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Introduction

In order to be able to develop their skills, knowledge and understanding in A Level Chemistry,
learners need to have been taught, and to have acquired competence in, the appropriate areas of
mathematics relevant to the subject as indicated in Appendix 5e of the specification.

The assessment of quantitative skills will include at least 20% Level 2 (or above) mathematical
skills for chemistry (see below for a definition of ‘Level 2’ mathematics). These skills will be applied
in the context of the relevant chemistry.

This Handbook is intended as a resource for teachers to clarify the nature of the mathematical
skills required by the specification, and indicate how each skill is relevant to the subject content of
the specification.

The content of this Handbook follows the structure of the table in Appendix 5e of the specification,
with each mathematical skill discussed in turn. The discussion of each skill begins with description
and explanation of the mathematical concepts, followed by a demonstration of the key areas of the
specification content in which the skill may be applied. For each skill, a number of examples are
given of where the skill is used in the context of A Level Chemistry. These examples are not
exhaustive; many skills may be used in a wide variety of contexts. Notes on common difficulties
and misconceptions, as well as suggestions for teaching, may be included in either section as
appropriate.

As this Handbook shows, all required mathematical skills can be covered along with the subject
content in an integrated fashion. However, as assessment of the mathematical skills makes up a
significant proportion of the overall assessment, OCR recommend that teachers aim to specifically
assess learners’ understanding and application of the mathematical concepts as a matter of
course, in order to discover and address any difficulties that they may have. This is particularly
relevant for learners who are not taking an A Level Mathematics qualification alongside A Level
Chemistry.

Definition of Level 2 mathematics

Within A Level Chemistry, 20% of the marks available within written examinations will be for
assessment of mathematics (in the context of chemistry) at a Level 2 standard, or higher. Lower
level mathematical skills will still be assessed within examination papers, but will not count within
the 20% weighting for chemistry.

The following will be counted as Level 2 (or higher) mathematics:
¢ application and understanding requiring choice of data or equation to be used

e problem solving involving use of mathematics from different areas of maths and decisions
about direction to proceed

e questions involving use of A Level mathematical content (as of 2012) e.g. use of logarithmic
equations.

The following will not be counted as Level 2 mathematics:

e simple substitution with little choice of equation or data and/or structured question formats
using GCSE mathematics (based on 2012 GCSE mathematics content).

As lower level mathematical skills are assessed in addition to the 20% weighting for Level 2 and
above, the overall assessment of mathematical skills will form greater than 20% of the
assessment.

© OCR 2016 v1.0 5
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MO — Arithmetic and numerical computation

MO.0 Recognise and make use of appropriate units in calculation

Learners should be able to:
e give measurements and results of calculations in the correct units
e convert between different units

e determine the units for particular constants.

Mathematical concepts

Units indicate what a given quantity is measured in. A measured quantity without units is
meaningless, although note that there are some derived quantities in chemistry that do not have
units, notably relative mass and pH.

At GCSE learners will have used various units of measurement and would be required to recognise
appropriate units for common quantities. For example, whilst cm is appropriate for a length or
distance, learners should be able to identify that cm? is used for area and cm? is used for volume.
Learners will be expected to use this skill at AS and A Level as well.

Unit prefixes indicate particular multiples and fractions of units. A full list of Sl unit prefixes is given
in Table 1, with the prefixes that are most likely to be used within the A Level Chemistry course
highlighted.

Table 1: Sl unit prefixes

Factor Name Symbol | Factor Name Symbol
10%* yotta Y 10 deci d
107" zeta Z 1072 centi c
10" exa E 107 mill m
10" peta P 10°° micro U
10" tera T 107° nano n
10° giga G 107" pico p
10° mega M 107" femto f
10° kilo k 107'® atto a
10? hecto h 107 zepto z
10" deca Da 107 yocto y

Learners would be expected to be able to convert between commonly encountered multiples
without conversion ‘facts’ being given (e.g. 1kg = 10°g).

Converting between different multiples is a matter of multiplying by the appropriate factor. When
convertingba quantity g from a factor 10° to a factor 10°, the quantity needs to be multiplied by a
factor 10°™.

For example, converting 7 mg (107 g) to kg (10° g) requires a multiplication by 103 = 107°.
So,7mg =7 x 107° kg.

6 v1.0 © OCR 2016
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In the AS and A Level assessments, candidates will be expected to be able to recognise and use
compound units in the form moldm™, rather than mol/dm?®. This can be explained mathematically
using the power laws (see Appendix A). The unit mol/dm?® is another way of saying the unit is

mol x

dm?

From the power laws

1 -
—3=X3
X

and hence

1 — =mol x dm
dm

mol x

and hence the notation moldm™.

Finding the units of a quantity may involve use of the power laws. Learners should be able to apply
laws listed in Appendix A.

Within the OCR GCE Chemistry qualifications, learners will in general be expected to use and
recognise standard Sl units. For example, dm® is used rather than | (litre), although | and ml may
be seen on glassware. Learners should be aware that

1dm’® =11

1cm®=1ml

1dm® =10° cm®
Tt:jg exception to use of Sl units is the degree (°) for angles, which is used in preference to the
radian.

Note that kelvin (K) and degree Celsius (°C) are both used for temperature. K = 273 + °C, and
temperature differences are equivalent in both units.

While the pascal (Pa) is the S| — and therefore preferred — unit of pressure, the atmosphere (atm)
is still in common usage and learners should be comfortable with both. Questions involving
pressure calculations would usually involve all quantities expressed in the same unit.

The Data Sheet gives the conversion for 1 tonne to grams. Any other conversion to or from non-
standard units that may be required in assessment would be provided in the question.

Contexts in chemistry

Amount of substance

Ensure that learners use the correct units for quantities associated with this topic. Correct use of
units for amount of substance (mole, symbol ‘mol’) and molar mass (g mol™") can aid understanding
of these often tricky concepts. Good understanding of units can in particular aid calculations, and
removes the need to learn formulae such as n = m/ M (and its inversions) by rote. A learner who is
aware of the units for amount of substance and molar mass can be shown how to deduce the
calculation for a mass of substance.

For example, a question asks to give the mass in g of 0.48 mol Ca(OH),. The molar mass of
Ca(OH), is 74.1 gmol ™.

© OCR 2016 v1.0 7
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The data provided have the units mol and gmol™'. To combine these units to give a value in g
requires the calculation

mol x gmol™' =g
So  0.48 mol x 74.1 gmol™' = 36 g (to 2 sig figs)

Once this principle is understood, it can be applied to any calculation. This method is ultimately
more reliable and powerful than using formula triangles, which may be misremembered and can
only be used for formulae that comprise three variables. A good understanding of units developed
early on in the course will also stand learners in good stead for determining units of rate and
equilibrium constants (see below), which is required at A Level.

Relative masses (isotopic, atomic, formula, molecular etc.) do not have units. For example, the
relative atomic mass of magnesium is 24.3. This can cause confusion as the relative mass
commonly has the same numerical value as the molar mass for a given species. This can lead
learners to forget the units when using molar masses.

Learners will have to be able to interconvert between units for mass (e.g. g, kg and mg) and
volume (cm®, dm® and m®). Unit conversions may be required in order to express concentration
correctly in moldm™, and will often play a part in ideal gas calculations.

Energetics

In enthalpy determination practicals, learners initially determine the energy given out or taken in in
J, using g = mcAT. This value is then used to calculate the enthalpy change for the reaction in
kJmol™". Learners must take care to convert between J and kJ in this calculation.

At A Level only, learners carry out calculations that combine entropy and enthalpy values. Here,
they must be aware that entropy values are commonly given in JK"'mol™", while enthalpy values
are commonly given in kJmol™". Again, learners must take care to convert between the units.

Kinetics and equilibria

A Level candidates will be expected to be able to give correct units for rate constants and
equilibrium constants. The units for these constants depend on the rate or equilibrium expression
in question, as well as the units used to express reaction rate and concentration (rate is normally
expressed in moldm2s™" and concentration is normally expressed in moldm™).

The units for a rate constant can be determined by solving the rate equation for k (see Section
M2.2), and substituting the units for the rate and concentration(s). The resulting expression then
needs to be given in its simplest form, which may involve use of the power laws (see Appendix A).

For example, for the equation
rate = kK[AJ{[B]

rate _ mol dm™ s

" IAPBI (ol dm*F (mol dm-)

To simplify the expression, the term ‘mol dm™ often cancels, as in
metdm ° s~ _ s
mol? dm™® xmoldm™  mol®> dm™®

n
X

= Xn—m
xm

=dm® mol?s™ because

Note that the convention in writing compound units is to put positive indices first.

Units for equilibrium constants can be determined in a similar way by substituting the units for
concentration(s) into the equilibrium expression.
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MO.1 Recognise and use expressions in decimal and ordinary form

Learners should be able to:
e use an appropriate number of decimal places in calculations
e perform calculations in standard and ordinary form

e convert between standard and decimal form, retaining significant figures.

Mathematical concepts

Decimal places in calculations

Measurements should be given to a number of decimal places appropriate to the apparatus (see
Appendix 4 of the Practical Skills Handbook). When adding and subtracting measurements, the
result should be quoted to the same number of decimal places. (Note that this is different from the
rule used when combining different types of measurement, when the result of the calculation
should be given to the lowest number of significant figures — see Section 1.1.)

For example:
25.50°C - 8.30°C = 17.20 °C; answer given to the same number of decimal places (2), not
lowest number of significant figures (3)

5.458 g + 6.349 g = 11.807 g; answer given to the same number of decimal places (3), not
lowest number of significant figures (4)

Standard form
Standard form expresses a number as a x 10°, where 1 < a < 10 and b is a +/— integer.

For example

n(NaCl) = 6.559 x 10~ mol
Some important constants in chemistry are either very large or very small. The standard form is a
convenient way of expressing these numbers. Using standard form also reduces calculation errors.

Learners are expected to be able to recognise standard form and perform calculations with
numbers given in standard form. Expression of final results in standard form is also required in
some situations.

The following expressions for the amount of substance given above are not acceptable.
0.6559 x 1072 mol

65.59 x 10~ mol

These expressions are numerically equivalent to the standard form given above, but are not
acceptable standard form.

The following equivalent expressions for the amount of substance are acceptable (unless a
response in standard form is explicitly requested).

0.006559 mol
6.559 mmol

© OCR 2016 v1.0 9
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Whatever form numbers are given in, learners must use the appropriate number of decimal places
or significant figures (as appropriate) in calculations. (A full treatment of significant figures is given
in Section M1.1.) In the context of converting between standard and ordinary form, learners must
appreciate that significant figures need to be retained. For example:

0.0050 moldm™ = 5.0 x 10~ moldm™

Here the final zero in the expression on the left is a significant figure, and so must be retained in
standard form. Situations such as the following are less clear cut:

14300 = 1.43(00) x 10*J

Here it is not clear whether the zeroes in the expression on the left are significant figures or not,
though this would normally be clear from the context where conversion to standard form was
required.

If a value such as 14 300 J emerges as the answer to a question where an appropriate number of
significant figures is required, it may be safer to convert the answer to standard form (or in this
case to kJ), so that it is unambiguous how many significant figures are being used.

Calculator use

Learners with access to a scientific calculator should be able to use it to convert between different
decimal/standard form calculations, as well as enter numbers in standard form. Table 2 shows the
required functions for common makes of calculator.

Table 2: Calculator functions for standard form

Calculator make | Convert decimal | Enter numbers in
to standard standard form

Sharp Change EXP

Casio S—D x10*

For other models encourage learners to investigate the appropriate functions for themselves.

It should be noted that calculators will not necessarily retain the correct number of decimal places
required for the calculation. For example, 3.0 x 10%is correct to 2 significant figures, but once
entered into a calculator the display could be 3 x 10%, which loses 1 significant figure.

Contexts in chemistry

There are a number of areas where learners will be required to recognise standard form. Use of
standard form may on occasion be explicitly requested, and may sometimes be the most
appropriate form to use for the answer — if it is a very big or small number, or to avoid ambiguity
regarding the number of significant figures. This is may, for example, be relevant in any area of the
specification that involves working with molar concentrations, the values for which are frequently
much smaller than 1. A few representative examples of contexts are given below.

Measuring quantities by difference

This is the main area where learners need to consider the role of decimal places in addition and
subtraction.

The most common quantities measured by difference in practical work are mass, temperature and
volume (e.g. titres). The measurements made should be recorded to a specific number of decimal
places, depending on the resolution of the instrument (see the Appendix 4 of the Practical Skills
Handbook for more on this topic). When calculating the difference between the measurements, this
number of decimal places should be maintained.

10 v1.0 © OCR 2016
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For example, a learner conducting an enthalpy investigation may record the following
measurements:

initial temperature 22.5°C
maximum temperature 29.5°C
temperature difference 7.0°C

The temperature difference is given to 1 decimal place, to match the resolution of the measured
values. The ‘0’ is significant, so must be included.

The Avogadro constant

Learners will have to use formulae involving the Avogadro constant, and use the constant to the
appropriate number of significant figures. Note that the Data Sheet value of the constant is 6.02 x
10%, i.e. to 3 significant figures.

Acids and bases

Appreciation of standard form is crucial in calculations involving concentrations of acids and bases
and/or the ionic produce of water, K,,.

Note that the Data Sheet value of K,, at 298 K is 1.00 x 10"*mol’dm™™, i.e. to 3 significant figures.

As an example, a learner may be asked to calculate the pH of water at body temperature (37 °C),
given that K,, at that temperature is 2.38 x 107"* mol?dm™™:

Ky = [H][OHT]

In water [H'] = [OH], so
Ky = [HP?

[HI* = v/2.38x10" = 1.57 x 107" mol dm™®

MO.2 Use ratios, fractions and percentages

Learners should be able to:
e calculate a percentage of an amount
e use percentages in calculations to determine related quantities, such as reacting masses

e use ratios in calculations and to construct and balance equations.

Mathematical concepts

Ratios, fractions and percentages are related concepts. Many problems within chemistry will
require learners to have a good understanding of the relationships between these concepts, and to
use them in calculations.

The individual skills required will have been covered at GCSE, but they are used in new contexts
here. While individual calculation steps based on ratio are not complicated — often requiring only a
simple multiplication — they can easily be missed in multistep calculations.

‘Percentage’ means a ‘number of parts per hundred’. As such, percentages are equivalent to
fractions with the denominator 100:
10 1

10% = — = —
100 ~ 10

© OCR 2016 v1.0 11
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In chemical contexts, percentages can often be thought of as a ratio. For example, in calculating
the percentage vyield for a reaction, the result tells us how the amount of product relates to the
amount of reagent. If the yield is 27%, then the ratio of reactant to product is 100:27.

Learners will need to use the formula for calculating x as a percentage of y:

percentage = X % 100%
y

In some circumstances, this formula needs to be rearranged. For example, given that x = 4.2 and
we know it is 38% of y, what is y? This requires the formula in the arrangement:

100x 4.2
y=—

38 = 11 (to 2 significant figures)

Contexts in chemistry

Percentage yield and atom economy
Determination of % yield or atom economy requires a simple calculation of the form:

actual yield
theoretical yield

%yield = x 100%

In more complex problems, the % yield may be given and used to calculate e.g. the required
starting amount of a reactant.

These calculations are identical in form to the more general examples given above.

For %yield calculations the quantity used for the actual and theoretical yield can be (preferably)
amount of substance, or mass, but it must be the same quantity for the two values. Problems in
these calculations generally occur in the prior conversions to amount/mass rather than in the
percentage calculation itself.

The form of the atom economy calculation is the same as for yield, but the quantity used is relative
molecular mass. It is often quicker to divide the M, of the useful product(s) by the total M, of all
products, rather than to calculate the total M, of the reagents.

Percentage composition

Understanding of percentages and ratios are both required in percentage composition problems.
These calculations usually follow a standard series of steps that learners often simply memorise;
however, fully understanding the mathematical reasoning behind the process can help learners
spot errors if they do occur, and tackle questions that approach the problem from an unfamiliar
angle.

For example, an alkane is found to contain 82.8% by mass carbon, C, and 17.2% by mass
hydrogen, H. To determine the formula of the alkane, the mathematical appreciation involved
begins with the realisation that this effectively means that a 100 g sample of the alkane contains
82.8g Cand 17.2g H.

Dividing these values by the relative atomic masses gives the amount of each element in the
sample, and thus the molar ratio: 6.9 : 17.2 mol.

This ratio needs to be converted to a neater, whole number ratio to find the empirical formula. If
both terms in a ratio are divided or multiplied by the same factor, the resulting ratio is equivalent to
the original. In first instance, it is helpful to reduce the ratio so that the smallest term is 1, which is
achieved by dividing both terms by the smallest term:

6.9 17.2

— i — . 1:25
6.9 6.9

12 v1.0 © OCR 2016
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To turn 2.5 into a whole number requires multiplying by 2; this means the 1 must also be multiplied
by 2 to maintain the ratio, giving C : H=2: 5, and an empirical formula of C,Hs. In this case, the
empirical formula is not an acceptable formula for an alkane, so the ratio must be multiplied again
by an appropriate factor to achieve a molecular formula that fits the general formula for alkenes. In
this case that is achieved by multiplying by 2 again, giving the formula C4H1,.

Balancing equations

Many methods for teaching balancing equations rely on mechanical technique that does not
require understanding. Here, we present a way to demonstrate what is happening mathematically.
The preferred approach is one where learners actually understand the processes and are left to
develop their own techniques.

The key mathematical skill is understanding times tables and the use of common factors. Take for
example the interconversion of molecular oxygen and ozone:

0, =~ 03

There are 2 atoms of oxygen on the left hand side, and 3 on the right. Mathematically speaking 2
and 3 are coprime (that is, their only common factor is 1). One side has to be adapted first to
ensure that the numbers are not coprime. For example, if we multiply the left hand side of the
equation with 2 atoms on by 3, there are now 6 atoms on the left and still 3 atoms on the left.

30, = O3

6 and 3 are not coprime, they have the common factor 2. The right hand side needs to be
multiplied by 2 to get 6. The final equation is:

30, = 203

This type of proportional is taught for some from primary school but remains a very difficult concept
to master for a lot of learners, especially those not taking mathematics at A level. A key approach
is to talk through the problem in words. For example encourage learners to say to themselves:
“What number multiplies 2 to 7?” “Err... there isn’'t one.” “So, what if we multiply 7 by 2 and use 14
instead? Now what number multiplies 2 to 14?” “Ahh, that's 7....”

Whilst this approach may seem ‘ad-hoc’ it encourages learners to actually understand the
processes rather than just following a set technique which relies little on mathematical
understanding.

Amount of substance calculations

The ratios expressed in reaction equations are crucial in correctly navigating problems that relate
to reacting masses. Learners need to understand what the numbers in a reaction equation mean.
For example, the equation

3H,SO, + 2Al(OH)3 - Alz(SO4)3 + 6H,0

Tells us that 3 mol sulfuric acid react with 2 mol aluminium hydroxide to produce 1 mol A,(SO4);.
If we have n mol Al(OH)3, the minimum amount of H,SO, required to fully react is 3/2 x n, and the
amount of Al(SO4); produced is 1/2 x n.

Using these chemical ratios in calculations is normally mathematically straightforward, but it is a
common error to forget this step.

© OCR 2016 v1.0 13
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MO.3 Estimate Results

Learners should be able to:
¢ make estimates of quantities by comparing to known reference values

e evaluate the effect of changing experimental parameters on measurable values.

Mathematical concepts

Estimating

Estimating is a valuable skill; if you are able to estimate an approximate answer to a calculation, it
is easier to spot if you have made a mistake in carrying out the actual calculation. For example the
calculation:

4.9/1.10

could be estimated as
51=5

This quick check can validate a learner’s calculated answer of 4.45. However, if the calculation
gives an answer of 0.45, the estimate will help to realise that a decimal point error has been made.

Estimating becomes easier if learners are familiar with the types of answers that are typical for a
particular situation. Volumes, for example, can be hard to visualise. However, if learners
understand that the molar gas volume (24.0 dm® at room temperature and pressure) is about the
size of a decent-sized rucksack, this can be applied in estimates in calculations. Apparatus used to
collect gas in a laboratory experiment is much smaller than this volume, so a calculation of the
amount of gas should produce a number much smaller than 1 mol.

The effect of changing parameters

In investigating the effects different parameters have on outputs a good knowledge of the rules of
mathematics is required. For example, take the fictional formula:

XY
ZxT?3

A=

The value of A will change as the variables in the formula are increased or decreased. The
following rules are useful:

e The larger the numerator (value above the line), the larger the output. So, if either X or Y
increases, A will increase.

e The larger the denominator (value below the line), the smaller the output. So, if either Zor T
increases, A will decrease.

e The reverse is true in each case.

So in summary: A changes in the same direction as variables above the line, and in the opposite
direction as variables below the line.

14 v1.0 © OCR 2016
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Contexts in chemistry

Equilibrium constants

Learners need to be able to estimate the effect of changing concentrations on the position of the
equilibrium, knowing that the value of K. stays the same. This depends on learners knowing how
to construct the expression for K;, e.g. for the equation:

N2 + 3H2 —_— 2NH3

_INH,P?
IN,JH, I°

This expression is mathematically identical to the fictional formula for A given above.

If ammonia is removed from the reaction vessel, its concentration becomes smaller and thus the
numerator decreases. This would cause the value for K. to decrease, but the value for K. must
stay the same. Therefore, the system must shift to increase the numerator and decrease the
denominator, to restore the value of K.: the position of the equilibrium shifts to the right.

This can be distilled into general principles regarding the effects of changing concentrations, but
learners must be able to explain shifts in equilibrium in terms of the effect of K..

MO.4 Use a calculator to use power, exponential and logarithm
functions

Mathematical concepts
Learners should be able to:

e use a calculator to perform calculations involving powers of numbers, exponentials and
logarithms.

The learners in your class will potentially own a wide range of calculator models, with different
ways of entering and using powers. Symbols used include ‘x”’, “10*, ‘" and ‘exp’. It is worth taking
the time to become familiar with the different models used in your class, and that learners
understand how to use these functions correctly. Also make sure they understand the different
operations for e.g.:

3.6°

and 3.6x10°

A Level learners will need to use logarithm and inverse logarithm operations for base 10 and base
e. To take the logarithm, the calculator button is usually ‘log’ for base 10 logarithms, and ‘In’ for
base e logarithms (natural logarithms).

To perform the inverse operation, some calculators use the ‘inverse’ or ‘shift’ operation combined
with the ‘log’ or ‘In’ key as required. Other calculators have separate functions for the inverse
operations, which are ‘“10* for the inverse of a base 10 log, and ‘e” for the inverse of a natural log.

Contexts in chemistry

pH
pH uses a scale of log to base 10. The equation for calculating pH is
pH = —log[H']

The pH of a solution is found applying the ‘log’ function to the value for [H'].

© OCR 2016 v1.0 15
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The inverse formula is used to calculate [H'] from pH:
[H]=10""
[H'] is found by applying ‘inverse + log’, ‘shift + log’ or ‘10* to the pH.

The Arrhenius equation

The Arrhenius equation expresses the exponential relationship between the rate constant, k, and
the temperature, T:

Kk = Ae Ea/RT

To find k, the other quantities are simply substituted into the formula. Learners must calculate the
coefficient —E,/RT first, apply the ‘e€* function (or ‘inverse/shift + In’), and then multiply the result by
the value for A.

The equation can be rearranged to produce a linear relationship:
Ink=-E,/RT+InA

The linear relationship is used to plot experimentally determined values for the rate constant
against temperature, as In k against 1/T. See Section 3 for more detail on graphs.

Learners need to be able to determine the value of the pre-exponential factor A from such a graph.
This involves reading the value of In k at the y-axis intercept, or determining the intercept
mathematically (see Section M3.3); this value is equal to In A. To determine the value for A,

[P

learners use ‘e” or ‘inverse/shift + In’.
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M1 — Handling data

M1.1 Use an appropriate amount of significant figures

Learners should be able to:
e round to a given number of significant figures or decimal places
e report calculations to an appropriate number of significant figures

¢ understand that calculated results can only be reported to the limits of the measurement
with the lowest resolution.

Mathematical concepts

Learners must understand that the lowest level of significant figures in the raw data provided for a
calculation will determine the number of significant figures that should be given in the final answer.
If there are 3 inputs to a particular calculation and they are quoted as being correct to 2, 3 and 4
significant figures, then the answer can only be quoted reliably correct to 2 significant figures.
(Note though that if the calculation only involves addition and subtraction, decimal places should
be taken into account rather than significant figures — see Section M0.1.)

In multi-step calculations, the results of intermediate steps should not be rounded.
Unrounded intermediate values should be kept in the calculator, and rounding only
performed after the final step.

Common rounding errors include:

e Forgetting to include zeroes where they are significant figures, rather than placeholders.
For example, 4.99 x 10° rounded to 2 significant figures is 5.0 x 10°, not 5 x 10°

e Confusing significant figures with decimal places. For example, giving an answer as 2.48 (2
decimal places) rather than 2.5 (2 significant figures).

¢ Rounding sequentially; for example rounding 2.4478 first to 2.45 and then to 2.5. This is
incorrect; the number should be rounded in a single step, giving 2.4 to 2 significant figures.

The number of significant figures used to express particular values ultimately derives from the
resolution of the measuring apparatus used to determine experimental values. See the Appendix 4
in the Practical Skills Handbook for more on this topic, including the appropriate number of decimal
places to use for certain apparatus.

‘Exact’ numbers in calculations have no impact on the number of significant figures required in the
results. Examples of exact numbers in chemistry include balancing numbers in equations.

Contexts in chemistry

Thinking about significant figures is important in any calculation, and learners should be particularly
aware of the meaning of significant figures when performing calculations using experimentally
determined values. A few representative examples of contexts are presented here.

Titrations

In titrations, apparatus with high resolution are used throughout. This should be reflected in the
number of significant figures used in the final answer. Rounding the final answer to a small number
of significant figures defeats the object of performing a titration.

As an example: 25.00 cm® of an unknown solution of potassium carbonate (K,CO53) is titrated with
0.100 moldm® HCL The titre is 22.70 cm®.
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According to the data provided, the result of the calculation can be given to 3 significant figures. If
asked to give the concentration of the potassium carbonate solution, the answer should be given
as 0.0454 moldm™.

Note that if the intermediate value for the amount of K,COj3 is rounded to 3 significant figures, the
final calculated value is 0.0456 moldm™. Thus, rounding in intermediate steps introduces an error.
Rounding to the appropriate number of significant figures should only be done after the final step in
the calculation.

Enthalpy determinations

This is a context where learners should take care — partially because the appropriate number of
significant figures may be lower than expected (3 significant figures can become the ‘default’ for
some learners), and partially because final answers expressed in joules can be very large. In order
to avoid the ambiguity of whether zeroes are significant or not, it may be better to use standard
form or convert to kJ.

The limiting values here would normally either be the volume of liquid or the temperature rise. If a
temperature rise of less than 10 °C is observed, using a thermometer with a resolution of 0.5 °C,
then the result of the final calculation can only be given to 2 significant figures.

M1.2 Find arithmetic means

Learners should be able to:
¢ find the arithmetic mean of a set of data in a list and in a table
e calculate weighted means

e understand the role outliers can have in a mean calculation and treat them accordingly.

Mathematical concepts

Means and weighted means
The mean is calculated using a simple formula:

X
mean = Z_
n

where Xx is the sum of the data values and n is the number of data values.

Most learners will be familiar with this from GCSE and it is best taught as a rather ad-hoc
message: ‘add them all up, divide by how many’. There are few misconceptions with this when
dealing with raw, listed data as the calculations involved are quite simple.

However, the concept of weighted means is a little more tricky, as the values to be added up are
not treated equally. Weighted means can be introduced starting from the regular mean calculation.
For example, the mean of the values 2, 4, 4, 6 is calculated as
2+4+4+6
4

4
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This could also be written as

1><2+l><4+1><4+1><6 =4
4 4 4 4

which shows that each value has an equal weighting of 1/4, or 0.25. The total weight in the
calculation must always be 1. The expression can be simplified to:

025x2+05%x4+025x6=4

What we have now is a weighted mean. The calculation produces the mean of the values of 2, 4
and 6, where the value of 4 is given twice as much weight as the other two values.

Weighted means are mainly used in chemistry when we know the percentage distribution of
values. The above calculation would be applied to find the mean of a data set in which 25% of the
values are 2, 50% are 4, and 25% are 6. The main application is in finding the atomic mass of an
element based on isotopic abundances — see example below.

Outliers and selecting data

When treating experimental data, for example in recording the mean value of a number of
measurements, learners must be able to identify outliers and decide whether exclude them from
the calculation. It should be emphasised that there is no hard and fast rule on how to deal with
outliers; they should be treated case by case. The detail of the mathematics involved to identify
outliers goes way beyond the scope of A level Chemistry.

For experiments a simple checklist is this:
e was the suspected outlier recorded in error?
e was the suspected outlier recorded in different conditions to the other values?

If the answer to any of these questions is yes, then the outlier should be omitted from the data set
and the mean should be calculated without this value. If a potential outlier is spotted at the time of
the experiment then learners should question whether the experiment should be repeated.

For standard measurements, in particular titration data, common conventions are used to
determine the measurements that should be used to calculate the mean experimental value — see
example below.

Calculator use

Many different scientific calculators have a Statistics mode where the mean can be calculated
automatically; learners studying A Level Biology may have been introduced to this mode. Whilst
these functions are incredibly useful to gain full summary statistics (standard deviation, sum of
squares, correlation coefficients etc.) the computational advantage of doing this for just the mean is
nil. Learners can use this mode but will have to press just as many buttons and therefore have the
same risk for error as if they perform the addition and division manually.

Contexts in chemistry

Calculating relative atomic mass

The relative atomic mass (A,) of an element is calculated by finding the weighted mean of the
relative isotopic masses. The weightings applied to each mass are determined by the isotopic
abundances. The more there is of a particular isotope, the more its mass contributes to the final
mean.
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For example, the relative masses and abundances for the isotopes in a sample of bromine are
given as

Isotopic mass % abundance

85 7217
87 27.83
Then
A = 85 x 7217 27.83

+87 x ——— =85.56
100 100

Examples like this could be used to demonstrate the effect of using a weighted mean. If a simple
mean of the two mass values were calculated, the result would be 86.

Note that the learners may have to extract the isotopic mass and % abundance values from mass
spectra.

Calculating a mean titre

Calculating a mean titre may involve selecting the appropriate data to use in the calculation.
Titration experiments should be repeated until results are found that are concordant, or roughly in
agreement. Titres are considered concordant when they are within 0.1 cm?® of each other. If this
cannot be achieved, the closest available values should be used to calculate the mean.

During a titration it is useful for learners to complete a results table such as this one:

Trial 1%t run 2" run 3 run
Final reading 22.90 45.40 43.05 22.55
/cm
Initial reading 0.00 22.90 20.95 0.00
/cm
Titre 22.90 22.50 22.10 22.55

Looking at the titres, the 1%t and 3" runs are concordant, while the 2" is ‘out’. The mean titre is
therefore
22.50+22.55
2

=22.525¢cm?®

N.B. This unrounded value for the mean titre should be used in further calculations.
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M1.3 Identify uncertainties in measurements and use simple
techniques to determine uncertainty when data are combined

Learners should be able to:
e appreciate that uncertainties exist when taking measurements
e determine absolute and relative uncertainties

e determine the uncertainty in the final value when adding or subtracting readings.

Mathematical concepts

When a measurement is taken there will always exist uncertainty regarding the true value. For
example, the uncertainty in a Class B 250 cm® volumetric flask is 0.2 cm®. This means that the
actual volume measured with such a flask is somewhere between 249.8 cm® and 250.2 cm®.

This uncertainty of 0.2 cm?® is the absolute uncertainty. The relative uncertainty is the ratio of the
absolute uncertainty to the original measurement. In the case of the flask already described:

0.2

250

x 100% = 0.08%

When measurements are added or subtracted, the absolute uncertainties must be added to give
the uncertainty in the combined measurement. For example, a thermometer graduated in divisions
of 1 °C has an uncertainty of 0.5 °C in each measurement. The uncertainty in a temperature
change, calculated from two measurements, is

0.5°C+0.5°C=1.0°C
Say a temperature change is measured from a room temperature measurement of 21.0°C to a
maximum temperature of 67.5 °C, then the relative uncertainty is

1'05 x 100% = 2.2%

In general, the formula for calculating the relative uncertainty in a value calculated by difference is

2 x absolute uncertainty
quantity measured

% uncertainty = x 100%

In GCE Chemistry, learners do not need to be able to combine uncertainties in more complex
operations, such as when multiplying or dividing.

Contexts in chemistry

The above principles explained through the example of volume and temperature measurements
can be applied to any experimental results. Another example is provided taking the titration results
used in Section M1.2.

The absolute uncertainty for a burette reading is +0.05 cm®. Therefore, the % uncertainty for the
titre in the 3 run is
2x0.05
22.55

x 100% = 0.4%
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M2 — Algebra

M2.1 Understand and use the symbols =, <, <<, >> > o, ~, —

Learners should be able to:
e use these symbols appropriately and correctly in their given contexts

e understand these symbols in the contexts of formulae given.

Mathematical concepts
Learners should have had exposure to the symbols =, <, <<, >> and > from an early age, and
should understand how and why they are used.

The symbol o means ‘is proportional to’. If two quantities A and B are directly proportional then the
appropriate mathematical statement is

Aox B

If the two quantities are inversely proportional then the appropriate relationship is:

Aocl
B

The symbol ~ means ‘is roughly equal to’ or ‘of the same order’. This symbol may be used in the
context of approximations made in calculations of quantities, to indicate that a formula in which an
approximation has been applied is ‘roughly equal to’ the original formula. For example in the
expression for the dissociation constant of a weak acid:

[H*@@a)® [H(aq)
[HA(aq)]-[H"(aq)]  [HA(aq)]
Here the approximation is that only a small proportion of HA dissociates, and therefore the

concentration of H* produced is negligible in the denominator. The symbol ~ indicates that the
expression following the approximation is roughly equal to the original expression.

The symbol — has a chemical rather than mathematical meaning, and is used in reaction
equations to indicate that both forward and reverse reactions are occurring in a system.

Learners will be required to understand and use these symbols as they arise in various contexts.
The more important aspect here is that learners understand the symbols when they are used;
when answering questions learners are most likely to use = and — themselves. When describing
mathematical relationships, learners would often be able to use descriptions in place of the
symbols, for example stating that one constant is directly proportional to another rather than giving
the formal mathematical statement. Conversely, learners might prefer to use symbols rather than
descriptions for reasons of brevity. This is fine, but learners must be sure to use the correct
symbol.
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Contexts in chemistry

Equilibrium
The symbols <, <<, >> and > are used to describe the meaning of the value of the equilibrium
constant, K.:

e K. > 1 means that the position of the equilibrium lies towards the products

e K, >>1 (of the order 10'°) means that the equilibrium lies fully on the side of the products —
the reaction proceeds to completion

o K. <1 means that the position of the equilibrium lies towards the reactants

e K, << 1 (of the order 107'°) means that the equilibrium lies fully on the side of the reactants
— no reaction takes place.

Note that the definitions involving >> and << are only formally required in the Chemistry B (Salters)
specification, not in Chemistry A.

Learners will need to be able to correctly interpret standard form (see Section M0.1) in this context.
For example, they will need to understand the difference between 5.6 x 108 and 5.6 x 10% in terms
of the sizes of these numbers.

Acids and bases

As noted above, the symbol ~ is frequently used in this topic to indicate approximations made in
weak acid calculations. << and >> may also be used in this context. For example, the
approximation

[H" (aq)? _ [H* (@)
[HA(aq)] - [H" (aq)]  [HA(aq)]

can be made because [HA(aq)] >> [H(aq)].

Rates

This is the main context in which learners may encounter the symbol «, in expressions for the
order of reaction. For example

rate o« [A]?

means that the rate of reaction is proportional to the square of the concentration of A. In other
words, the reaction is second order with respect to [A].

M2.2 Change the subject of the equation

Learners should be able to:

e rearrange an equation to change the subject.

Mathematical concepts

The most common equations to be rearranged can often be posed in the form of a formula triangle.
This is where three quantities a, b and c are linked by the simple relationship:

a=bc
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This is quite an easy equation to arrange for the other variables. For example dividing by b yields
the formula for c:

c=—
b

whilst dividing by c¢ will give the formula for b:

=2
(o

This mathematical principle should be familiar to learners. However, even learners who are
comfortable with this area of mathematics may struggle with its application in the science
classroom, because the equations are not presented in a familiar way. Learners may need help to
see that e.g.

mass = amount of substance x molar mass (m = nM)
is equivalent to

a=bc
and

Ink=-E,/RT+InA
is equivalent to

y=ax+b

You may wish to discuss this application of algebra with maths teachers in your school, to ensure
you can approach this skill in a way that help learners to make links between use of equations in
science and what they have previously learnt in maths.

Contexts in chemistry

Amount of substance calculations

This is the area where learners will most frequently be required to use equations in different
arrangements. Key equations that learners need to be able to manipulate include:

mass m
amount of substance = ——M— (n=—)
molar mass M
volume vV
amount of substance = (n=—-—)
molar gas volume 24.0

amount of substance = concentration x volume (n=cV)
the ideal gas equation (pV =nRT)

Note that units are important in the application of these equations, in particular for volume.
In n = ¢V the volume takes units dm?, as the concentration will take units mol dm?. In the ideal gas
equation, the volume takes units m>.

Longer, unstructured calculations may require using one or more of these equations multiple times,
in different arrangements.

Learners who are able to grasp the mathematical principle of rearranging equations in this early
stage of the course, as opposed to learning the different arrangements of each equation
individually, will be able to apply this skill more confidently in other areas.
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Rate equations
Rate equations take the form e.g.

rate = k[A]'[B]Y
Calculation of the rate constant from rate and concentration data requires straightforward
rearrangement by dividing by [A][B]":
_ rate
[A]*[B]

This is in effect the same operation as rearranging a = bc to b = a/c, but many learners will need
help spotting this.

The Arrhenius equation

Learners need to be able to determine the activation energy of a reaction from the gradient of a
graph of In k against 1/T. The value of the gradient is equal to —E,/R. Rearranging this give the
expression for the activation energy:

E. = —-R x gradient
The Arrhenius equation is provided on the Data Sheet in its exponential and linear form, and
learners are not expected to be able to convert between the two. Indeed, the rearrangement —
involving the use of natural logarithms — may be beyond learners not taking mathematics at A

Level. The conversion is provided in Appendix B for reference, and could be used as a
demonstration of principle, or for practise of rearranging skills, for more able learners.

M2.3 Substitute numerical values into algebraic equations using
appropriate units for physical quantities

Learners should be able to

e substitute values into an expression to calculate a quantity from a formula.

Mathematical concepts

Learners should be aware of the principles from GCSE Mathematics but a few misconceptions
may remain. The most common problem is their dealing with indices and negative quantities in
formulae.

The expression x%, whilst innocuous enough, can cause issues when a negative number is
substituted. Substituting x = -2 for example should be calculated as

(-2 =4
not
—2°=4
There could be lots of confusion when substituting numbers of different signs.

The expression ‘two negatives make a positive’ is often over-used. Now it is always true that two
negatives multiplied/divided equal a positive, so

-3x-5=+15
whilst if only one of them is negative then the answer is negative
2x-3=-6
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The over-use of this rule arises when addition is involved. For example:
-3+-5

Learners could think that because there are two negatives being added then they become positive
and the answer is

3+5=8

Actually for addition the changes occur only when the signs are the same in the ‘middle’ of the
sum. In the above sum one of the signs in the ‘middle’ is negative so it becomes negative. So the
above example should actually be read as ‘-3 minus 5’ which is —8. However, in the formula:

3--5

Here there are two negatives in the ‘middle’ and there it becomes a plus. Hence the sum is ‘=3 plus
5 which is +2.

Additionally, in the context of a formula such as n = ¢V learners should be aware that the
concentration is being multiplied to the volume despite the absence of a multiplication sign.

In general the laws of BIDMAS should be adhered to where the operations should be completed in
the order of Brackets, Indices, Division & Multiplication, Addition & Subtraction.

Contexts in chemistry

Enthalpy change calculations
This topic shows up a number of errors that may occur in substituting values into equations.

Hess’ law states that the total enthalpy change for a reaction is the same regardless of the route
taken. If route 1 involves a single reaction with enthalpy change A, and route 2 involves two
reactions with enthalpy changes B and C, then according to Hess’ law:

A=B+C

Substitution of enthalpy values into this type of equation is ostensibly straightforward, and the
mathematical steps involved are simple addition and subtraction, with some multiplication to take
into account the stoichiometry of the reaction. Errors may occur in particular in dealing with the
negative values.

Another form of enthalpy change calculation that is encountered early in the course is substituting
experimental values into the equation g = mcAT

This substitution is generally straightforward, though learners need to recognise that the value
calculated from this expression has the unit J, and further operations are needed to determine a
kJ mol™" value for the reaction under investigation. See Section M0.0 for more about converting
units.

Rate and equilibrium calculations

Calculations in these areas involve substituting values into rate equations and equilibrium constant
expressions. This is largely a case of inserting the correct concentration values into the expression.
Learners should take care if the concentration values used are in standard form, and if indices are
present in the expressions — errors can easily be made when inputting these calculations into a
calculator.

A worked example of a calculation of a rate constant is given in Section M2.4.
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M2.4 Solve algebraic equations

Learners should be able to:

e solve algebraic equations.

Mathematical concepts

Solving an equation usually involves substituting values into a formula and realising that there is
one unknown unaccounted for. Finding the value of this unknown is the same as solving the
equation.

In order to calculate the unknown, it may be necessary to first rearrange the equation. Skills M2.2
and M2.3 are therefore often also needed in solving equations; indeed, the three skills are rarely
encountered in isolation.

Take for example the formula:

E=U+pV
If we were to substitute some values in for E, U and p, the formula becomes an equation for V; the
only variable that remains unknown:

7=2+3V

To find V we have to ‘unlock’ what is happening to V. By this we mean we have to ‘undo’ the
operations that link V to the other numbers. First we subtract the 2 from both sides to get the 3V by
‘itself’:

5=3V
To ‘undo’ the multiplication by 3 we divide by 3 and solve the equation:

V= 2-16666...
3

Contexts in chemistry

Rate equations
The rate equation for the reaction between hydrogen and nitrogen monoxide is

rate = k[H(g)lIINO(9)J?

Calculation of the rate constant from given data involves rearranging the equation as described in
Section M2.2, allowing the equation to be solved for k:

_ rate
[H, (9)IINO(g)I*
Given data can then be substituted into the expression, e.g.:

_ 4.0x107°
k= 2
3.0x107% x (4.0x1073)

Many learners will reach for their calculators at this point, but note that the values are simple
enough that much work can be done without the calculator. The term 4.0 x 107 appears in both
numerator and denominator, and can be cancelled:

1

k:
3.0x10°%x4.0x107°
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The terms in the denominator can now be collected using the multiplicative rule:
-1
1.2x107°

This can sometimes be a more reliable way of proceeding (as long as learners are fluent in power
laws) than entering the entire expression into a calculator, as input errors are easily made.

The final division gives

k = 8.3 x 10* dm® mol? s (to two significant figures)

M2.5 Use logarithms in context with quantities that range over
several orders of magnitude

Learners should be able to:

¢ perform calculations involving logarithms

Mathematical concepts
Logarithms are basically powers. If we take the following calculation:

10% = 100

this can be expressed as

the power of 10 that gives 100 is 2

or in formal notation
IOg10 100=2

and we usually drop the 10 as it is assumed to be base 10 unless stated otherwise:
log 100 = 2

Logarithms provide a better scale when dealing with quantities that vary exponentially (get
big/small very quickly). For example, imagine sketching a graph where the scale goes from 10,
100, 1000, 10000, 100000 and so on. This would be impossible to do on a standard graph. Taking
the logarithms of these quantities gives 1, 2, 3, 4, 5, which is far more manageable to handle and
to spot trends.

The natural logarithm is denoted by In x, which is shorthand for log, x. Here e is the mathematical
constant approximately equal to 2.7182818. This number is of central importance in mathematics,
and often occurs in situations where quantities change exponentially over time. Like r, which
learners should be aware of, it is an irrational number, meaning it cannot be represented as a
repeating decimal.

A note on significant figures

In numbers expressed as logarithms, the whole number represents the power of 10, and the
decimal represents the value. So e.g. in the logarithmic number

2.86

the ‘2’ represents the power of 10, and ‘.86’ is the actual value. The whole number is thus not
significant; the number above is given to 2 significant figures, not 3.
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Given the result of a pH calculation
2.44977...

where the lowest number of significant figures in the data provided was 3, the final answer should
be given as

2.450 (3 significant figures)

Contexts in chemistry

pH calculations
Logarithms are required in calculating the pH of an acidic solution. For example, a solution with
[H'] = 0.0025 mol dm™® has pH

—-log 0.0025 = 2.60

The Arrhenius equation
Expressed as a linear relationship, the Arrhenius equation takes the form

Ink=-E,/RT+InA
which allows a manageable graph to be drawn showing the relationship between the rate constant
and the temperature (see Section M3.3).

Learners need to be able to convert data for k and T (whether provided or experimentally
determined) into the appropriate format for drawing such a graph, which includes taking the natural
logarithm of the k values.

The y-axis intercept of the graph is equal to In A. Taking the inverse log of this value gives the
value for A, the pre-exponential factor.
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M3 — Graphs

M3.1 Translate information between graphical, numerical and
algebraic forms

Learners should be able to:
¢ read, interpret and analyse data from graphs and spectra

e understand the relationship between two variables depicted on a graph in certain situations.

Mathematical concepts

There are several situations in GCE Chemistry where data may be presented graphically. Learners
should be familiar with the types of graphical representations used, the conventions for variables
used on the graph axes, and how to interpret the information provided in the graph.

Learners will need to be able to read co-ordinates for points on graphs. For some types of spectra,
it is only necessary to read the x-axis co-ordinate to find the position of a relevant peak. For many
other graph types, learners need to be able to read both x- and y-co-ordinates.

In chemistry, learners do not need an elaborate understanding of how to convert graphs into
algebraic equations, but there are a few instances where learners should be able to judge the
relationship between the plotted variables from the shape of the graph.

The following general graphs are useful for learners to know and recognise:

A graph showing a horizontal line parallel to the A
x-axis shows that the variable plotted on the y- y
axis is independent of the variable plotted on
the x-axis. In mathematical terms, this
relationship can be expressed as

y o X0

or

A
i /

y = constant

Where the constant in question is given by the
y-axis value of any point on the line.

A non-horizontal straight line shows that the
variable plotted on the y-axis is proportional to y
the variable plotted on the x-axis, or

yoX

In mathematical terms, this graph can be
expressed as:

y=mx +c
m is the gradient of the graph, and c is the < | >
value of the intercept on the y-axis. l
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A curved graph that passes through the origin
indicates that that the variable plotted on the y- y4
axis is proportional to a power of the variable
plotted on the x-axis that is greater than 1, or

y o X" where n>1

Learners will not be required to determine the
exact mathematical relationship of such
graphs.

xY

Contexts in chemistry

Interpreting and analysing spectra

Learners are expected to be able to interpret the information presented in mass, IR and NMR
spectra.

IR spectra

In IR spectra, learners must identify the position of peaks in the spectrum on the horizontal axis,
and understand the significance of the presence or absence of peaks at certain values (using
values provided e.g. in the Data Sheet). For example, the IR spectrum below has a peak at about
1720 cm™', which is a characteristic absorption for a C=0 bond, indicating that the molecule under
analysis contains a carbonyl group.

100

transmittance (%)

0+————
4000 3000

2000 | 1500 1000 500

wavenumber/cm™!

Note that the horizontal axis of IR spectra is non-standard. As in this example, the scale runs in the
‘opposite’ direction, from high to low. It is easy to get confused and think that a value to the right of
‘2000’ on the scale will be a larger number. Also, the region between 4000 and 2000 cm™' is more
condensed than the region between 2000 and 500 cm™".
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Mass spectra

In mass spectra, learners may have to identify the position of a peak on both the horizontal and
vertical axes. For example, in using mass spectral data to calculate the relative atomic mass of an
element, both the relative mass and the % abundance need to be read from the spectrum.

100
90
80
70
60
50
40
30
20 —
10 —

0

Abundance
/%

35 40 45 50 55 60 65

Relative mass

NMR spectra
Analysing NMR spectra may require:

e identification of the position of peaks on the horizontal axis; as for IR spectra, the scale runs
in the ‘opposite’ direction

¢ identification of the splitting pattern of individual peaks (proton NMR only)
e determination of peak ratios from integration traces (proton NMR only)
e understanding of the significance of each of these.

In addition to analysing spectra, learners should be able to predict aspects of spectra for a given
compound. This involves identifying certain data relating to the compound and ‘visualising’ the
resulting spectrum.

Orders of reaction and rate equations

Graphical methods can be used to determine the order of reaction with respect to a particular
reactant.

If the rate—concentration graph for reactant A in a reaction is a horizontal line, this shows that the
rate is independent of [A]. This is expressed mathematically as

rate o [A]°
[A]° = 1, so the above expression means that the rate is proportional to 1, i.e. constant. The order
of reaction with respect to A is 0.

If the rate—concentration graph for reactant B is a straight line with a positive gradient, this shows
the rate is directly proportional to the concentration of B, or

rate o [B]'

The order of reaction with respect to B is 1.

If the order of reaction with respect to C is 2, then the rate—concentration graph will be a curve.
However, many other reaction orders will give a curved graph, so the order cannot be determined
immediately from the shape of the graph. It can be determined by mathematically analysing the
graph, though learners will not be expected to do this in GCE Chemistry assessments.
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If the reaction is second-order with respect to [C] this is expressed mathematically as
rate o« [C]
Note that rate—concentration graphs for first and second order reactions must pass through the

origin. The mathematical relation between the concentration of the reactant and the rate of reaction
means that if the concentration is 0, the rate must also be 0.

First-order reactions can also be identified from concentration—time graphs through determination
of the half-life. The half-life is the time it takes for the reactant concentration to reduce by half. If the
half-life is constant throughout the reaction, i.e. measured from any point on the graph, then the
reaction is first order with respect to the reactant.

Second-order reactions could also be identified through the half-life, although this is not a
requirement in the GCE Chemistry speciifcations. In this case, the half-life will consistently double.
So, if the first half-life is 30 seconds, the second will be 60 seconds, the third 120 seconds, and so
on.

Once the orders towards all reactants have been determined, the rate equation can be
constructed. For the reactants A, B and C described above, the rate equation would be

rate = kK[A]’[B]'[C]? = k[B][CT?

As [A]’ is equal to 1 it is not included in the rate equation. [B]' is equal to [B], so the index ‘1’ is also
not included.

M3.2 Plot two variables from experimental or other data

Learners should be able to:

e plot a graph from experiment or other data on paper or in a spreadsheet, including drawing
lines of best fit

e extrapolation and interpolation.

Mathematical concepts
Plotting a graph should be a straightforward concept but the following guidelines are useful:

e Points plotted must be within 1 square of the correct value.
e Appropriate linear scale used on axes.
e Graph should make good use of available space.

e Scales should be ‘sensible’, i.e. using decimal or otherwise straightforward scale, not
increments of 0.3 or something like that.

e Scales must be chosen so that all points fall within the graph area — points must not be
plotted outside the graph area.

e Axes must be labelled, with units included.

In drawing lines (or curves) of best fit, the points plotted should not be connected. Rather, the best
smooth line must be drawn that achieves a balance of points above and below the line.

Learners must realise when lines of best fit need to be drawn through the origin; this is the case for
certain relationships, such as in rate—concentration graphs.

Interpolation is achieved through drawing lines of best fit; no formal method is required.

Extrapolation is required in some instances, for example to determine the intercept with the y-axis
or in extrapolating cooling curves. Extrapolation is achieved by extending the line of best fit to the
appropriate point.
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Contexts in Chemistry

Rates experiments
Data to be plotted would be recorded by learners themselves, or provided in a table such as below.

Time/s |30 50 80 120 180 240 350 | 470 600
[Br,]/ 0.0090 | 0.0080 | 0.0073 | 0.0067 | 0.0052 | 0.0044 | 0.0029 | 0.0020 | 0.0012
mol dm™

Suitable axis scales will depend on the size of the graph paper available, but sensible scales would

be:

e 0-700 s, with 10 s per square, for the x-axis

e 0-0.0100 mol dm™, with 0.0001 mol dm™ per square, for the y-axis.

These scales would make excellent use of space on an A4-sheet of graph paper with 2 mm

squares:

[Br,]/

mol dm-3

0.0100

0.0090 +

0.0080

0.0070

0.0060

0.0050

0.0040

0.0030

0.0020

0.0010

0.0000

100

200

300 400

Time /s

500

600

700
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Calibration curves

A calibration curve is a technique whereby a relationship is established between two variables, so
that the resultant curve can be used to establish a property of an unknown sample.

For example, in colorimetry, a calibration curve is used to establish the relationship between the
absorption of a particular wavelength of light by a solution, and the concentration of a coloured
solute. The following data might be produced for the absorption of solutions of copper(II) ions.

[Cu®*]/ mol dm™

1.57 x 107

3.94 x 107

6.30 x 107°

7.87x107°

Absorbance

0.18

0.35

0.60

0.69

Suitable axis scales would be:

e 0-8.00 x 10~ mol dm™, with 1 x 10 mol dm™ per square, for the x-axis

o 0-0.8 absorbance units, 0.01 absorbance units per square, for the y-axis.

This would produce the following calibration curve:

0.8

0.7

0.6

o
U

Absorbance
o
~

o
w

0.2

0.1

0.00

1.00

2.00

3.00

4.00

[Cu?*] / 102 mol dm™3

5.00

6.00 7.00 8.00

Note that in this case the line of best fit is drawn through the origin, which would be appropriate if
the colorimeter has been ‘zeroed’ using a reference solution without Cu** ions. Alternatively, an
absorbance reading using such a solution might be taken — in that case the line of best fit should
not pass through the origin. Learners should consider whether lines of best fit should pass through

the origin.

The calibration curve is then used to determine the concentration of an unknown solution. If such a
solution has an absorbance of 0.39, the concentration according to the line of best fit is

4.30 x 103 moldm™.
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M3.3 Determine the slope and intercept of a linear graph

Learners should be able to:
¢ find the y-intercept of a linear graph

¢ find the gradient (slope) of a linear graph.

Mathematical concepts

The straightforward way to find the y-intercept is to examine where the line of the graph crosses
the y-axis. However, this must be done at the point where x = 0 — this point is not always visible on
an appropriately drawn graph (see Section M3.1 for comments on axis scales). In such cases, the
y-intercept can be determined mathematically.

To find the gradient the following formula is useful:

gradient = rse (: ﬂ}
run AX

The ‘rise’ represents the vertical step between 2 points, and the ‘run’ represents the horizontal step
between the same two points. Both of these quantities could be negative and care has to be taken
in these cases.

The principle is that two points are taken on the line of the graph. Measuring the horizontal
distance between the points gives the run, and the vertical distance gives the rise. The division
according to the formula above gives the gradient.

When determining the gradient of a graph plotted from experimental data, the points used must be
on the line of best fit. Learners must not use two of the plotted points to determine the gradient.

Contexts in Chemistry

The Arrhenius equation

The Arrhenius equation gives an expression for the relation between the rate constant of a reaction
and the temperature. The Arrhenius equation is stated as:
-E,

k = Ae RT

Taking the natural logarithm (see Section M2.4) of both sides of the equation, allows the
expression to be written as:

Ink=—Ea +In A
RT

Both the above expressions of the Arrhenius equation are given on the Data Sheet.
This can be thought of as

In k= —éxlﬂnA
R T

c.f. y = m X+ C

Plotting In k against 1/T thus produces a straight line in which the slope (m) is equal to —E./R and
the intercept (c) is equal to In A.
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Consider for example the following graph. (Note that T is measured in kelvin.)
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The gradient should be determined from two points on the line of best fit, for example the points
indicated on the graph: (0.00314, 0.80) and (0.00352, —0.80).

rise = -0.80 - 0.80 = -1.60
run = 0.00352 — 0.00314 = 0.000380

gradient= ——00_= 421 x 10°
0.000380

The gradient is equal to —E./R so
E, = —gradient x R

= —(—4.21 x 10° x 8.314) = 3.50 x 10° J mol™' (= 35.0 kJ mol™)

(Note that E, should be calculated using the unrounded value for the gradient.)

The intercept can, in this case, not be determined graphically. The line of best fit cannot be
extrapolated to the point where it crosses the y-axis at x = 0.

In A can be calculated mathematically by rearranging the linear Arrhenius equation

In k= —5x1+ InA
R T

to

nA=lnk+Za.l
R T

and then substituting the calculated gradient value and any point from the graph, e.g.

In A=0.80+4.21 x 10° x 0.00314 = 14.0

A=123x10°

(The units for A will be the same as the units for k, and will depend on the reaction equation.)
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M3.4 Calculate rate of change from a graph showing a linear
relationship

Learners should be able to:

e calculate a rate of change from a linear graph.

Mathematical concepts

The gradient of a linear graph is always a measure of the rate of change between the two
variables. The gradient of a linear graph with formula y = mx + ¢ basically measures the rate of
change of y with respect to x. In words, the gradient expresses how quickly y changes as x
changes.

A positive gradient means a quantity that increases as x increases whilst a negative gradient is a
decreasing quantity as x increases.

The procedure for calculating a rate of change is therefore the same as for calculating the slope of
a graph, as described in Section M3.3.

Contexts in Chemistry

Rate constants

The rate constant for a first-order reaction can be determined from the rate of change of a rate—
concentration graph. This can be seen from the rate equation

rate = k[A]
which is mathematically equivalent to

y = ax
and therefore the rate constant k is equal to the gradient of the graph.
The gradient can be determined as described in M3.3.

M3.5 Draw and use the slope of the tangent to a curve as a
measure of a rate of change

Learners should be able to:
e draw a tangent to a curve at a given point

¢ find the gradient of the tangent.

Mathematical concepts

For linear graphs, the gradient is the same throughout and hence the rate of change is easy to
obtain (see previous sections). Non-linear graphs have an ever changing gradient and hence the
rate of change will change from point to point. The rate of change at a particular point can be found
mathematically using calculus, but this is not required in GCE Chemistry. Rather, a tangent is
drawn by hand and eye to approximate the instantaneous rate of change at a particular point.

To draw a tangent accurately is tricky but there are a number of useful tips that can help:
e Use a ruler and pencil. This sounds obvious, but many learners will not do this naturally.

e Line the ruler up to the point where the tangent is supposed to be taken.
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e While aligning the ruler, make sure that in the vicinity of the point none of the line of the
curve is covered by the ruler. The aim is to have all of the curve visible as the line is drawn,
otherwise the tangent will not be accurate.

Contexts in Chemistry

Rates of reaction
Below is a typical concentration—time graph for a reaction.

0.0100
0.0090 -X
0.0080

0.0070 +

0.0060 \
Concentration / 0.0050

mol dm=3 \X\
0.0040 -

\
0.0030 ¢
"\

0.0020

0.0010 T

0.0000

7(

0 100 200 300 400 500 600 700

Time /s

To find the rate of reaction at 300 s, a tangent has to be drawn to approximate the gradient (which
represents the rate) at that given time.

The gradient of the tangent is calculated as described in Section M3.3, by dividing the rise and the
run between two points.

In this instance, it makes the calculations easier to take the x and y intercepts as the two points,
which can approximately be read as (577,0) and (0,0.0071) respectively. The ‘rise—run’ calculation
then becomes:

gradient = —0.0071_ 4510
577

and hence the rate of reaction at 300s is 1.2 x 10° mol dm™ s™'. Note that while the gradient is
negative (because the reactant is being used up over time), a rate of reaction is expressed as a
positive number.
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M4 — Geometry and trigonometry

M4.1 Use angles and shapes in regular 2-D and 3-D structures

Learners should be able to:

e predict/identify shapes of and bond angles within molecules.

Mathematical concepts

Understanding shapes of molecules and bond angles is related to understanding of regular 2-D
and 3-D structures. Learners do not need the full in-depth understanding of these mathematical
principles described here in order to remember the basic facts, but it may help in their
understanding and application of the principles to unfamiliar molecules.

2-D structures
In 2-dimensional structures, or in a plane, the angle sum around a point is 360°.

If two lines emanate from a point, equally dividing the plane around that point, then each angle
around that point is 180°:

N\

-

180°

Similarly, if three lines from a point equally divide the plane, then each angle is:

@: 120°

{) 120°

This principle can be applied to any arrangement around a point in a plane.

3-D structures
Learners must also consider angles within 3-dimensional shapes.

The octahedral arrangement can be thought of as being formed by points lying on three
intersecting axes. This shows that all internal angles are 90°.

90¢
/-

The bond angles in a tetrahedron are more complicated to calculate and require trigonometry.
Learners merely have to recall the tetrahedral angle of 109.5° and do not need to be concerned
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with the calculation. It is included in Appendix C as a background reference, and could be supplied
to interested learners.

Contexts in chemistry

Structure and bonding
Learners are expected to be familiar with the following regular molecular shapes and angles:

linear (e.g. BeCl,) 180°
trigonal planar (e.g. BF;) 120°
tetrahedral (e.g. CH,) 109.5°
octahedral (e.g. SFg) 90°

Additionally, learners must understand certain molecular shapes that derive from a tetrahedral
arrangement, but where one or two of the electron pairs surrounding the central atom are lone
pairs rather than bonding pairs. This affects both the observed shape of the molecule, and the
bond angle as the lone pairs repel more strongly than bonded pairs.

In this regard, learners should be familiar with the following shapes:

pyramidal, resulting from a central atom surrounded by three bonds and one lone pair; in
NH; the bond angle resulting from the additional repulsion of the lone pair is 107°

non-linear, resulting from a central atom surrounded by two bonds and two lone pairs; in
H,O the bond angle resulting from the additional repulsion of the lone pair is 104.5°

M4.2 Visualise and represent 2-D and 3-D forms including 2-D
representations of 3-D objects

M4.3 Understand the symmetry of 2-D and 3-D shapes

Learners should be able to:
o represent the 3-D shape of molecules in 2-D
¢ identify different representations of the same molecules
e draw and identify different forms of isomers

e identify chiral centres.

Mathematical concepts

Symmetry is a notoriously difficult topic to teach. It relies entirely on a learner’s spatial awareness
and reasoning. There are a few tricks that can help learners to improve. Symmetry is a measure of
the ability of a shape to be ‘messed around’ with but still keep its essential structure the same.
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Take an equilateral triangle:

>

It displays a number of forms of symmetry.
e It has rotational symmetry: if you rotate it by 120° or 240° it looks the same.

e It has mirror symmetry: if you flip it about the vertical axis (or either of the other planes of
symmetry) it looks the same.

In the following diagram the triangle has been rotated to a different position, but its structure is still
the same. It is identical to the first triangle, only its position is different. It can be rotated to make it
look the same as the triangle above.

/\

The following triangle is not symmetrical.

L

It cannot be rotated (unless by 360°, which takes it back to the starting point) or reflected to make it
look the same. This has an effect on the nature of the mirror image of this triangle:

e

These triangles have the same position and structure. The colours are the same and in the same
positions relative to each other. But the triangle on the right cannot be rotated in such a way as to
produce the triangle on the left. The mirror images are non-superimposable.

In A Level Chemistry, learners need to apply these principles in 3 dimensions. If the 3-D shape of a
molecule lacks symmetry, then its mirror image cannot be rotated so that it will look the same as
the original (see below).

Looking at 3-D models can help to grasp the principle that molecules can be mirror images, but
cannot be rotated so that they look the same. From there, learners must apply the principle to 2-D
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representations of molecules, bearing in mind that the 2-D representation may ‘mask’ any lack of
symmetry.

Contexts in Chemistry

Organic structures

To represent any molecule on paper involves creating a 2-D representation of a 3-D shape. The
issues involved hold true for all areas of chemistry, but the use of representations of molecules is
most frequently encountered in the context of organic chemistry.

While it is possible to give a clear impression of the 3-D structure of a molecule using solid and
dashed wedge bonds:

CZ/I/}, ‘\\\\Cl Cl/”l, \\\\N H3
Pt “pt’
N W | e e
CIS trans

this is not commonly applied to full organic structures. Structural and skeletal formulae are
simplified representations, which serve to highlight the connectivity within molecules rather than
give a true impression of the 3-dimensional structure.

Structural formulae like this one:

CH,

H,c—{CH{C}—onH

CH; O

are drawn as if all bond angles around the carbon atoms are 90°, and have a planar arrangement.
This is clearly not a true representation of the actual structure. The four bonds around the carbon
atom highlighted by the blue box are in reality in a tetrahedral arrangement, with a bond angle of
109.5°. The bonds around the carbon atom highlighted by the red box have a planar arrangement
with bond angles of 120°.

Slightly different considerations apply to skeletal formulae:
NH,

OH
HO @

In this structure, all bond angles are displayed as 120°. That is correct for the carbon atoms in the
carboxylic acid groups, but not for the others, which have a tetrahedral arrangement. When
examining skeletal formulae, learners need to mentally fill in’ the implied hydrogen atoms in order
to deduce the actual arrangement around an atom.
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Isomerism
The two forms of stereocisomerism that learners are required to understand are E/Z isomerism and

optical isomerism.
E/Z isomerism

E/Z isomerism arises due to the restriction in rotation around a double bond. It occurs when the
two carbon atoms in a C=C bond are each bonded to two different groups.

The following alkanes are equivalent due to the rotation around the central C—C bond:
H;C CH, H CH3

H \C C/ H H \C C/ H
/N 7N

H3C

The single C-C bond means that rotation is possible. However, the following alkenes are
stereoisomers because no rotation is possible around the C=C bond:

H\C:C/CH3 H\C:C/H
H c/ \H H C/ \CH

There is no way we can rotate the structure on the left so that we get the structure on the right.

As is the case for structural isomers, learners must realise that different diagrams may depict the
same molecule, considering rotation of the whole molecule:

H3C\ B /CH3 H\ B /H
c=—cC c=—cC
H/ \H H C/ \CH

Here, if we rotate the molecule on the left by 180°, it looks like the molecule on the right. So, these
two diagrams depict the same molecule.
Optical isomers

Optical isomers (enantiomers) are molecules that are non-superimposable mirror images of each
other.

Optical isomers exist for molecules that have a structure that is asymmetrical. To appreciate this, it
is helpful to start with how some molecules are symmetrical:

H H H Br

| | | |
H/E\H CZ/E\CZ H/EZ\H H/EZ\H

The molecules depicted above are all symmetrical. They are depicted so that the plane of
symmetry runs down the vertical axis of each molecule. (Some have additional planes of
symmetry.) The mirror images of all of these molecules looks identical to the original.
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All of the molecules above have at least two identical groups attached to the central carbon.
When a carbon is attached to four different groups, the molecule is not symmetrical:
Br Br

| |
N O,

This molecule has no plane of symmetry. The mirror image does not look the same as the original,
and cannot be rotated in such a way to make it look the same as the original — the mirror images
are non-superimposable. Therefore, these molecules are enantiomers.

A carbon that is bonded to four different groups always results in a molecule that is asymmetrical.
Such carbon atoms are called chiral centres.

Chiral centres can be determined from 2-D representations of molecules by examining the nature
of the groups bonded to each carbon atom (this may require mentally ‘filling in’ the implied
hydrogens). For example, in this diagram the carbon highlighted with an asterisk can be identified
as a chiral centre:

OH

Transition metal complexes can also exhibit optical isomerism due to the specific arrangements of
ligands around the central ion, as in this example:

cl oy . Cl
2 2
Cl ////, \\\\N - CH2 HQT - N//I, \\\\CI
.Cr" '.Cr.‘
HNT \H—CHQ HQC—H( W,
| NH, ' 2 2 NH2|
H,C CH,
\CH2 H2C/

It is very hard to appreciate from the 2-D representation that these complexes are isomers.
Handling 3-D models is invaluable here.
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Appendix A — Key power laws

It is useful for learners to be aware of the following power laws to help in certain mathematical
skills, as referenced in the text.

X" x x™ = x™m multiplicative rule
Xn
—=x"" division rule
X
(xM)™=x" power rule
41 .
X = — reciprocal rule
Xn
XM= Rx" root rule
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Appendix B — Rearranging the Arrhenius equation

Given the exponential equation
k = Ae Ea/RT
Before we can ‘get rid of the exponential it is necessary to put the coefficient on the other side.

k
K _ g EalRT
A

Now natural logs can be taken on each side.
In 5 =- Ea
A RT

According to the log law

log (gj =logA-logB

Ink—-InA= - E,
RT

And finally

Ink=— Ea +InA
RT
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Appendix C — The tetrahedral bond angle

Take a cube of side length 2 with centre O:

A
@
o

Q

Then imagine the triangle OPQ:

R

The angle POQ is the tetrahedral angle. R is the midpoint of PQ.
The length of PQ can be calculated using Pythagoras:

V22422 =22

Therefore the length of PR is V2. The length OR is 1, because O is the centre of the cube. Hence
the triangle OPR is a right-angled triangle, and the angle POR can be found by trigonometry:

V2
/POR=tan"' "7 =tan"'y/2 ~ 54.75°

Hence the bond angle POQis 2 x 54.75 ~ 109.5°.
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