Energy calculations

$E_k =$	$\frac{1}{2}mv$	2
---------	-----------------	---

E_k = kinetic energy (J) m = mass (kg) v = velocity (m/s)

$$E_e = \frac{1}{2}ke^2$$

E_e = elastic potential energy (J) k = spring constant (N/m) e = extension (m)

$$E_p = mgh$$

Ep = gravitational potential energy (J) m = mass (kg) g = gravitational field strength (N/kg) h = height (m)

$$P = \frac{E}{t}$$

P = power (W)
E = Energy transferred (J)
t = time (s)

h = height (m)				
Find the kinetic store of energy of a 1500 kg car travelling at 25 m/s.	Find the energy stored in an elastic band with a spring constant of 27 N/m and an extension of 1.2m.	Calculate the energy in the gravitational store gained by a 5 kg mass when lifted 0.7m in the air by a bodybuilder (g =10 N/kg).	Calculate the power output of a bodybuilder when 10J of energy is transferred from their muscles in 3 seconds.	
Find the kinetic store of energy of a ball with a mass of 100 g as it flies through the air at 3 m/s.	Find the energy stored in a spring which is stretched to an extension of 0.58m. The spring constant of the spring is 30 N/m.	Find the height gained by a 4.2 kg exercise ball that is lifted to gain 340 J of energy in the gravitational store (g = 10 N/kg).	A 3W mechanical device transfers energy over 30 s. How much energy is transferred?	
Find the mass of a rocket travelling at 30m/s that has a kinetic store of energy of 150J.	A spring stores 180 J of energy when extended by 1.8 m. Calculate the spring constant.	A box of unknown mass gains 300J of energy by being raised 0.5m. What is the mass of the box? (g = 10 N/kg).	How long would a 2 kw heater take to transfer 500 J to the thermal store of the air around it?	
A 200 g ball is dropped from a height where is has 1.20 J of energy in it's gravitational store. Calculate the speed of the ball just before it lands (ignore the effects of air resistance).	How long would a bungee rope be extended by if it stored 450 J of energy in its elastic store and it had a spring constant of 62 N/m?	A 100g ball is thrown upwards with an initial speed of 3m/s. Calculate the maximum height reached. Ignore the effects of air resistance. (g=10N/kg)	A bodybuilder lifts a 5kg mass repeatedly from the ground to a height of 1.2m. If it is lifted up 10 times in 1 minute, calculate the power output of the weightlifter.	

Answers to energy calculations

$$E_k = \frac{1}{2}mv^2$$

$$E_k = \text{kinetic energy (J)}$$

$$m = \text{mass (kg)}$$

$$v = \text{velocity (m/s)}$$

$$E_e = \frac{1}{2}ke^2$$

E_e = elastic potential energy (J) k = spring constant (N/m) e = extension (m)

$$E_p = mgh$$

Ep = gravitational potential energy (J) m = mass (kg) g = gravitational field strength (N/kg) h = height (m)

$$P = \frac{E}{t}$$

P = power (W)
E = Energy transferred (J)
t = time (s)

h = height (m)				
Find the kinetic store of energy of a 1500 kg car travelling at 25 m/s. 468,750 J	Find the energy stored in an elastic band with a spring constant of 27 N/m and an extension of 1.2m. 19.44 J	Calculate the energy in the gravitational store gained by a 5 kg mass when lifted 0.7m in the air by a bodybuilder (g =10 N/kg). 34.4 J	Calculate the power output of a bodybuilder when 10J of energy is transferred from their muscles in 3 seconds. 3.33 W	
Find the kinetic store of energy of a ball with a mass of 100 g as it flies through the air at 3 m/s. 0.45 J	Find the energy stored in a spring which is stretched to an extension of 0.58m. The spring constant of the spring is 30 N/m. 5J	Find the height gained by a 4.2 kg exercise ball that is lifted to gain 340 J of energy in the gravitational store (g = 10 N/kg). 8.25 m	A 3W mechanical device transfers energy over 30 s. How much energy is transferred?	
Find the mass of a rocket travelling at 30m/s that has a kinetic store of energy of 150J. 0.33 kg	A spring stores 180 J of energy when extended by 1.8 m. Calculate the spring constant. 111.1 N/m	A box of unknown mass gains 300J of energy by being raised 0.5m. What is the mass of the box? (g = 10 N/kg). 61.2 kg	How long would a 2 kw heater take to transfer 500 J to the thermal store of the air around it? 0.25 s	
A 200 g ball is dropped from a height where is has 1.20 J of energy in it's gravitational store. Calculate the speed of the ball just before it lands (ignore the effects of air resistance). 3.46 m/s	How long would a bungee rope be extended by if it stored 450 J of energy in its elastic store and it had a spring constant of 62 N/m? 3.81 m	A 100g ball is thrown upwards with an initial speed of 3m/s. Calculate the maximum height reached. Ignore the effects of air resistance. (g=10N/kg) 0.45 m	A bodybuilder lifts a 5kg mass repeatedly from the ground to a height of 1.2m. If it is lifted up 10 times in 1 minute, calculate the power output of the weightlifter. 10 W	