Isaac

Computer

Science

Object Oriented
Programming

A Level Student Booster

Which of the following statements is NOT an advantage
of using Object-Oriented Programming (OOP)?

A) OOP allows the creation of multiple object instances,
which can reduce the overall amount of code and
decrease the likelihood of errors.

B) OOP ensures that attributes can be made private to
prevent accidental changes from other parts of the
program.

C) OOP can lead to fewer mistakes since objects
encapsulate their own data, unlike procedural
programming where values are passed and returned.

D) OOP uses global variables extensively, which
increases memory usage.

=

4 v) AE—

Intended learning outcomes:

« Define and differentiate between objects and classes
in object-oriented programming (OOP), highlighting
their key components and relationships.

« Explain the role of constructors in class instantiation
and demonstrate the creation of a class with
attributes and methods.

 |Instantiate objects from a class, modify their
attributes, and employ methods to manage and
manipulate object states effectively.

« Design and construct a class hierarchy
that effectively demonstrates the use of inheritance

and polymorphism.
C

4 v) AE—

Programming
Paradigms

Imperative
Programming

Declarative
Programming

Procedural Object Functional Database
Programming orientated Programming Programming

Basic, Pascal, Java, C#, Haskell, sqL
Python Python Python'
You can write functional code in Python, but is not a pure-functional language ':

y y A 4) y -

OOP subject knowledge

Topics covered in this PDE:

* Objects

o Attributes

« Methods

» Classes

* Instantiation

« Constructors

* |Inheritance

* Polymorphism

« UML Diagrams C

v

The OOP Paradigm

Isaac
computer
science

Activity 1

l

What is an object?

Isaac Computer Science Student Activity Booklet
Object Oriented Programming

Activity 1. Pet object Attributes
Produce a formal definition of the pet object in the table below. You should include the data
type of each attribute, and an example of the data, so that you are clear about the nature of

each attribute.
* Attribute Data Type Example
Complete Activity 1 of your workbook.
3 minutes C
w '

OOP Definitions

* Class: A template/blueprint for objects,
specifying attributes and methods.

» Attribute: A variable that is associated with a
class, representing the characteristics or
properties of that object.

* Method: Is a subprogram defined within a
class, designed to operate on or manipulate
the attributes of that class.

What is a class?

Class

- Private
+ Public

Protected

k

T

+ attribute1:type = defaultValue
+ attribute2:type
- attribute3:type

-

+ method1(params):returnType
- method2(params)
- method3()

J

[l

Activity 2

« Complete the top and middle sections of this
class diagram in Activity 2 of your workbook.

5 minutes

=

v

2 4

Class Identifiers and
Attributes

Pet

Protected + type: string

- Private + name: string
+ Public
+ colour: string

+ mood: string

Activity 3

|

Getter & Setter
Methods

Pet

+ name: string
+ type: string

+ colour: string
+ mood: string

+ method1(params):returnType
- method2(params)
- method3()

« Complete the final section of the class diagram in
Activity 3 of your workbook. 5 minutes C

4 v) AE—

[l

Activity 3

Activity 3 - Solution

Pet

+ name: string
+ type: string

+ colour: string
+ mood: string

+ get_name(): string
+ get_type(): string
+ get_colour():string
+ get_mood():string
+ set_name(string)
+ set_type(string)

+ set_colour(string)

v l

OOP Definitions

* Encapsulation is where the attributes are
set to be private. These attributes can
only be read and amended using get and
set methods.

* An object is an instance of a class with
actual attribute values.

* Instantiation is the creation of an object
from a class. The instantiated class will
have an identifier.

=

4 v) AE—

Encapsulation

* An object-oriented # Attributes

program puts all private name

the data

(attributes) and # Methods

the code that can public procedure set name (given name)
be carried out on name = given name

that data endprocedure

(methods)

together in one
place called an
object

Constructors

class Pet

private name

* A class is a blueprint

for an object, they # Constructor method
contain attributes public procedure new (given name)

and methods, but no name = given name
actual data. Endprocedure
public function get name ()
« A class constructor return name
is a special method Endfunct ion
automatically called
upon to initialise the public procedure set name (given name)
object, with the given name = given_name
values. endprocedure

endclass c

4 v) AE—

Instantiation

* An object is a specific b Tnstantiation
instance of a class. It my pet = new Pet ('Romeo')
contains concrete data -
for the attributes defined
by its class. # Calling methods
my pet.set name('Juliet')
print (my pet.get name())
 Instantiation: The
creation of an object

from a class.

Activity 4

A . L
oo tiny.cc/ | [=

l Activity 4

Ooo~NOUTPS WN B

~ DA WN PR

- class Pet:

Constructor

def __init__(self, given_name, given_type, given_colour):
self.name = given_name
self.type = given_type
self.colour = given_colour

def get_name(self): # getter method
return self.name

def set_name(self, new_name): # setter method
self.name = new_name

def describe(self):
pass

Create a new pet object a cat called Romeo
Use the setter method to change it's name to Juliet

. Use the getter method to check the change has been successful
. Complete the describe method, to return the object's attributes as a string

« Complete Activity 4 of your workbook.

10 minutes

=

v

a4) y -

https://trinket.io/python3/137fad7687

OOP Definitions

 Inheritance: is where the sub class/child class
inherits ALL the methods and attributes of a
superclass/parent class. However, it can
override the attributes and methods of the
super class/ parent class.

 Overriding: occurs when a subclass method
supersedes a base class method. This can
also apply to attributes.

Inheritance

Pet

+ name: string
+ type: string
+ colour: string

[l

Activity 5

+ get_name(): string

Cat

+ lives: A

+ describe(): string
+ get_lives(): B
+ lose_life(C):D

+ describe(): string

Dog

+ tricks: List<string>

+ describe(): E
+ add_trick(F)
+ get_tricks(): G

« Complete Activity 5 of your workbook.

5 minutes

v

2 4

Activity 5 - Solutions

Pet

+ name: string
+ type: string
+ colour: string

[l

Activity 5

Cat

+ get_name(): string
+ describe(): string

+ lives: Integer

+ describe(): string
+ get_lives(): integer
+ lose_life()

Dog

+ tricks: List<string>

+ describe(): string
+ add_trick(string)

+ get_tricks(): List<string>

=

Superclasses & Subclasses

class Pet
private name
public procedure new(given name)

name = glven name
endprocedure
endclass

class Cat 1nherits Pet
private lives
public procedure new(given name)
super.new (given name)

lives = 9
Endprocedure
endclass

v

Activity 6

[l

Activity 6

- class Pet:

def __init__(self, given_name, given_type, given_colour):
self.name = given_name
self.type = given_type
self.colour = given_colour

def get_name(self):
return self.name

Lo ~NOWUV A~ WNE

10- def describe(self):
11 return "I am a "
12

13 # Define a new subclass 'Cat' which inherits from the 'Pet' superclass
14- class Cat(Pet):

15 # constructor

16- def __init__(self, given_name, given_colour):

+ str(self.colour) + + str(self.type) + " called " + str(self.name)

17 # Calling the __init__ method of the superclass 'Pet'’
18 super().__init__(given_name, 'Cat', given_colour)

19 # Assigning the attribute 'lives'

20 self.lives = 9

21

22 # The describe method is also present in the Pet class this is an example of method overriding,
23 # which is a form of polymorphism.

24- def describe(self):

25 return "Meow, I am a " + str(self.colour) + " " + str(self.type) + " called " + str(self.name)
26

27 # Method to get the current number of lives of the Cat object.

28- def get_lives(self):

29 return self.lives

31 # Method to decrement the 'lives' attribute of the Cat object by 1.
32- def lose_life(self):
33 self.lives -= 1

« Complete Activity 6 of your workbook.
10 minutes ':

a v '

—

tiny.cc =/ Activity 7

D

b3
g
g

\

Activity 7/

1- class Pet:

2+ def __init__(self, given_name, given_type, given_colour):
3 self.name = given_name

4 self.type = given_type

5 self.colour = given_colour

6
7
8

- def get_name(self):
return self.name

9

10- def describe(self):

11 return "I am a " + str(self.colour) +
12

13 # Define a new subclass 'Cat' which inherits from the 'Pet' superclass
14 - class Cat(Pet):

15 # constructor

16- def __init__(self, given_name, given_colour):

+ str(self.type) + " called " + str(self.name)

17 # Calling the __init__ method of the superclass 'Pet’
18 super().__init__(given_name, 'Cat', given_colour)

19 # Assigning the attribute 'lives’

20 self.lives = 9

21

22 # The describe method is also present in the Pet class this is an example of method overriding,
23 # which is a form of polymorphism.

24- def describe(self):

25 return "Meow, I am a " + str(self.colour) +

nou

+ str(self.type) + " called " + str(self.name)

27 # Method to get the current number of lives of the Cat object.
28- def get_lives(self):
29 return self.lives

31 # Method to decrement the 'lives' attribute of the Cat object by 1.
32- def lose_life(self):

33 self.lives -= 1

34

35 pet_name = input("Enter the name of your pet ")

36 pet_type = input("What type of animal is " + str(pet_name) + "?")

37 pet_colour = input(f"What colour is " + str(pet_name) + "?"

38

« Complete Activity 7 in your workbook.
10 minutes

a v '

https://trinket.io/python3/10c64b72c4

ACtiVity 7 @ tiny.cc/ | [=[Activity 7
Solution

35 pet_name = input("Enter the name of your pet ")

36 pet_type = input("What type of animal is " + str(pet_name) + "7")

37 pet_colour = input(f"What colour is " + str(pet_name) + "?7")

38

39- if pet_type.lower() == 'cat':

40 my_cat = Cat(pet_name, pet_colour) # Instantiation

41 print(my_cat.describe()) # This will call the describe method defined in Cat, not in Pet.
42 print(my_cat.get_lives())

43 my_cat.lose_life()

44 print(my_cat.get_lives())

Powered by CJtrinket
Enter the name of your pet

What type of animal is John?

What colour is John?

Meow, I am a Ginger Cat called John
9

8

v l

https://trinket.io/python3/10c64b72c4

Which of the following statements is NOT an advantage
of using Object-Oriented Programming (OOP)?

A) OOP allows the creation of multiple object instances,
which can reduce the overall amount of code and
decrease the likelihood of errors.

B) OOP ensures that attributes can be made private to
prevent accidental changes from other parts of the
program.

C) OOP can lead to fewer mistakes since objects
encapsulate their own data, unlike procedural
programming where values are passed and returned.

D) OOP uses global variables extensively, which
increases memory usage.

=

4 v) AE—

Intended learning outcomes:

« Define and differentiate between objects and classes
in object-oriented programming (OOP), highlighting
their key components and relationships.

« Explain the role of constructors in class instantiation
and demonstrate the creation of a class with
attributes and methods.

 Instantiate objects from a class, modify their
attributes, and employ methods to manage and
manipulate object states effectively.

« Design and construct a class hierarchy
that effectively demonstrates the use of inheritance
and polymorphism. C

4 v) AE—

Check for more Isaac boosters

NK Isaac

=3 Science

My lsaac 4 v Learn v Events v

\ Keep an eye out

for more student
booster events

Welcome

Show me

A level Stud

en

Boosters

c Isaac
qunce
My Isaac

Home » Events

Events
Student Events

Learn Events

LOGIN SIGNUP

Help and support

Help

Cyber Security
A Level Student Booster

When:
Thu, 11 Apr 2024
16:00 — 17:30

Location: Online

View details

Functional Programming

A Level Student Booster

When:
Mon, 22 Apr 2024
16:00 — 17:30

Location: Online

View details

Filter by [Upccming events :J [Booster :} IA-LeveI

J

Functional Programming

A Level Student Booster

When:
Mon, 20 May 2024
16:00 — 17:30

Location: Online

View details

Isaac CS Gameboards

X X b 4
0 Created: 12/04/2024 0 Created: 12/04/2024 0 Created: 12/04/2024
Ll Last visited: 12/04/2024 CALR Last visited: 12/04/2024 CALRd Last visited: 12/04/2024
Stage: Difficulties Stage: Difficulty Stage: Difficulties
A Level: P2, C2 A Level: P1 A Level: P1, C1
Inheritance and G Encapsulation e 00P Fundamentals e
polymorphism By: Me By: Me

By: Me

Thank you

3 Y sTEM

Science /7 \\ LEARNING

	Slide 1: Object Oriented Programming
	Slide 2
	Slide 3: Intended learning outcomes:
	Slide 4
	Slide 5: OOP subject knowledge
	Slide 6: The OOP Paradigm
	Slide 7: What is an object?
	Slide 8: OOP Definitions
	Slide 9: What is a class?
	Slide 10: Class Identifiers and Attributes
	Slide 11: Getter & Setter Methods
	Slide 12: Activity 3 - Solution
	Slide 13: OOP Definitions
	Slide 14: Encapsulation
	Slide 15: Constructors
	Slide 16: Instantiation
	Slide 17: Activity 4
	Slide 18: OOP Definitions
	Slide 19: Inheritance
	Slide 20: Activity 5 - Solutions
	Slide 21: Superclasses & Subclasses
	Slide 22: Activity 6
	Slide 23: Activity 7
	Slide 24: Activity 7 Solution
	Slide 25
	Slide 26: Intended learning outcomes:
	Slide 27
	Slide 28: A level Student Boosters
	Slide 29: Isaac CS Gameboards
	Slide 30: Thank you

