
A Level Student Booster

Object Oriented
Programming

Which of the following statements is NOT an advantage
of using Object-Oriented Programming (OOP)?

A) OOP allows the creation of multiple object instances,
which can reduce the overall amount of code and
decrease the likelihood of errors.

B) OOP ensures that attributes can be made private to
prevent accidental changes from other parts of the
program.

C) OOP can lead to fewer mistakes since objects
encapsulate their own data, unlike procedural
programming where values are passed and returned.

D) OOP uses global variables extensively, which
increases memory usage.

Intended learning outcomes:
• Define and differentiate between objects and classes

in object-oriented programming (OOP), highlighting
their key components and relationships.

• Explain the role of constructors in class instantiation
and demonstrate the creation of a class with
attributes and methods.

• Instantiate objects from a class, modify their
attributes, and employ methods to manage and
manipulate object states effectively.

• Design and construct a class hierarchy
that effectively demonstrates the use of inheritance
and polymorphism.

Programming
Paradigms

Imperative
Programming

Declarative
Programming

Procedural
Programming

Object
orientated

Functional
Programming

Database
Programming

Basic, Pascal,
Python

Java, C#,
Python

Haskell,
Python1 SQL

1You can write functional code in Python, but is not a pure-functional language

OOP subject knowledge
Topics covered in this PDE:

• Objects

• Attributes

• Methods

• Classes

• Instantiation

• Constructors

• Inheritance

• Polymorphism

• UML Diagrams

The OOP Paradigm

What is an object? Activity 1

Complete Activity 1 of your workbook.
 3 minutes

OOP Definitions
• Class: A template/blueprint for objects,

specifying attributes and methods.

• Attribute: A variable that is associated with a
class, representing the characteristics or
properties of that object.

• Method: Is a subprogram defined within a
class, designed to operate on or manipulate
the attributes of that class.

What is a class?

- Private
+ Public
Protected

Activity 2

• Complete the top and middle sections of this
class diagram in Activity 2 of your workbook.

5 minutes

Class Identifiers and
Attributes

- Private
+ Public
Protected

Getter & Setter
Methods

Activity 3

• Complete the final section of the class diagram in
Activity 3 of your workbook. 5 minutes

Activity 3 - Solution Activity 3

OOP Definitions

• Encapsulation is where the attributes are
set to be private. These attributes can
only be read and amended using get and
set methods.

• An object is an instance of a class with
actual attribute values.

• Instantiation is the creation of an object
from a class. The instantiated class will
have an identifier.

Encapsulation

• An object-oriented
program puts all
the data
(attributes) and
the code that can
be carried out on
that data
(methods)
together in one
place called an
object

Attributes

private name

Methods

public procedure set_name(given_name)

 name = given_name

endprocedure

Constructors
class Pet

 private name

 # Constructor method

 public procedure new (given_name)

 name = given_name

 Endprocedure

 public function get_name()

 return name

 Endfunction

 public procedure set_name(given_name)

 name = given_name

 endprocedure

endclass

• A class is a blueprint
for an object, they
contain attributes
and methods, but no
actual data.

• A class constructor
is a special method
automatically called
upon to initialise the
object, with the given
values.

Instantiation

• An object is a specific
instance of a class. It
contains concrete data
for the attributes defined
by its class.

• Instantiation: The
creation of an object
from a class.

Instantiation

my_pet = new Pet('Romeo')

Calling methods

my_pet.set_name('Juliet')

print(my_pet.get_name())

Activity 4 Activity 4tiny.cc/

• Complete Activity 4 of your workbook.
 10 minutes

https://trinket.io/python3/137fad7687

OOP Definitions

• Inheritance: is where the sub class/child class
inherits ALL the methods and attributes of a
superclass/parent class. However, it can
override the attributes and methods of the
super class/ parent class.

• Overriding: occurs when a subclass method
supersedes a base class method. This can
also apply to attributes.

Inheritance Activity 5

• Complete Activity 5 of your workbook.
5 minutes

Activity 5 - Solutions Activity 5

Superclasses & Subclasses
class Pet

 private name

 public procedure new(given_name)

 name = given_name

 endprocedure

endclass

class Cat inherits Pet

private lives

public procedure new(given_name)

 super.new(given_name)

 lives = 9

Endprocedure

endclass

Activity 6

• Complete Activity 6 of your workbook.
10 minutes

Activity 6

Activity 7tiny.cc/

• Complete Activity 7 in your workbook.
10 minutes

Activity 7

https://trinket.io/python3/10c64b72c4

Activity 7
Solution

Activity 7tiny.cc/

https://trinket.io/python3/10c64b72c4

Which of the following statements is NOT an advantage
of using Object-Oriented Programming (OOP)?

A) OOP allows the creation of multiple object instances,
which can reduce the overall amount of code and
decrease the likelihood of errors.

B) OOP ensures that attributes can be made private to
prevent accidental changes from other parts of the
program.

C) OOP can lead to fewer mistakes since objects
encapsulate their own data, unlike procedural
programming where values are passed and returned.

D) OOP uses global variables extensively, which
increases memory usage.

Intended learning outcomes:

• Define and differentiate between objects and classes
in object-oriented programming (OOP), highlighting
their key components and relationships.

• Explain the role of constructors in class instantiation
and demonstrate the creation of a class with
attributes and methods.

• Instantiate objects from a class, modify their
attributes, and employ methods to manage and
manipulate object states effectively.

• Design and construct a class hierarchy
that effectively demonstrates the use of inheritance
and polymorphism.

Check for more Isaac boosters

Keep an eye out
for more student
booster events

A level Student Boosters

Isaac CS Gameboards

Thank you

	Slide 1: Object Oriented Programming
	Slide 2
	Slide 3: Intended learning outcomes:
	Slide 4
	Slide 5: OOP subject knowledge
	Slide 6: The OOP Paradigm
	Slide 7: What is an object?
	Slide 8: OOP Definitions
	Slide 9: What is a class?
	Slide 10: Class Identifiers and Attributes
	Slide 11: Getter & Setter Methods
	Slide 12: Activity 3 - Solution
	Slide 13: OOP Definitions
	Slide 14: Encapsulation
	Slide 15: Constructors
	Slide 16: Instantiation
	Slide 17: Activity 4
	Slide 18: OOP Definitions
	Slide 19: Inheritance
	Slide 20: Activity 5 - Solutions
	Slide 21: Superclasses & Subclasses
	Slide 22: Activity 6
	Slide 23: Activity 7
	Slide 24: Activity 7 Solution
	Slide 25
	Slide 26: Intended learning outcomes:
	Slide 27
	Slide 28: A level Student Boosters
	Slide 29: Isaac CS Gameboards
	Slide 30: Thank you

