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Complex Numbers  
 

Section 2: Equations and geometrical representation 
 

Notes and Examples 
 
These notes contain subsections on: 

 Polynomial equations with complex roots 

 Representing complex numbers geometrically 

 Roots of complex numbers 
 
 

Polynomial equations with complex roots 
 
You now know from your work on complex numbers that every quadratic 
equation has exactly two solutions, if you count repeated roots and complex 
roots. 
 
There are two possibilities: 
 
 
 
 
 
 
 
 
 
 
 
 
 
For a cubic equation, there are also two possibilities: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The graph crosses the x axis twice. 
There are two real distinct roots. 
If the graph just touches the axis, then 
the root is repeated, but this still counts 
as two roots.  
 

 
 
 
The graph does not cut 
the x axis. There are two 
complex roots which are 
a conjugate pair. 

 
 
The graph cuts the x axis three times. In 
the diagram there are three real distinct 
roots. However, two of the roots could be 
the same, in which case the graph would 
touch the axis at one of the turning points, 
or all three roots could be the same, in 
which case there would be a point of 
inflection on the x axis. 

 
 
Here the graph cuts the x axis 
only once. There is one real root, 
and there is also a conjugate pair 
of complex roots. 
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You can see graphically that a cubic equation must have at least one real 
root. If the term in x³ is positive, then for large positive values of x the value of 
the function is large and positive, and for large negative values of x the value 
of the function is large and negative. (If the term in x³ is negative, this is 
reversed). So all cubic graphs must cut the x axis at least once. 
 
Of course, the real root may not be an integer or even a rational number, so 
you may not be able to find it! However, any cubic equations you meet in this 
section will have a simple real root, so that you can solve it. 
 
A formula does exist for solving all cubic equations, but it is extremely 
complicated. Find out more here and here.   
 
For quartic equations, there are three possibilities: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There is, again, an extremely complicated formula for the roots of a quartic 
equation. Find out more here. 
 
For higher degree equations, there are no general formulae to find the roots. It 
is not simply that no-one has managed to find them yet: it was proved by 
Galois (a very interesting character) that no such formulae exist for any 
polynomial equations higher than quartic. If there happens to be one or more 
integer root which you can find by trial and error, it may be possible to solve a 
higher degree equation by algebraic methods. Otherwise, there are numerical 
methods which provide approximate solutions. 
 
The main difficulty in proving that any polynomial equation of degree n has 
exactly n roots is proving that any polynomial has at least one root. If you 
assume that a polynomial of degree n has at least one root, then you can 
express the polynomial as a product of a linear factor and a polynomial of 
degree n-1. Then, since the assumption that any polynomial has at least one 
root also holds for the new polynomial of degree n-1, then you can express 
this polynomial as a product of a linear factor and a polynomial of degree n-2. 
And so on, until the polynomial has been factorised into n linear factors, giving 
n roots. (This applies even if the roots are irrational or complex). 

 
 
 
There may be two real roots, and 
a conjugate pair of complex 
roots. 

 
There may be four real 
roots, some of which 
may be repeated. 

 
 
 
There may be no real 
roots. In this case, there 
are two conjugate pairs 
of complex roots. 

http://members.lycos.co.uk/kgsfs/cubic.html
http://www.1728.com/cubic2.htm
http://www.1728.com/quartic2.htm
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For example, if you know one root of a quintic equation, you can express it as 
the product of a linear factor and a quartic factor. Then since a quartic 
equation must have at least one root, you can express the quartic factor as 
the product of a linear factor and a cubic factor. Since a cubic equation has at 
least one root, you can express the cubic factor as the product of a linear 
factor and a quadratic factor, which can be factorised using the quadratic 
formula. 
 
So, if we can prove that all polynomial equations have one root, then we can 
prove that a polynomial equation of degree n has exactly n roots using the 
method above. (This is an example of proof by induction, in which you show 
that if a statement is true for n, then it is also true for n+1. The proof has been 
stated very informally here: you may have already learned about proof by 
induction in Chapter 6). Proving that all polynomial equations have at least 
one root is much more difficult: there are a number of approaches, all well 
beyond „A‟ level. You can use a graphical approach to show that all 
polynomials of odd degree have at least one root, as described above for 
cubics, however, this is not a rigorous proof! 
 
In practice, the situations you are likely to encounter include 

 cubics where you are given one complex root. In this case you can 
deduce a second complex root which is the conjugate of the first, and 
use these two roots to find a quadratic factor of the cubic. You can then 
factorise the cubic into the quadratic factor and a linear factor (by 
inspection or polynomial division) and deduce the third (real) root from 
the linear factor.  

 

 cubics where you are given the real root (or told that an integer root 
exists, which you can find by trial and error). In this case you can 
factorise the cubic into a linear factor and a quadratic factor, by 
inspection or polynomial division, and then use the quadratic formula to 
find the other two roots. Example 1 below shows a problem of this type. 

 

 quartics where you are given a complex root. In this case you can 
again deduce a second complex root which is the conjugate of the first, 
and find a quadratic factor. You can then factorise the quartic into two 
quadratics, and use the quadratic formula to find the other two roots 
(which could be real or complex). Example 2 below shows a problem of 
this type. 

 

 quartics where you are given one or two real roots, or told that they 
exists. Find the real roots by trial and error if you need to, then factorise 
the quartic into the two known linear factors and a quadratic factor, 
which you can then use to find the other two roots. 

 
If you have already covered the work on the Factor Theorem in Core 2, you 
will be familiar with the techniques of factorising a polynomial by inspection or 
by polynomial division. If not, look at the additional notes for help on the factor 
theorem. 
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The following two examples show the kind of examples you need to be able to 
do. In each case factorising is involved. There are PowerPoint presentations 
to show the different methods you can use for the factorising in each case. 
 
 
Example 1 

The equation 3 2 4 6 0z z z     has an integer root. Find all the roots of the 

equation. 

 

Solution 

Let 3 2f ( ) 4 6

f (1) 1 1 4 6 10

f (2) 8 4 8 6 10

f (3) 27 9 12 6 0

x z z z   

     

     

    

 

Therefore (z – 3) is a factor by the factor theorem. 

 
3 2

2

4 6 0

( 3)( 2 2) 0

z z z

z z z

   

   
 

 

The other roots are the roots of the quadratic equation 2 2 2 0z z   . 

Using the quadratic formula: 

  
2 4 4 1 2

2

2 4

2

2 2i

2

1 i

z
    



  


 


  

 

The roots are 3, -1 + i and -1 – i. 

 
 
 
Example 2 

Show that -2 + i is one root of the quartic equation 4 3 22 2 10 25 0z z z z     , and 

find the other roots. 

 

Solution 

2 2

3

4

2 i

( 2 i) 4 4i 1 3 4i

(3 4i)( 2 i) 6 11i 4 2 11i

( 2 11i)( 2 i) 4 24i 11 7 24i

z

z

z

z

  

       

          

          

 

 

Substituting into 4 3 22 2 10 25z z z z    : 

Here the cubic equation 
has been factorised into 
the known linear factor 
and a quadratic factor. 
The PowerPoint 
presentation Factorising 
cubics demonstrates 
some different methods 
for doing this. 
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7 24i 2( 2 11i) 2(3 4i) 10( 2 i) 25

7 24i 4 22i 6 8i 20 10i 25

0

          

         



 

so -2 + i is a root of the equation. 

 

Since -2 + i is a root, -2 – i is also a root. 

Therefore (z + 2 – i) and (z + 2 + i) are both factors. 

So a quadratic factor is 2

2

2

( 2 i)( 2 i) ( 2) 1

4 4 1

4 5

z z z

z z

z z

      

   

  

 

 
4 3 2

2 2

2 2 10 25 0

( 4 5)( 2 5) 0

z z z z

z z z z

    

    
 

The other roots are the roots of the quadratic equation 2 2 5 0z z   . 

Using the quadratic formula: 

  
2 4 4 1 5

2

2 16

2

2 4i

2

1 2i

z
   



 





 

 

The roots are -2 – i, -2 + i, 1 + 2i and 1 – 2i. 

 
 

Representing complex numbers geometrically 
 
The Notes and Examples for Section 1 looked at the relationships between 
numbers as represented in a Venn diagram, with some sets of numbers being 
a subset of another set: e.g. the integers are a subset of the rational numbers. 
You have seen that all the types of number that you have met so far can be 
considered to be a subset of a larger set of numbers: the complex numbers. 
This can be represented on the Venn diagram by a larger set encircling the 
set representing the real numbers. 
 
Another way to represent numbers is on a number line. You have probably 
used number lines from a very early stage in your mathematical development. 

Even irrational numbers can be placed on a number line: for example, 2  can 

be expressed to as many decimal places as you like. 
 
However, if you want to place a complex number on the number line, you 
have a problem. Is 1 + i larger or smaller than 1? Clearly this kind of question 
just does not make sense. 
 

Here the quartic equation 
has been factorised into 
the known quadratic 
factor and another 
quadratic factor. The 
PowerPoint presentation 
Factorising quartics 
demonstrates some 
different methods for 
doing this. 
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The Argand diagram provides a way of representing complex numbers 
geometrically, in the same way that a number line can represent the real 
numbers. 
 
 
Example 3 

The complex numbers z and w are given by 

 z = 3 – 2i 

 w = -1 + 4i 

Plot the points z, w, z*and w* on an Argand diagram. 

 

Solution 

z = 3 – 2i is represented  

by the point (3, -2) 

 

z* = 3 + 2i is represented  

by the point (3, 2) 

 

w = -1 + 4i is represented  

by the point (-1, 4) 

 

w* = -1 – 4i is represented  

by the point (-1, -4) 

 

 

 
 
You can see examples using the Flash resource The Argand diagram. 
 
 
As well as thinking of a complex number z = x + yi as a point with coordinates 

(x, y), you can also think of it as a vector 
x

y

 
 
 

. This could be a position vector 

(a vector from the origin to the point (x, y)) but it can be any vector (sometimes 
called a directed line segment) parallel to this. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Re 

Im 

z 

z 

z 

z 

All the vectors on this diagram 
represent the complex 
number z = 2 + 3i. Notice that 
it is the vector itself that is 
labelled z, not the point at the 
end of it. 

Re 

Im 

z 

*z  

w 

*w  
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Don‟t worry if you don‟t know very much about vectors (they are covered in 
some depth in Core 4) – all you need to know here is how to represent the 
addition and subtraction of vectors on a diagram.  
 
Addition of two complex numbers 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Geogebra resource Addition in the Argand diagram demonstrates this 
geometrical interpretation of the addition of complex numbers. 
 
 
Subtraction of two complex numbers 
You can think of subtraction in two different ways: either by thinking of z1 – z2 
as adding together the vectors z1 and –z2 (shown in the diagram on the left) or 
by going from the point z2 to the point z1 (shown in the diagram on the right). 
 
In either case, with z1 = 3 + i and z2 = 1 + 2i, you can see that the vector z1 – z2 

is given by 2 – i, the result you would expect from subtracting the complex 
number z2 from z1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Re 

Im 

z1 

z1+z2 
z2 

Here z1 = 3 + i and z2 = 1 + 2i. 
You can see from the diagram 
that z1 + z2 = 4 + 3i, as you 
would expect from adding z1 
and z2 together. 

Re 

Im 

z1 

z1-z2 
-z2 

Re 

Im 

z1 

z1-z2 
z2 
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Roots of complex numbers 
 
In section 1 you used the method of equating real and imaginary parts to 
solve equations involving complex numbers. 
 
This technique can also be used for finding the square root of a complex 
number. 
 
 
Example 4 

Find the square root of 16 – 30i. 

 

Solution 

(a + bi)² = 16 – 30i 

a² + 2abi + b²i² = 16 – 30i 

a² + 2abi – b² = 16 – 30i 

 

Equating imaginary parts: 2ab = –30 
15

b
a

    

Equating real parts:  a² – b² = 16 

Substituting:   2

2

225
16a

a
   

Multiplying through by a²: 4 2

4 2

225 16

16 225 0

a a

a a

 

  

 

This is a quadratic in a² and can be factorised: 

    (a² – 25)(a² + 9) = 0 

Since a is real, a² + 9 cannot be equal to zero. 

Therefore a = 5 or a = -5. 

a = 5  
15 15

3
5

b b
a

        

a = -5  
15 15

3
5

b b
a

     


 

So the square roots of 16 – 30i are 5 – 3i and -5 + 3i. 

 
 
Note that as with real numbers, one square root is the negative of the other. 
However, it does not make sense to talk about “the positive square root” or 
“the negative square root”. 
 
You can find fourth roots by finding the square root of each square root. Cube 
roots are usually more difficult. In Further Pure 3 a different approach to 
finding any root of a complex number is studied. 
 


