a Diagnosis of CLL ^{1,2}	
Complete Blood Count	\geq 5000 B lymphocytes/µL in the peripheral blood for at least 3 months	
Blood Smear	Leukemic cells in blood smear are typically small, mature lymphocytes and have a narrow border of cytoplasm, a dense nucleus without discernible nuclei, and partially aggregated chromatin	
Flow Cytometry	Confirms clonality of circulating B lymphocytes; usually positive for CD5 antigen and the B-cell markers, CD23 and CD19; weak expression of surface membrane immunoglobulin (CD20 and CD79b)	

FISH with peripheral blood lymphocytes can identify cytogenetic lesions known to influence prognosis and response to treatment and can aid differential diagnosis³

1. Hallek M. Am J Hematol. 2019;94(11):1266-1287. 2. Hallek M, Al-Sawaf O. Am J Hematol. 2021;96(12):1679-1705. 3. Hallek M, et al. Blood. 2018;131(25):2745-2760.

Complications of CLL

Complication	Description	Frequency	Risk Factors
Richter's Transformation ¹	Occurrence of an aggressive lymphoma (most commonly DLBCL) in patients with a previous or concomitant diagnosis of CLL	2-10%	Bulky lymphadenopathy, hepato-splenomegaly, advanced stage disease, elevated β2M, and genetic aberrations (eg, del(17p), unmutated <i>IGHV</i>)
Autoimmune Cytopenias ²	Immune-mediated destruction of immune cells including lymphocytes, red blood cells, and platelets	AIHA: 5-10% ITP: 1-5% PRCA: <1%	Hypogammaglobulinemia can exacerbate AIHA and ITP
Tumor Flare Reactions ³	Manifests painful enlargement of the lymph nodes, sometimes accompanied by an elevated lymphocyte count, enlarged spleen, low-grade fever, rashes, and bone pain	Ranges from 28-58%	Associated with the use of several anti-cancer drugs including immunomodulatory agents and immune checkpoint inhibitors
Tumor Lysis Syndrome⁴	Acute, life-threatening disorder as a result of massive release of intracellular components into circulation from cytoreductive therapy	Not well defined	Bulky disease and malignancies highly sensitive to cytoreductive therapy; high LDH
Infection ⁵	Symptomatic CLL and/or CLL treatment increases susceptibility to infection	Variable	Hypogammaglobulinemia; CLL treatments such as chemoimmunotherapy

AIHA=autoimmune hemolytic anemia; B2M=beta-2 microglobulin; CLL=chronic lymphocytic leukemia; DLBCL=diffuse large B cell lymphoma; ITP=immune thrombocytopenia; LDH=lactate dehydrogenase; PRCA=pure red cell aplasia.

1. Tadmor T, Levy I. Cancers (Basel). 2021;13(20):5141. 2. Gordon MJ, Ferrajoli A.. Am J Hematol. 2022;97 Suppl 2:S26-S34. 3. Taleb B A. Anticancer Drugs. 2019;30(9):953-958. 4. Williams SM, Killeen AA. Arch Pathol Lab Med. 2019;143(3):386-393. 5. Mukkamalla SKR, et al. StatPearls Publishing; 2022 Jan-Available from: https://www.ncbi.nlm.nih.gov/books/NBK470433/.

5 Staging and Prognosis of CLL

Clinical Staging Systems for CLL

The Rai system and the Binet system have become the backbone of prognostication in both clinical practice and clinical trials relying on physician examination and standard lab tests^{1,2,a}

	Binet System (Primarily Europe) ¹	Rai Sy	stem (Primarily United States) ²
Stage	Characteristics	Stage/Risk	Characteristics
А	<3 areas of lymphoid tissue are enlarged, with no anemia or thrombocytopenia	0 (Low)	Lymphocytosis, lymphocytes in blood >5 x 10º/L clonal B cells and/or >40% lymphocytes in the bone marrow
В	≥3 areas of lymphoid tissue are enlarged, with no anemia or thrombocytopenia	l (Intermediate)	Lymphocytosis with enlarged node(s)
С	Anemia (hemoglobin <10 g/dL) and/or thrombocytopenia (platelets <100,000/µL) are present, with any number of enlarged areas	II (Intermediate)	Lymphocytosis with splenomegaly, hepatomegaly, or both
		III (High)	Lymphocytosis with anemia (hemoglobin <11.0 g/dL or hematocrit <33%)
		IV (High)	Lymphocytosis with thrombocytopenia (platelets <100,000/uL)

^aThe Lugano Modification of the Ann Arbor Staging System is used for SLL staging.³

1. Eichhorst B, et al. Ann Oncol. 2021;32(1):23-33. 2. Leukemia &Lymphoma Society. Chronic lymphocytic leukemia. Accessed March 30, 2023. https://www.lls.org/sites/default/files/file_assets/PS34_CLL_Booklet_2019_FINAL.pdf. 3. Cheson BD, et al. J Clin Oncol. 2014;32(27):3059-3068.

CLL International Prognostic Index

CLL-IPI Risk Group Criteria and Scoring¹

Criteria	Scoring Basis	Points
A.g.o	≤65 years	0
Age	>65 years	1
Clinical stage	Binet A or Rai 0	0
Clinical stage	Binet B-C or Rai I-IV	1
Serum β 2M (mg/L or μ /mL)	≤3.5	0
	>3.5	2
IGHV mutational status	Mutated	0
<i>IGHV</i> mutational status	Unmutated	2
	No abnormality	0
<i>TP53</i> status	Deletion 17p (FISH) and/or <i>TP53</i> mutation (sequencing)	4

5-year Survival by CLL-IPI Risk Group^{1,2}

CLL-IPI Score	Risk	5-Year Survival
0-1	Low	93.2%
2-3	Intermediate	79.3%
4-6	High	63.3%
7-10	Very high	23.3%

CLL-IPI provides additional prognostic information regarding overall survival compared with conventional clinical staging¹

The CLL-IPI combines genetic, biochemical, and clinical parameters into a prognostic model that categorizes patients into four subgroups: low, intermediate, high, and very high risk each with different survival at 5 years ^{1,2}

CLL-IPI=international prognostic index for chronic lymphocytic leukaemia; FISH=fluorescence in situ hybridization.

1. International CLL-IPI Working Group. Lancet Oncol. 2016;17(6):779-790. 2. Hallek M, Al-Sawaf O. Am J Hematol. 2021;96(12):1679-1705.

Prognostic Biomarkers for CLL

Genetic Marker ^{1,2}	Frequency ¹⁻³	Importance ^{1,2}
Del(13q)	• 55% of patients with CLL have 13q deletion	 Solitary deletion of 13q linked with historically favorable prognosis Most common cytogenetic abnormality in CLL
Trisomy 12	• 16% of patients with CLL have trisomy 12	 Associated with intermediate-risk CLL if appearing alone Associated with higher-risk CLL if appearing in conjunction with other abnormalities
Del(17p)	 1 in 10 patients with CLL have the 17p deletion Up to 30% in R/R cases 	 Critical <i>TP53</i> gene in the region is deleted Poor response and rapid disease progression Does not respond well to chemotherapy or chemoimmunotherapy
Del(11q)	• 1 in 5 patients with CLL have 11q deletion	 Often associated with extensive lymph node involvement Implies clinically progressive disease Prognosis significantly improved with chemoimmunotherapy
Unmutated <i>IGHV</i>	 Nearly 40% of patients with CLL have unmutated IGHV 	 Stable marker (does not tend to change over time), should only need to be checked once Linked to more aggressive disease More likely to benefit from newer agents
Altered TP53	• 80% of patients with CLL and del(17p) carry a <i>TP53</i> mutation	 Gatekeeper that protects cell DNA from damage Associated with poor prognosis Resistance to traditional therapy; newer therapies are used to treat patients with del(17p) or <i>TP53</i> mutation

CLL=chronic lymphocytic leukemia; del=deletion; FISH= fluorescence in situ hybridization; IGHV=immunoglobulin heavy chain gene; R/R= relapsed/refractory; TP53= tumor protein p53.

1. https://www.lls.org/sites/default/files/file_assets/PS34_CLL_Booklet_2019_FINAL.pdf (Accessed March 30, 2023). 2. Yun X et al. Biomark Res. 2020; 8:40. 3. Campo E, et al. Haematologica. 2018;103(12):1956-1968.

Chronic Lymphocytic Leukemia Overview

- CLL is a largely indolent, heterogenous, lymphoproliferative disease characterized by the proliferation and accumulation of morphologically mature, but immunologically dysfunctional B lymphocytes^{1,2,3}
- BCR signaling is an essential component of normal B-cell development and CLL cell survival is associated with continuous or repetitive BCR signaling^{4,5}
- Diagnosis of CLL is established by blood counts, blood smears, and immunophenotyping of circulating B lymphocytes⁶
 - FISH with peripheral blood lymphocytes can identify cytogenetic lesions known to influence prognosis and response to treatment and can aid differential diagnosis⁷
 - Approximately 80% of patients with CLL carry at least one of four chromosomal alterations: del(13q), del(11q), trisomy 12, or del(17p)⁵
- CLL-IPI provides additional prognostic information regarding overall survival compared with conventional clinical staging⁸

CLL=chronic lymphocytic leukemia; BCR=B-cell receptor; FISH=fluorescence in situ hybridization; CLL-IPI=international prognostic index for chronic lymphocytic leukemia

Mukkamalla SKR, et al. StatPearls Publishing; 2022 Jan-.Available from: https://www.ncbi.nlm.nih.gov/books/NBK470433/.
 Koues OI, et al. Trends Genet. 2015 Dec;31(12):720-731.
 Fabbri G, Dalla-Favera R.. Nat Rev Cancer. 2016;16(3):145-162.
 Ahn IE, Brown JR. Front Immunol. 2021;12:687458.
 Hallek M, Al-Sawaf O. Am J Hematol. 2021;96(12):1679-1705.
 Hallek M. Am J Hematol. 2019;94(11):1266-1287 7. Hallek M, et al. Blood. 2018;131(25):2745-2760.
 International CLL-IPI Working Group. Lancet Oncol. 2016;17(6):779-790.

