Further Pure Mathematics 1

Complex Numbers

Section 1: Introduction to complex numbers

Exercise

1. Find the roots of the following equations:

(i)
$$z^2 + 25 = 0$$

(ii)
$$4z^2 + 9 = 0$$

(iii)
$$z^2 - 2z + 2 = 0$$

(ii)
$$4z^2 + 9 = 0$$

(iv) $4z^2 + 4z + 5 = 0$

2. In each of the following cases find

a)
$$z_1 + z_2$$

a)
$$z_1 + z_2$$
 b) $z_1 - z_2$ c) $z_1 z_2$ d) z_1^* e) z_2^* f) $z_1^* + z_2^*$ g) $z_1^* - z_2^*$ h) $z_1^* z_2^*$

c)
$$z_1 z_2$$

e)
$$z_2^*$$

f)
$$z_1^* + z_2^*$$

g)
$$z_1^* - z_2^*$$

h)
$$z_1 * z_2 *$$

(i)
$$z_1 = 2 + 3j$$
; $z_2 = 1 - 2j$

(ii)
$$z_1 = -2j$$
; $z_2 = 3 + j$

What do you notice about the results?

- 3. Given that $z = (a + j)^4$ where a is real, find values for a such that
 - (i) z is real,
 - (ii) z is wholly imaginary.
- 4. Given that a + bi is the conjugate of $(a + bi)^2$ find all possible pairs of values for a
- 5. Simplify and write in the form a + bj:

(i)
$$\frac{1}{3+2j} + \frac{1}{3-2j}$$

(ii)
$$3+j+\frac{4}{3-j}$$

$$(iii)\frac{3}{1-j} - \frac{2j}{2+j}$$

6. Find values for a and b given that:

(i)
$$(a + bi)(2 + i) \equiv a - 3i$$

(ii)
$$(a + j)(4 - bj) \equiv 3b + 2aj$$

- 7. By writing $(a + bj)^2 = 3 4j$, find values for a and b and hence find the square roots of 3 - 4i.
- 8. Find the values of p and q given that one root of the equation $z^2 + pz + q = 0$ is:
 - (i) 2-j

(ii) 1 - 3j

(iii) 2j

- (iv) 5 3i
- 9. Given that $\frac{5}{a+bi} + \frac{2}{1+3i} = 1$, where a and b are real, find the values of a and b.