E«,FA_B ComSoc- ..

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 21, NO. 6, NOVEMBER 2017

1719

Prediction of Adverse Events in Patients
Undergoing Major Cardiovascular Procedures

Bobak J. Mortazavi

, Nihar Desai, Jing Zhang, Andreas Coppi, Fred Warner, Harlan M. Krumholz,

and Sahand Negahban

Abstract—Electronic health records (EHR) provide op-
portunities to leverage vast arrays of data to help prevent
adverse events, improve patient outcomes, and reduce hos-
pital costs. This paper develops a postoperative complica-
tions prediction system by extracting data from the EHR and
creating features. The analytic engine then provides model
accuracy, calibration, feature ranking, and personalized
feature responses. This allows clinicians to interpret the
likelihood of an adverse event occurring, general causes for
these events, and the contributing factors for each specific
patient. The patient cohort considered was 5214 patients in
Yale-New Haven Hospital undergoing major cardiovascular
procedures. Cohort-specific models predicted the likeli-
hood of postoperative respiratory failure and infection, and
achieved an area under the receiver operating characteristic
curve of 0.81 for respiratory failure and 0.83 for infection.

Index Terms— Cardiology, electronic health records, ma-
chine learning, outcomes, Prediction.

[. INTRODUCTION

HE early prediction of potential adverse events in patients
has been a primary focus of outcomes research and qual-
ity improvement efforts in patient care for heart failure [1],
readmissions [2], and a variety of other outcomes [3]. These
efforts have focused improving patient care in a wide variety
of fields, including in early detection of severe events in infants
[4], respiratory complications in surgical patients [5], and blood
transfusions in cardiac surgery patients [6], by understanding
factors leading to conditions like costly readmissions [7], septic
shock [8], and unplanned transfers to the intensive care unit [9].
These targeted models for care can help identify patient risk
factors and predictors [10], [11] as well as potentially address
costs of care [12], [13].
One major area of research focuses on surgical complications
[14], [15] and understanding the risk factors involved [16], [17]
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to predict outcomes [18], [19]. In particular, understanding com-
plications such as the risk of infection [8] and respiratory failure
[17], [20], and other outcomes post-cardiac procedures is a par-
ticular area of focus for care [21], [22] and cost [13]. Electronic
health records (EHR) have been viewed as an increasingly useful
source of data for such outcomes research across varying patient
cohorts and outcomes predictions [3], [23], [24]. Research on
EHR data has ranged from better patient history representation
[25], [26] to subtyping patient backgrounds [27] for better pre-
cision medicine applications and personalized risk predictions
[7], [10], [28]. Recent efforts have aimed at developing patient
condition scores to be used for outcomes modeling cases [29],
[30]. However, with varying EHR systems and a variety of ad-
missions criteria, it is important to understand the data available
for outcomes modeling in specific patient populations.

This work will develop a system for identifying patients un-
dergoing cardiovascular procedures at risk for postoperative
complications using preoperative EHR data. The procedures
considered are coronary artery bypass grafting (CABG), per-
cutaneous coronary intervention (PCI), and implantable car-
dioverter defibrillators (ICD), and will model postoperative res-
piratory failure and infection. This system will focus on the
extraction of all data from the time of admission to either the
start of the procedure or the end of the first twenty-four hours
of admission, whichever comes first. This time period has been
identified by the Yale-New Haven Hospital as useful for under-
standing patient risk factors and determining potential interven-
tions. The data will be extracted for use in a machine learning
framework to predict patient risk as well as identify the top
factors for that risk. Patients and clinicians can use this risk to
make better informed decisions on treatment plans with better
knowledge about the risk.

Il. RELATED WORKS
A. Electronic Health Record Models

Several works have focused on using EHR data to predict
outcomes. In [10], authors investigated the use of EHR data to
predict readmissions in heart failure patients. Authors extracted
patient information (including age, gender, marital status), spe-
cific visit information (date, duration, inpatient or outpatient
visit, and source of admission), as well as visit information
broken up into categories of patient history, labs, medications,
and the attending physicians. Using a lasso technique to select
the most relevant binary features for the statistical model, au-
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thors were able to achieve an area under the Receiver Operating
Characteristic (ROC) curve (AUC) of 0.71 and demonstrate po-
tential cost savings. This work will similarly examine the details
of EHR data. It will investigate the use of a lasso technique for
feature selection in building a logistic regression model. Given
the wide array of data types, it will also employ other methods
that are better suited for higher dimensional and varied data
types.

Work in [8] developed a real-time risk score for septic shock
using EHR data. Using the MIMIC dataset available on Phys-
ioNet, authors extracted suspicion of infection via ICD-9 codes,
used a multiple imputation approach for missing information or
unknown/censored events, and developed an advanced model
based upon Cox proportional hazards and lasso regularization
for estimating risk. This paper’s work aims to approach predic-
tion problems similarly, outlining the data extraction and de-
veloping a method to generate predictions; however, since this
work aims to evaluate predictions at a specific time, the methods
used are varied for this purpose, to leverage the cross-sectional
data since continuous data as in MIMIC is usually restricted to
intensive care units.

B. Rothman Index

The Rothman Index, by PeraHealth, is a patient condition
score based upon EHR data [29]. This score is built off of 26
variables extracted from medical record data for patients during
hospital admissions. In particular, the variables are broken up
into vital signs, laboratory tests, cardiac rhythm information,
and a variety of nursing assessments that are converted into
met/unmet variables [29]. The design of the score was to help
quantify patient condition based upon data generated by nurses
during admissions.

There are two predictive models developed using the Roth-
man Index as the primary feature [31], [32]. Work in [31] de-
veloped a predictive model for unplanned 30-day readmissions
using the Rothman Index at discharge, age, gender, insurance
type, and service type (medical or surgical). A logistic regres-
sion model built from this data had an AUC of 0.73 and the
Rothman Index score was shown to be correlated to higher odds
of readmission, with an AUC of only 0.68 when the Rothman
Index was removed. However, by removing the Rothman Index,
the model is left with only the service type for the clinical in-
formation. This work will also consider the effectiveness of the
Rothman Index as a way to summarize EHR data in a meaning-
ful manner, but will compare it with use of other clinical data
extracted from the medical records.

Work in [32] used the Rothman Index to predict unplanned
surgical intensive care unit readmissions, by evaluating the range
of Rothman Index scores generated during stays and correlating
them to the transfers. However, while evaluating the importance
of first and last Rothman Index scores, no predictive models were
built to consider the effects of a variety of Rothman Index scores
throughout the patient encounter to predict adverse events. This
work will develop predictive models for post-surgical outcomes
through a variety of modeling techniques based upon increased
Rothman Index data availability and increased EHR data avail-
ability.

Ill. METHOD

This section details the personalized predictions of postoper-
ative complications in cardiovascular procedure patients. It also
covers the extraction of data from the EPIC electronic health
record system [33] used by Yale-New Haven Hospital (Y-NHH).
The cohort consisted of patients admitted to the Heart and Vas-
cular Center (HVC) for cardiac procedures, with a primary prin-
cipal procedure code for CABG, PCI, or ICD. This study used
all data available in the EHR from February, 2013 (the go-live
date for EPIC at Y-NHH) through September, 2015. As prior
data were stored on a different EHR system, all visits from
this date forward were considered first visits. Methods con-
sidered for this work considered only data upon patient pre-
sentation at admission and collected from then forward. As a
results, no outpatient data, including emergency room visit data
that led to the admission was included, except for the source
of admission, to understand the transfer-in status of the pa-
tient. For each patient, if multiple visits occurred, only the first
visit was considered, though the lack of prior visit data lends
the methods developed to repeated use. Outcomes of respira-
tory failure and infection were defined by the Quality Variation
Indicators” ™ (QVI) developed by Yale-New Haven Hospital to
identify those patients with adverse events developed postoper-
ation, which result in poor patient outcomes and extensive cost
to the medical system [13], [34]. 111 patients passed away after
the procedure, with only 46 being within 48 hours of procedure.
This study was approved by the Yale HIC (# 1506015993).

A. Data Source

Data were extracted for each admission. Each visit’s dataset
consisted of data from admission time to either 24 hours or the
start of patient’s first procedure, whichever came first; this pe-
riod of time was believed to be long enough to gather clinically
relevant information on the patients to provide an understand-
ing of patient risk prior to the procedure that resulted in the
adverse event. Further, this aligned with clinical rounds typi-
cally happening every morning and procedures often happening
soon after admission. The desired goal, therefore, was to create
a dataset and system that would serve as a balance between
early enough for appropriate decision making and late enough
for considering a wide array of data. The following categories
of information were gathered:

1) Patient Information: Included features such as age, gen-
der, insurance, and admission information.

2) Patient History: Included information such as the
patient problem list and admission diagnosis codes
(ICD-9).

3) Visit Information: Included primary principal procedure
information, admission time, and attending staff informa-
tion.

4) Medical Information: Included medications prescribed,
laboratory results, and patient vitals, including tem-
perature, pulse oxygenation, systolic blood pressure,
diastolic blood pressure, respiratory rate, and heart
rate.

5) Rothman Index: Rothman Index scores.
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Fig. 1. Query and gathering of patient data from the EHR.
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TABLE |
DATABASE TABLE DESCRIPTIONS

Table Name Number of Columns ~ Number of Rows Description
Cohort 181 5214 Patient information, demographics, admission, accounting, and outcomes
Diagnosis 8 89988 Diagnosis information in ICD codes
Flowsheet 26 27906 192 Patient data, vitals, exams, misc. notes
Lab Results 38 2502 649 Lab results, including abnormal flags, and reference values
Medications 52 380544 Medications prescribed during admission, including name, dose, and class
Procedure Details 11 11559 Procedure details and attending physicians
Problem List 20 230278 Prior history diagnosis information
TABLEII B. Feature Extraction
PATIENT POPULATION AND EVENT RATE
Once the appropriate data were extracted from the EHR, it
Primary Procedure  Respiratory Failure  Tnfection needed to be converted into a format suitable for use in machine
learning analytics. Much of the information was stored in a one-
CABG (n = 1025) 64 (6.2%) 29(2.8%) to-many format needing manipulation. For example, in Fig. 1,
PCI (n = 2539) 53 (2.1%) 20 (0.8%) . . . . . . .
ICD (n — 1650) 41 2.5%) 25 (1.5%) medication information was stored in a fashion where a single
Total (n = 5214) 158 (3.0%) 74 (1.4%) VisitID might consist of multiple rows in the database, where

The data were extracted from the EHR data tables as in Fig. 1,
where each VisitID in the patient cohort table had a one to
many relationship with entries in each of the other tables of
the database. The data were organized in seven tables (plus a
Rothman Index Scores table), listed in Table 1. These tables
were joined from back-end tables storing data from the front-
end of EPIC. The Cohort table contained patient information,
including the admission source (e.g., self-referral, transfer from
another hospital, transfer from another unit, physician referral),
insurance information (e.g. medicare, private insurance, etc.),
and personal information (e.g. age, gender, race if provided).
The patient population included 1025 CABG patients, 2539 PCI
patients, and 1650 ICD patients. Table II shows the event rates
of respiratory failure and infection. Despite the low event rates,
these patients were adversely harmed and attributed a significant
cost to the hospital [13]. No unstructured text was extracted
from the EHR. In particular, any data that would require natural
language processing was left for future work. The data extracted
were structured data organized in the back-end data warehouse
for the EHR system, allowing for quick manipulation of fields
for feature extraction.

the medication name and pharmaceutical class fields contained
each prescribed medication information.

All categorical variables were created into distinct binary
yes/no variables for each factor. For example, the problem list
and diagnosis information for each visit were converted into
a series of binary yes/no variables for each individual ICD-9
code, lab results had a yes/no for lab conducted and results
available. The yes/no variable allows the machine learning al-
gorithm to understand if the remaining extracted lab variables,
namely numeric results and alert flags (based upon stored ref-
erence values), were missing values or reported results from a
conducted lab.

The flowsheet table contained many of the structured vital
sign information for each patient. As vitals may have been
taken multiple times between admission and procedure start
time, a time-series was generated for each variable, as was for
the Rothman Index. Features for the length of the time-series,
as well as the mean, standard deviation, minimum, and max-
imum were created as well. Since this created variable-length
time-series, each patient’s first and last readings were saved,
the windowed features calculated, then additional readings were
dropped, rather than determine an appropriate imputation. More
complex methods might find spurious patterns in the specific
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readings if improperly imputed. Time-series data were repre-
sented by first reading, last reading, number of readings, mean,
minimum, maximum, and standard deviation. For laboratory
readings, only the last laboratory reading was considered, due
to the sparse nature.

1) Grouping of Variables: The extraction of the dataset
resulted originally in 14 353 variables per patient. This set of
features included 1764 prior history variables and diagnosis
codes, 8328 variables for laboratory information, 1942 variables
for medication information, and 2319 variables for patient ad-
mission information. Thus, some dimension reduction became
necessary. The machine learning methods used (discussed below
in Section ITI-D) were selected because of their abilities to select
a sparse set of features from a high-dimensional set such as this.
Preliminary dimension reduction, however, could be done man-
ually, by changing the specificity of the features created. Taking
guidance from medical expertise as well as national registries
such as the National Cardiovascular Data Registry (NCDR)
[35], features were merged whenever clinically appropriate. For
example, the 1577 binary variables from medication/dosage in-
formation were reduced to 295 variables of medication counts
via the use of pharmaceutical class. More explicitly, rather than
have a variable for each dosage of aspirin given (125 mg vs.
165 mg), these were combined into a variable that includes just
aspirin, and this was combined further to the pharmaceutical
class of all the medications. Similar techniques were applicable
to the insurance information, race information, and laboratory
information. Prior history variables were grouped together when
known chronic condition flags were met. This reduced medica-
tion to 295 variables, grouped prior history variables, laboratory,
and others as well, by eliminating those with no variance, and
this reduction of variables resulted in a final set of 9828.

2) Missing Variables: The potential for missing data after
extraction is an important issue in EHR datasets. Data might be
missing for a variety of reasons, from the patient chose not to
disclose race information, to laboratory results that were normal
did not set the flag variables, and are dependent upon the imple-
mentation strategy and completeness in filling out the interac-
tive forms and transmitting that data to the backend databases.
In many cases, binary indicator variables can easily be imputed
with a O/no if not present for a given visit (i.e., 0 indicates either
missing or not prescribed medication, 1 is a definitive prescrip-
tion of a medication). For any missing variable that could not
similarly be coded, such as numeric vital sign information as
well as Rothman Index, it was determined that missing data
should be imputed with the mean value, since a 0 Rothman In-
dex score, for example, would indicate a severely ill patient. This
imputation occurred after the training sets and testing sets were
created, using only the training means, so that no knowledge of
the testing data was included in this calculation.

3) Normalization: After the dataset is created, it was z-
scored (centered and scaled) by subtracting the feature mean
and dividing by the feature standard deviation. If the feature
standard deviation was 0 the feature was removed entirely.

C. Validation

A cross-validation framework was setup to analyze the effec-
tiveness of the proposed methods. Many clinical papers often

Impute Train Logistic
omEiR. * Earacion  Valdaton — Misingon —- pretiction o Regresson
Training Model Model
l v v
Impute Personalized
Generate i
= Missingon —+ Prediction ™ Risk
Response

Testing
[
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Quality Variation  Top Contributing Factors
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Fig. 2. System diagram for data analytic engine.

use a single 80/20 random split to create their training and
testing datasets [1], [2]. This work used a five-fold stratified
cross-validation in order to create similar 80/20 splits and main-
tain the observed event rate in each fold. The imputation steps
as well as the normalization, indicated above, were carried out
after the folds were created, with the training means being used
to impute both the training set and the testing set alike, and the
training means and standard deviations being used to normal-
ize the training set and the testing set. The system layout for
validation is represented in Fig. 2.

D. Data Analytic Engine

Once the training set was created, it was passed to three
different modeling techniques. Those techniques were logistic
regression with lasso regularization (a form of generalized lin-
ear model), random forest, and gradient descent boosting. The
analysis was carried out in R, with the glmnet being the cho-
sen implementation for the logistic regression and generalized
linear model approach (hereafter GLM) [36], randomForest for
the random forest algorithm (hereafter RF) [37], and xgboost
or eXtreme Gradient Boosting as the implementation of a gra-
dient descent boosting method chosen (hereafter XGB) [38]
respectively. These techniques were selected due to their ability
to select a sparse set of features while training, to avoid over-
fitting, and further reduce the dimensionality of the problem,
where applicable. Further, GLM is commonly used in clinical
practice and outcomes research, linking to similarity in related
works, while RF and XGB are particularly good at dealing with
data of mixed types such as these, by setting differing thresh-
olds in each particular decision tree. Further, as these last two
are non-linear methods, they might provide stronger results than
linear methods commonly used in clinical outcomes research.

1) Hyperparameter Tuning: For GLM, an internal cross-
validation on the training data was run in order to tune the
algorithm hyperparameters, with the AUC being the optimized
measure. Sample weights were provided, where the weight for
each adverse event example was the ratio of dataset size to
number of adverse outcomes (the inverse of the event rate). The
default parameters were selected for RF, and XGB was tuned
using a grid-search for the number of iterations (100 to 1000 in
100 step-size increments) and the maximum depth of each tree
(5 to 10) in an internal cross-validation.

E. Prediction

Models were trained on the entire dataset as well as created by
patient cohort and outcomes splits. Once trained, each algorithm
generated a response for the test set. This response was a gen-
erated probability of a postoperative complication, rather than a
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strict label output. From this, an ROC curve plot allowed calcu-
lation of an AUC. AUCs are often reported in clinical prediction
models [1], due to the measure being unaffected by class im-
balance [39]. However, to understand how such models would
be used prospectively, more information should be presented
regarding the predictive accuracy. After the models and AUCs
were generated, an optimal threshold probability was selected
to generate the classification labels. The threshold selected was
that which maximized the F-score. A further discussion of the
optimal point is left for Section VI. From this classification,
the true positives, true negatives, false positives, and false nega-
tives were calculated and from that an F-score. Finally, a further
metric was calculated regarding the precision of the top 20 pre-
dictions, to see if all the true positives are captured in the riskiest
patients predicted as a numeric measure for how well calibrated
the algorithm is. The 20 were selected based upon the total num-
ber of adverse events in each sub-group, knowing that a subset
of these would exist in each fold, and to evaluate if creating a
larger interval would account for all the true positives or not.
This value can be altered to highest deciles of risk, quartiles,
and the definitions should be created in consulation with the
clinical professionals involved to understand their desires of
evaluating “high-risk’ patients. For all the measures, the mean
and 95% confidence intervals were calculated. Calibration plots
were also created for the best models generated.

F. Personalized Risk Factors

The ability to interpret model predictions is highly desirable
for clinicians, and to potentially help determine risk factors re-
sulting in the prediction and potentially helping determine inter-
ventions or actions that might prevent the postoperative compli-
cation. While the models provided the selected global features,
feature importance was extended to provide patient-specific re-
sults. Namely, GLM provided a vector of ﬁ = (61, 52,...)
coefficients for each parameter, which provide the global fea-
ture importance and where the length of the vector is equal
to the number of features (and a large number are O for non-
selected features). For every test patient & = (xy,x2,...) the
component-wise multiplication of the two vectors results in
a feature-contribution vector fTCLt) = (01 X 21,02 X T2, ...)
whose components are then summed together by GLM for the
resulting prediction. Sorting these components then provided
the clinicians with the top contributing factors of risk for each
individual patient.

IV. RESULTS
A. Test Framework

The analysis presented in Sections III-D, III-E, and III-F was
run on the five-fold cross-validation dataset. As a reminder, all
data were used from the admission time until either the first pro-
cedure start or 24 hours, whichever came first. All time-series
based features used considered all available data in this window.
In order to evaluate the effectiveness of all the features generated
from the EHR, and to compare against methods previously gen-
erated using the Rothman Index [31], [32], the following four
Rothman tests [31], [32], as well as two configurations with

the data extracted in this paper, were created, over the same
extraction window as the remaining data:

1) Rothman Index test using patient demographics, history,
insurance, and the earliest Rothman Index - hearafter
‘eRI’.

2) Rothman Index test using eRI as well as mean, standard
deviation, minimum, and maximum - hereafter windowed
‘eRI’.

3) Rothman Index test using patient demographics, history,
insurance, and the latest Rothman Index - hearafter ‘las-
tRI.

4) Rothman Index test using lastRI as well as mean, stan-
dard deviation, minimum, and maximum - hereafter ‘win-
dowed lastRI’.

5) EHR dataset - all extracted features without the Rothman
Index features - hereafter ‘EHR-RI’.

6) Complete EHR Dataset - all extracted features including
the Rothman Index features - hereafter 'TEHR’.

B. Single Model Tests

The first tests designed were run in order to validate the
effectiveness of separating patients by procedures as well as
outcome. Table III shows the best single model AUC and the
model type that generated it for each test type and patient cohort.
Further, the final two columns show the mean F-score and mean
precision of the top 20 generated risk scores. While the top 20
precision is likely increased due to the larger number of cases to
train and test on, the lower AUC indicates that only the highest
risk is well identified. Indeed, the similar F-scores show that,
even with high precision, recall is affected, and that only the
highest risk patients are well identified. It became clear that
some prediction results were strengthened by specifying the
patient population, likely due to the different risks associated
with each procedure type. The remainder of the tests evaluated
the hypothesis that multiple models should be developed for
the prediction of postoperative complications for the patient
procedures due to the patient heterogeneity in each case.

C. Respiratory Failure

Models were created separately for CABG patients, PCI pa-
tients, and ICD patients to predict respiratory failure. The results
for each can be found in Tables IV, V, and VI, respectively. For
each test case, GLM, RF, and XGB models were created, with
the strongest model’s mean AUC and mean F-score over cross-
validation presented. The mean precision of the top 20 predicted
risks are also presented to present an interpretation of model cal-
ibration independent of the cutoff threshold selected to generate
the F-score. This means that, for the top 20 patients when sorted
by outputted risk score, the precision was then calculated on
these patients only.

1) CABG Patients: Note that for CABG patients, in Ta-
ble IV, using the windowed information of the Rothman Index
provided a higher AUC (mean AUCs 0.59 and 0.58 for win-
dowed eRI and windowed lastRI respectively). Using the last
Rothman Index helped provide higher F-score for an F-score
of 0.22 for windowed lastRI. In all cases, the use of EHR data
provided higher AUC (0.60 for both cases) but a slightly lower
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TABLE Il
BEST MEAN AUC (AND MODEL THAT GENERATED IT) FOR PREDICTING POSTOPERATIVE COMPLICATIONS

Test Configuration Rothman EHR-RI EHR Mean F-score  Mean Top 20 Precision
eRI, windowed eRI, lastRI, windowed lastRI
All Patients 0.62(GLM)  0.62 (GLM) 0.62(GLM) 0.62(GLM) 0.66 (GLM)  0.66 (GLM) 0.36 0.68
CABG Patients 0.59 (RF) 0.59 (GLM) 0.59 (RF) 0.60 (RF) 0.61 (RF) 0.61 (RF) 0.39 0.43
PCI Patients 0.62 (GLM)  0.64 (GLM)  0.65(GLM)  0.65 (GLM) 0.65 (RF) 0.67 (GLM) 0.30 0.37
ICD Patients 0.64 (GLM)  0.66 (GLM)  0.66 (GLM)  0.65 (GLM) 0.66 (RF) 0.67 (RF) 0.34 0.36
TABLE IV

BEST MEAN AUC (95% CONFIDENCE INTERVAL (Cl), MODEL) FOR
PREDICTING RESPIRATORY FAILURE IN CABG PATIENTS

Test Mean AU C (95% CI - Mean F-score Mean Top 20
Configuration Model) Precision
eRI 0.57 (0.51-0.64, RF) 0.22 (0.15-0.29) 0.00
windowed eRI 0.58 (0.50-0.66, RF) 0.20 (0.14-0.26) 0.00
lastRI 0.59 (0.48-0.70, RF) 0.18 (0.11-0.24) 0.00
windowed lastRT 0.58 (0.50-0.66, RF) 0.22 (0.13-0.30) 0.00
EHR-RI 0.60 (0.53-0.68, XGB) 0.18 (0.11-0.25) 0.07
EHR 0.60 (0.56-0.65, GLM) 0.20 (0.12-0.27) 0.07

TABLE V
BEST MEAN AUC (95% CONFIDENCE INTERVAL (Cl), MODEL) FOR
PREDICTING RESPIRATORY FAILURE IN PCI PATIENTS

Test Mean AU C' (95% CI - Mean F-score Mean Top 20
Configuration Model) Precision
eRI 0.62 (0.53-0.71, GLM) 0.12 (0.01-0.22) 0.04
windowed eRI 0.63 (0.45-0.81, XGB) 0.15 (0.05-0.24) 0.07
lastRI 0.66 (0.59-0.73, GLM) 0.19 (0.10-0.28) 0.11
windowed lastRI  0.67 (0.48-0.85, XGB) 0.17 (0.07-0.27) 0.08
EHR-RI 0.80 (0.70-0.90, RF) 0.24 (0.11-0.37) 0.00
EHR 0.81 (0.70-0.92, RF) 0.25 (0.12-0.37) 0.00

TABLE VI
BEST MEAN AUC (95% CONFIDENCE INTERVAL (CI), MODEL) FOR
PREDICTING RESPIRATORY FAILURE IN ICD PATIENTS

Test Mean AU C' (95% CI - Mean F-score Mean Top 20
Configuration Model) Precision
eRI 0.75 (0.67-0.83, GLM) 0.20 (0.17-0.24) 0.00
windowed eRI 0.76 (0.76-0.85, GLM) 0.24 (0.20-0.27) 0.00
lastRI 0.73 (0.58-0.87, GLM) 0.27 (0.23-0.32) 0.00
windowed lastRT  0.76 (0.66-0.86, GLM) 0.24 (0.21-0.28) 0.00
EHR-RI 0.79 (0.65-0.94, RF) 0.30 (0.14-0.46) 0.00
EHR 0.78 (0.64-0.93, RF) 0.27 (0.15-0.40) 0.00

F-score (0.18 and 0.20 for EHR-RI and EHR respectively). The
EHR-RI and EHR had a more defined high-risk group with the
top 20 measure of 0.07 in both cases. While the best CABG
model was GLM, the similar AUC across each data configu-
ration and each method indicates that linear models performed
sufficiently well, and further investigation is necessary to un-
derstand why RF and XGB did not provide better results. For
the model with the highest F-score, the EHR model, the features
selected in each fold can be found in the supplement material.
These features were sorted by largest absolute coefficient in

GLM, largest mean decrease in accuracy as ranked by RF, and
by model information gain, in XGB, and the top features are
listed here:

1) Fold 1: Respiration Rate, Prior History: Hypovolemia,
Lab: Blood Urea Nitrogen (BUN) is High, Primary Di-
agnosis: Coronary Atherosclerosis of Native Coronary
Artery.

2) Fold 2: Prior History: Hypovolemia, Lab: Prothrombin
Time is Abnormal, Lab: MCH is unspecified.

3) Fold 3: Earliest Respiration Rate, Lab: Albumin, Prior
History: Hypovolemia, Lab: Albumin.

4) Fold 4: Earliest Heart Rate, Prior History: Hypovolemia,
Lab: PO2 Arterial, Med: Serotonin-2 Antagonist, Patient
Demographics: Race - Other, Primary Diagnosis: Coro-
nary Atherosclerosis of Native Coronary Artery.

5) Fold 5: Prior History: Other or Unspecified Hyperlipi-
demia, Primary Diagnosis: Coronary Atherosclerosis of
Native Coronary Artery.

As described in Section III-B, the flags and thresholds are
predetermined by the laboratory and defined within the table in
EPIC.

2) PCI Patients: All models for PCI patients, presented in
Table V, were able to better predict respiratory failure than in
CABG patients or in ICD patients. Similar to CABG patients,
using the windowed information of the Rothman Index provided
a higher AUC than the single measure (mean AUCs 0.63 and
0.67 for windowed eRI and windowed lastRI respectively). Us-
ing the last Rothman Index helped provide higher F-score for
an F-score of 0.19 for lastRI. In all cases, the use of EHR data
provided significantly higher AUC measurements from both the
single model for PCI patients (0.67) and any of the Rothman
Index test cases, with an AUC of 0.80 for EHR-RI and 0.81 for
EHR. Similarly, the F-score for these two cases were higher as
well, at 0.24 and 0.25 respectively. However, none of the cases
performed well in the top 20 precision measure. For the model
with the highest F-score, the EHR model, the top features are
listed here:

1) Fold 1: Prior History: Acute Respiratory Failure, Med:
Analgesics Narcotic- Anesthetic Adjunct Agents, Lab:
ECG - P Axis, Lab: Glucose Meter is Low, Prior His-
tory: Acute Myocardial Infarction of Inferolateral Wall
Episode of Care Unspecified.

2) Fold 2: Med: Analgesics Narcotic- Anesthetic Adjunct
Agents, Med: IV Solutions - Dextrose Water, Prior His-
tory: Acute Respiratory Failure, Admit Source: Self Re-
ferral, Lab: MCHC.
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3) Fold 3: Med: Analgesics Narcotic- Anesthetic Adjunct
Agents, Prior History: Acute Respiratory Failure, Lab:
ECG - P Axis, Lab: CO2, Lab: Glucose Meter is
Low.

4) Fold 4: Prior History: Acute Respiratory Failure, Lab:
CO2, Prior History: Cardiogenic Shock, Lab: MCHC,
LAB: Bun to Creatinine Ratio.

5) Fold 5: Med: Analgesics Narcotic- Anesthetic Adjunct
Agents, Med: IV Solutions - Dextrose Water, Lab: Glu-
cose Meter is Low, Lab; B-type Natriuretic Peptide
ProBNP is Abnormal, Lab: Bands Present is Abnormal.

3) ICD Patients: ICD patient respiratory failure predic-

tions, presented in Table VI, were improved over the single
model AUC of 0.67 from Table III. The Rothman Index models
performed better than the single model case, as well, with the
windowed eRI and windowed lastRI each achieving the higher
AUC of 0.76. Using the last Rothman Index score improved the
F-score of the models to 0.27. The EHR-RI and EHR models
performed the best, with the RF models achieving an AUC of
0.79 and 0.78 respectively and F-scores of 0.30 and 0.27 re-
spectively. For the model with the highest F-score, the EHR-RI
model, the top features are listed here:

1) Fold 1: Prior History: Acute Respiratory Failure, Primary
Diagnosis: Acute on Chronic Systolic (Congestive) Heart
Failure, Primary Diagnosis: Combined Systolic and Di-
astolic Heart Failure - Acute on Chronic, Admit Source:
Self Referral, Med: Sodium-Saline Preparations.

2) Fold 2: Primary Diagnosis: Systolic Heart Failure - Acute
on Chronic, Prior History: Acute Respiratory Failure, Ad-
mit Source: Physician or Clinical Referral, Admit Source:
Self Referral, Lab: Glucose Meter.

3) Fold 3: Prior History: Acute Respiratory Failure, Primary
Diagnosis: Systolic Heart Failure - Acute on Chronic, Ad-
mit Source: Self Referral, Primary Diagnosis: Combined
Systolic and Diastolic Heart Failure - Acute on Chronic,
Lab: Lactate.

4) Fold 4: Admit Source: Self Referral, Admit Source:
Emergency, Primary Diagnosis: Systolic Heart Failure
- Acute on Chronic, Prior History: Intermediate Coro-
nary Syndrome - Unstable Angina, Lab: ECG T Wave
Axis.

5) Fold 5: Prior History: Acute Respiratory Failure, Primary
Diagnosis: Systolic Heart Failure - Acute on Chronic, Ad-
mit Source: Self Referral, Primary Diagnosis: Combined
Systolic and Diastolic Heart Failure - Acute on Chronic,
Lab: Potassium is High Panic.

D. Infection

Results for the models developed for infection are presented
in Table VII for CABG patients, Table VIII for PCI patients,
and Table IX for ICD patients, respectively.

1) CABG Patients: Models on CABG patients, in Ta-
ble VII, using the windowed information of the Rothman Index
did not provide the higher AUC, which was achieved by eRI at
0.67. Windowed eRI had the same AUC, however, provided a
tighter confidence interval as well as provided a higher F-score

TABLE VI
BEST MEAN AUC (95% CONFIDENCE INTERVAL (Cl), MODEL) FOR
PREDICTING INFECTION IN CABG PATIENTS

Test Mean AUC' (95% CI - Mean F-score Top 20 Precision

Configuration Model)
eRI 0.67 (0.50-0.85, GLM) 0.32 (0.14-0.50) 0.12
windowed eRI 0.67 (0.54-0.80, RF) 0.41 (0.24-0.58) 0.00

lastRI 0.65 (0.50-0.80, GLM) 0.32(0.22-0.43) 0.11

windowed lastRI 0.65 (0.52-0.79, RF) 0.40 (0.23-0.58) 0.00
EHR-RI 0.66 (0.54-0.77, RF) 0.29 (0.21-0.38) 0.00
EHR 0.67 (0.53-0.81, RF) 0.29 (0.19-0.39) 0.00

TABLE VI
BEST MEAN AUC (95% CONFIDENCE INTERVAL (Cl), MODEL) FOR
PREDICTING INFECTION IN PCI PATIENTS

Test Mean AUC' (95% CI - Mean F-score Top 20 Precision

Configuration Model)

eRI 0.72 (0.54-0.89, XGB) 0.10 (0.00—0.20) 0.03
windowed eRI 0.71 (0.54-0.88, XGB) ~ 0.11 (—0.05-0.27) 0.01
lastRI 0.64 (0.43-0.84, XGB)  0.10 (—0.01-0.27) 0.02
windowed lastRI  0.61 (0.54-0.88, XGB)  0.13 (—0.06-0.21) 0.02
EHR-RI 0.81 (0.66-0.95, XGB) 0.12 (0.04-0.21) 0.03
EHR 0.83 (0.72-0.93, XGB) 0.14 (0.04-0.23) 0.04

TABLE IX
BEST MEAN AUC (95% CONFIDENCE INTERVAL (Cl), MODEL) FOR
PREDICTING INFECTION IN ICD PATIENTS

Test Mean AUC' (95% CI - Mean F-score Top 20 Precision

Configuration Model)

eRI 0.56 (0.46-0.67, GLM) 0.06 (0.01-0.11) 0.02
windowed eRI 0.68 (0.52-0.85, GLM) 0.17 (0.06-0.28) 0.06
lastRI 0.64 (0.50-0.77, GLM) 0.11 (0.05-0.18) 0.03
windowed lastRI  0.67 (0.53-0.81, GLM) 0.16 (0.10-0.21) 0.00
EHR-RI 0.78 (0.65-0.91, RF) 0.16 (0.10-0.23) 0.00
EHR 0.78 (0.64-0.92, RF) 0.18 (0.11-0.25) 0.00

at 0.41. The additional EHR data did not provide any improved
AUC or F-score, and had a reduced top 20 precision of 0.00
down from 0.12. For the model with the highest F-score, the
EHR model, the top features are listed here:

1) Fold I: Prior History: Congestive Heart Failure - Unspec-
ified, Present On Admission: Respiratory Failure, Present
on Admission: Sepsis, Admit Source: Self Referral, Lab:
INR.

2) Fold 2: Prior History: Congestive Heart Failure - Un-
specified, Lab: Anion Gap, Med: Solvents, Present On
Admission: Respiratory Failure, Med: Heparin.

3) Fold 3: Prior History: Unspecified Glaucoma, Primary
Diagnosis: Unspecified Septicemia, Present On Admis-
sion: Respiratory Failure, Med: Sodium-Saline Prepara-
tions, Lab: Partial Thromboplastin Time is High Panic.

4) Fold 4: Prior History: Congestive Heart Failure - Un-
specified, Present On Admission: Respiratory Failure,
Lab: PH UA is Abnormal, Lab RDW, Lab: Amorphous
is Abnormal.
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5) Fold 5: Prior History: Congestive Heart Failure - Un-
specified, Med: Sodium-Saline Preparations, Present On
Admission: Respiratory Failure, Admit Source: Self-
Referral, Present on Admission: Severe Sepsis.

2) PCI Patients: Models on PCI patients, presented in Ta-
ble VIII, were able to better predict infection than in CABG
patients or ICD patients. Similarly to CABG patients, using the
earliest Rothman Index provided a higher AUC (0.72). In all
cases, the use of EHR data provided significantly higher mea-
surements from both the single model for PCI patients (0.67)
and any of the Rothman Index test cases, with an AUC of 0.81
for EHR-RI and 0.83 for EHR, as well as an F-score of 0.12
and 0.14 respectively. The top 20 precision measurements were
higher for PCI patients as well, as a measure of identifying high
risk patients. For the model with the highest F-score, the EHR
model, the top features are listed here:

1) Fold 1: Admission: Age, Med:Adrenergic Vasopressor

Agents, Lab: Enterovirus by RT-PCR Stool is Abnormal,
Lab: POC Activated Clotting Time is Abnormal, Med:
Anithypertensives.

2) Fold 2: Admission: Age, Lab: Albumin (EP) Urine Ran-
dom is Abnormal, Med: Antivirals, Lab: Activated Pro-
tein C Resistance is Abnormal, Lab; Cortisol Plasma is
Abnormal.

3) Fold 3: Admission: Age, Lab: Fibrinogen Level, Lab:
Vitamin D 25 Hydroxy is Abnormal, Lab: HCV Quanti-
tative Log is Abnormal, Prior Coverage is Other.

4) Fold4: Admission: Age, Prior History: Acute Respiratory
Failure, Lab: POC Appearance UA is Abnormal, Lab:
Fluid Culture, Lab: POC Leukocytes UA is Abnormal.

5) Fold 5: Admission: Age, Lab: Antibody Identification is
Abnormal, Lab: Protein Creatinine Ratio Urine Random
is Abnormal, Lab: Cocaine Screen Urine, Med: Folic
Acid.

3) ICD Patients: ICD patient infection predictions, pre-
sented in Table IX, were improved over the single model AUC
of 0.67 from Table III. The Rothman Index models performed
better than the single model case, as well, with the windowed eRI
and windowed lastRI achieving AUCs of 0.68 and 0.67. Win-
dowed eRI had the highest F-score of 0.17. The EHR-RI and
EHR models performed the best, with the RF models achieving
an AUC of 0.78 and 0.79 respectively and F-scores of 0.16 and
0.18 respectively. No model had top 20 precision. For the model
with the highest F-score, the EHR model, the top features are
listed here:

1) Fold 1: Primary Diagnosis: Combined Systolic and Di-
astolic Heart Failure - Acute on Chronic, Lab: Absolute
Lymphocyte Count, Lab: Glucose Meter, Med: Sodium-
Saline Preparations, Lab: International Normalization
Ratio (POC).

2) Fold 2: Primary Diagnosis: Combined Systolic and Di-
astolic Heart Failure - Acute on Chronic, Lab: Bilirubin
Total, Lab: Absolute Lymphocyte Count, Admit Source:
Self Referral, Lab: Glucose Meter.

3) Fold 3: Primary Diagnosis: Systolic Heart Failure - Acute
on Chronic, Admit Source: Self Referral, Primary Di-
agnosis: Combined Systolic and Diastolic Heart Failure

Calibration of Model for Respiratory Failure in PCI Patients
7.00

6.00

5.00

% 4.00
g
3.00
H
2.00
1.00
oog: | Quartile 1 Quartile 2 | Quartile 3 | Quartile 4
& Observed 0.00 0.40 0.99 6,46
® predicted 0.00 010 113 6,63
Fig. 3. PCI patient observed respiratory failure rate per quartile of risk.

- Acute on Chronic, Med: Sodium-Saline Preparations,
Lab: ECQ QT Interval.

4) Fold 4: Primary Diagnosis: Systolic Heart Failure - Acute
on Chronic, Admit Source: Self Referral, Primary Diag-
nosis: Combined Systolic and Diastolic Heart Failure -
Acute on Chronic, Admit Source: Physician or Clinic
Referral, Med: Sodium-Saline Preparations.

5) Fold 5: Primary Diagnosis: Systolic Heart Failure - Acute
on Chronic, Primary Diagnosis: Combined Systolic and
Diastolic Heart Failure - Acute on Chronic, Lab: Inter-
national Normalization Ratio POC, Admit Source: Self
Referral, Admit Source: Physician or Clinic Referral.

E. Calibration and Personalized Risk

Understanding the factors behind the risk and outcome pre-
dicted is equally important to an accurate model. Thus, the sys-
tem provided model calibration plots to better interpret patient
risk. One such plot, for the model generating respiratory failure
risk for PCI patients, is shown in Fig. 3. The calibration plot
was created by sorting the probabilities generated by the model
for the outcome into quartiles, then comparing the observed
rate of respiratory failure to the mean risk for all predictions in
each quartile. As shown in Fig. 3, quartile 1 has no observed
respiratory failure predictions, thus, the high F-score of 0.25
and AUC of 0.81, despite the 0.00 Top 20 precision measure.
This indicated that, while the model was able to generate a high
risk group (quartile 4), the stratification within that group had
room for improvement. Such calibration plots allow clinicians
to better interpret the accuracy measurements generated by the
models to understand underlying risk.

Further, along with the generated model accuracy, predic-
tions, and calibration plots, the important features that generate
the risk for a given patient were important in determining a
cause and potential intervention. While each method provided
a global list of important features, how each feature contributes
to an individual’s total risk score should be understood. Thus,
the system generates an identification of which risk quartile the
patient lies within, as well as the personalized response to the
GLM model, as detailed in Section III-F. As an illustrative ex-
ample, the GLM for the PCI respiratory failure, which achieved
amean AUC of 0.76 used the following features:
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1) Lab 1 - Blood Urea Nitrogen is High - 8 = 0.0910.

2) Lab 2 - Anion Gap is High - 5 = 0.1124.

3) Med 1 - Anti-Hyperlipidemic - HMG COA Reductase
Inhibitors Given - § = —0.0142.

4) Primary Diagnosis - Coronary atherosclerosis of native
coronary artery - § = —0.2751.

Consider the following two patient feat vectors. The pa-
tient risk for patient x; was 0.61 while the patient risk for
patient x5 was 0.62. Both patients did, indeed, have res-
piratory failure, as correctly indicated by the model. How-

_

ever for 1, feat(z;) = (0.273,0.337,—0.014, 0) while for x5,

—_—
feat(xs) = (0.273,0.337, —0.028, 0). This specific level of in-
formation illustrated the top contributors to the patient’s specific
risk score were, which could be extremely important in cases
where the models might select hundreds of variables. In this par-
ticular case, the second patient had had more medication than
the first, slightly increasing the predicted risk. The validation
of the usefulness of this aspect of the system is left for further
discussion in Section VI.

V. DISCUSSION
A. Single Model Results

The results showed an interesting distribution of strengths
and areas of necessary improvement. Having all patients to-
gether confounded the results, achieving low AUCs despite the
methods employed and high top 20 precision. The added data
did not appear to help for most patients. Thus, such settings
were only ideal for identifying those at highest risk. Table III
shows that evaluating each group individually lead to a better
understanding of strengths and weaknesses. In particular, PCI
and ICD patients improved over the all patients model, while
CABG patients were reduced. Further work is necessary to un-
derstand if those individual CABG patients were better predicted
by the all patients model, but it is likely that they were simi-
larly missed there. Thus, separating models into individual ones
for each patient group achieved greater success, enabling more
specific results in future interventions. The system used the best
available model knowing the particular patient. Understanding
how this might change throughout the course of an intervention
is left for Section VI.

B. Cohort-Specific Features and Results

For the respiratory failure and infection models, significant
improvement was seen in the PCI patients and ICD patients.
These models saw significant improvement by separating out
the patient cohorts as well as incorporating the spectrum of
EHR data selected. In these cases, the Rothman Index tests,
with fewer variables, were well modeled by GLM, while RF
and XGB provided the higher accuracy when the significantly
wider array of variables were provided. In many cases, the EHR-
RI and EHR models performed similarly. The Rothman Index
provided some added value, but in all cases, the extension of
the datasets to the EHR data provided the largest basis for im-
provement. As more features were added to the models, and the
complexity increased, the non-linear, non-parametric methods

were better suited to finding higher-dimensional patterns for
prediction. This became quite apparent when looking at the top
features selected for each model in each fold. The GLM models,
best in CABG patients, selected mostly binary variables. In con-
trast, the RF and XGB models often chose continuous variables,
and a spread of medication information, laboratory results, as
well as prior history and patient presentation information. The
reference value flags were often selected as well, which aligns
thinking with clinical interpretability. Of note was that the top
selected features for XGB were a majority of numeric laboratory
results, rather than the flag values of the labs selected by RF and
GLM. Further, the present on admission flags along with lab-
oratory values for these tree-based methods may have allowed
for the removal of a number of false positives, thus improving
AUC and F-score (improved recall) but not top 20 precision.

The numeric results for AUC, F-score and top 20 also aligned
with calibration results. In particular, the improved AUC values
indicated a better opportunity for the models to discriminate pa-
tients. With the low AUCs in CABG, all following results were
similarly low, because an effective threshold delineating ad-
verse outcomes and healthy outcomes was not clear. The lower
F-scores, with the improved AUCs, were a function of the event
rate. The low score indicated that the recall (sensitivity) was
high but the precision was low. So while the threshold for deter-
mining clearly healthy outcomes was well-established, the mix
of true positive predictions and false positive predictions is still
an area for further investigation. This was also demonstrated
in the top 20 precision and the calibration results. The right-
skewed calibration results indicated that the adverse outcomes
were mostly in the highest quartile of risk. However, with the
low top 20 precision, these patients were not the highest risk. An
expansion of the binary outcomes to multiple classes, with tiered
understandings of the postoperative period, might be necessary
to understand these false positive patients and why they are pre-
dicted differently than the large number of correctly identified
true negative patients. This may also be because of other events
that are not currently recorded or considered adverse outcomes
in this study. This is left for future considerations.

VI. FUTURE WORK

A number of future steps remain to validate the effectiveness
of such a system. First, and foremost, is to continue collecting
new patients, but it is important to also evaluate further machine
learning methods in comparison, such as neural networks and
support vector machines. In addition, the method by which we
clean the data and impute missingness should be further ex-
plored, to understand, especially for time-series data, prior and
future readings to better interpolate missing values. Further, the
personalized risk factors are focused specifically on the logis-
tic regression with lasso regularization, due to its familiarity in
clinical literature [1], [2] as well as clear, linear interpretation.
However, as the best models are achieved by random forests
and gradient descent boosting, a more advanced way of under-
standing personalized feature effects in these settings should be
developed. As a focus of this work was the ability for clinicians
to interpret and potentially alter intervention strategies based
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upon predicted risks, two forms of validation need to be carried
out. First do the personalized risk factors teach the clinicians
anything about prospectively treating patients or ordering new
laboratory exams? Second, would these interventions reduce ad-
verse events? The decision boundary considered for generating
the F-score needs further evaluation including how much data is
necessary to generate an accurate result and how early can this
prediction be made in future time-based models.

Many clinical model papers present an AUC as a measure of
the model’s effectiveness of identifying patients with adverse
events from those without; however, they do not tell clinicians
how to prospectively identify patients at risk. A model can have
strong calibration and still potentially have alow F-score, simply
because of the number of observed events in the lower quartiles
being well predicted. A selected cutoff threshold must consider
the balance of true positives, true negatives, false positives, and
false negatives and the costs associated with each, considering
costs of alarm fatigue and treatments on false positives. Alter-
natively, the costs of a false negative might greatly outweigh a
cost of a false positive. Once this information, is considered, a
better optimal decision boundary could be calculated. Finally,
as amount and variety of collected data grows, models can begin
to consider multiple visits and outpatient visits. This includes
data from emergency room visits that lead to admissions, as
well as understanding re-admissions and risks associated from
multiple in-hospital stays. This wider array of data can include
other assessment scores besides the Rothman Index, including
the Goldman Multifactorial, ASA physical status classification,
Euroscore, and National Cardiovascular Data Registry models.

VIl. CONCLUSION

This work developed a system for identifying patients under-
going major cardiovascular procedures at the Yale-New Haven
Hospital at risk for postoperative respiratory failure or infection,
two costly outcomes as identified by the hospital. This system
tackles the challenges of extracting data from a production-
level electronic health record provided by EPIC [33] and the
tasks necessary in manipulating data for use in machine learn-
ing analytic tools. Further, after developing models to predict
postoperative complications using preoperative data, the system
generated interpretable measures of risk to help identify the risk
category of the patient, as well as the contributing features to
risk in order to better provide clinicians with information that
might help prevent such adverse events, providing a framework
for more advanced clinical decision support systems in future
studies.
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