

Oscar Clinical Guideline: Prenatal Testing (CG043, Ver. 12)

Prenatal Testing

Disclaimer

Clinical guidelines are developed and adopted to establish evidence-based clinical criteria for utilization management decisions. Clinical guidelines are applicable according to policy and plan type. The Plan may delegate utilization management decisions of certain services to third parties who may develop and adopt their own clinical criteria.

Coverage of services is subject to the terms, conditions, and limitations of a member's policy, as well as applicable state and federal law. Clinical guidelines are also subject to in-force criteria such as the Centers for Medicare & Medicaid Services (CMS) national coverage determination (NCD) or local coverage determination (LCD) for Medicare Advantage plans. Please refer to the member's policy documents (e.g., Certificate/Evidence of Coverage, Schedule of Benefits, Plan Formulary) or contact the Plan to confirm coverage.

Summary

Plan members who are pregnant may be eligible for prenatal testing to provide information about the health of both the mother and the baby. Prenatal testing can be performed invasively or noninvasively to look for a variety of birth defects and genetic conditions. Invasive testing includes several more involved procedures, such as directly sampling the fluid or tissue surrounding the baby. Non-invasive testing is performed with simple blood tests. Medical necessity for expanded carrier screening may be limited to risk-based conditions.

These tests can be performed at different stages of pregnancy depending on the conditions being tested. Screening or diagnostic testing for fetal genetic disorders may be appropriate, regardless of maternal age. Additionally, high-risk women, such as those over 35 years of age or with certain medical conditions, are eligible for more advanced testing. Testing must be performed by an in-network provider when available.

This guideline provides medical necessity criteria for prenatal tests and procedures. For a list of services that are considered experimental or investigational, please refer to the Plan Clinical Guideline: Experimental or Investigational (Unproven) Services, Products, Drugs, and Biologicals (CG012).

Definitions

"Aneuploidy" is a broad term for having an abnormal number of chromosomes, either extra or missing. This can include trisomy syndromes, conditions with an extra copy of a specific chromosome (such as trisomy 21, 18, or 13), or sex-chromosome aneuploidies, where there is an extra or missing sex chromosome (such as Turner syndrome).

"Analytic validity" refers to the extent to which a test accurately and reliably measures the specific genomic variation, biomarker, or analyte of interest. It is determined by the test's precision (repeatability and reproducibility) and accuracy (closeness to the true value).

"Carrier screening" refers to the genetic testing of certain rare, inheritable conditions such as cystic fibrosis or spinal muscular atrophy. These conditions are usually inherited in an autosomal recessive fashion, meaning, both parents need to have the mutation in order for the baby to be at risk of having the condition.

"Clinical utility" refers to a test's ability to improve health outcomes by considering its benefits, harms, efficacy, and effectiveness, while guiding decision-making.

"Clinical validity" refers to the strength of association between the test result and the presence or absence of a specific genomic variation, biomarker, trait, or condition. It is assessed by measures such as sensitivity (the ability to correctly identify individuals with the condition), specificity (the ability to correctly identify individuals without the condition), positive predictive value (the probability that a positive test result indicates the presence of the condition), and negative predictive value (the probability that a negative test result indicates the absence of the condition).

"Expanded carrier screening" refers to genetic screening for multiple disorders instead of screening targeted for at-risk disorders.

"Invasive prenatal testing" includes procedures such as amniocentesis and chorionic villus sampling, where the tissue or fluid surrounding the baby is directly sampled.

"Noninvasive prenatal testing (NIPT) or noninvasive prenatal screening (NIPS)," also known as prenatal cell-free DNA (cfDNA) testing, is a test where a small amount of the mother's blood is drawn to look for fragments of fetal genetic material called cell-free DNA. These small fragments can be used to look for fetal trisomy syndromes and determine the sex of the baby. NIPT/NIPS can be performed as early as the first trimester (e.g., 10 weeks of gestation). NIPT/NIPS may be used to a screen for trisomy syndromes (trisomy 13, 18, and 21), but an abnormal result should be followed by a diagnostic test (e.g., chorionic villus sampling or amniocentesis) when making decisions to continue or terminate a pregnancy.

"Nuchal translucency" is a procedure where ultrasound is used to determine the fluid in the neck of the growing baby to determine risk of various conditions such as trisomy 21 or cardiac problems.

"Trisomy" is the genetic condition of having an extra chromosome. Where the normal human genome has 23 pairs of chromosomes, errors in reproductive division to create the egg or sperm can result in an extra chromosome being included. The most common trisomy conditions are trisomy 21 (Down syndrome), trisomy 18 (Edwards syndrome), and trisomy 13 (Patau syndrome).

A. Clinical Indications

- 1. Medical Necessity Criteria for Clinical Review
 - a. General Medical Necessity Criteria
 - b. Indication-Specific Criteria
 - c. State Law Conflicts
- 2. Experimental or Investigational / Not Medically Necessary
- B. Applicable Billing Codes
- C. References

Medical Necessity Criteria for Clinical Review

General Medical Necessity Criteria

The Plan considers genetic testing medically necessary to establish a molecular diagnosis of an inheritable disease or genetic disorder when ALL of the following are met:

- 1. The test is FDA-approved/cleared and the requested use is consistent with FDA labeling or evidence-based guidelines or consensus recommendations (e.g., ACOG, ACMG, published health technology assessments, (e.g., Hayes), UpToDate). In scenarios without FDA approval or clearance, the test reflects analytic validity, clinical validity, and clinical utility; and
- 2. The member (mother or fetus) displays clinical features or is at direct risk of inheriting the mutation in question (pre-symptomatic). However, for screening tests listed under Indication-Specific Criteria, average-risk members (no prior history or risk factors) may meet medical necessity if the applicable subsection criteria are met; and
- 3. The result of the test will directly impact the treatment being delivered to the member; and
- 4. After history, physical examination, pedigree analysis, genetic counseling, and completion of conventional diagnostic studies, a definitive diagnosis remains uncertain; *and*
- 5. Testing is accompanied by genetic counseling and documented by a licensed genetic counselor, obstetrician, or maternal-fetal medicine specialist.

(Please note: In April 2022, the FDA issued a Safety Communication for patients and providers that genetic non-invasive prenatal screening tests may have false results and most laboratory developed tests are offered on market without FDA review. Therefore, members should discuss the risks and benefits with providers and receive genetic counseling.)

Indication-Specific Criteria

Non-Invasive Prenatal Testing (NIPT) / Prenatal Cell-Free DNA Testing

The Plan considers non-invasive prenatal testing (NIPT) medically necessary when General Medical Necessity Criteria are met AND ALL of the following criteria are met:

- 1. The test is used to screen for fetal sex chromosome aneuploidy, trisomy 21 (Down syndrome), trisomy 18 (Edwards syndrome), or trisomy 13 (Patau syndrome); and
- 2. The member has a confirmed single or twin pregnancy; and
- 3. The member has not previously had NIPT for this pregnancy; and
- 4. The NIPT test is being performed at \geq 10 weeks gestation.

Standard CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) Mutation Panel

The Plan considers carrier screening for cystic fibrosis with the ACMG (American College of Medical Genetics) standard CFTR (cystic fibrosis transmembrane conductance regulator) mutation panel medically necessary when General Medical Necessity Criteria are met AND ONE of the following criteria is met:

- 1. Couples seeking prenatal care; or
- 2. Couples planning a pregnancy; or
- 3. Members with a family history of cystic fibrosis; or
- 4. Members with a 1st degree relative identified as a cystic fibrosis carrier; or
- 5. Members with a partner who has cystic fibrosis or is a cystic fibrosis carrier; or
- 6. When the newborn screen is positive for CF *and* the sweat chloride test is inconclusive, intermediate or cannot be performed.

Factor V Leiden Testing

The Plan considers Factor V Leiden genetic testing in pregnant members or those planning pregnancy medically necessary when General Medical Necessity Criteria are met AND BOTH of the following criteria are met:

- 1. Abnormal activated protein C (APC) resistance assay test (unless member is receiving anticoagulation); and
- 2. One of the following situations are met:
 - a. Venous thromboembolism (VTE) during the current or past pregnancy, or in the 6 weeks following a prior pregnancy; *or*
 - b. First-degree blood relative with history of high-risk thrombophilia (e.g., antithrombin deficiency, Factor V Leiden mutation, or prothrombin G20210A mutation); *or*
 - c. First-degree blood relative with history of venous thromboembolism prior the age of 50 years old; *or*
 - d. Personal history of unprovoked VTE; or
 - e. Personal history of VTE associated with use of oral contraceptives or hormone therapy.

Prothrombin G20210A Thrombophilia (F2 Gene) Testing

The Plan considers prothrombin G20210A thrombophilia (F2 Gene) testing in pregnant members or those planning pregnancy medically necessary when General Medical Necessity Criteria AND ONE of the following criteria is met:

- 1. Venous thromboembolism (VTE) during the current or past pregnancy, or in the 6 weeks following a prior pregnancy; *or*
- 2. First-degree blood relative with history of high-risk thrombophilia (e.g. antithrombin deficiency, Factor V Leiden mutation, or prothrombin G20210A mutation); *or*
- 3. First-degree blood relative with history of venous thromboembolism prior the age of 50 years old; *or*
- 4. Personal history of unprovoked VTE; or
- 5. Personal history of VTE associated with use of oral contraceptives or hormone therapy

Hemoglobinopathy and Thalassemia Testing

The Plan considers genetic testing for hemoglobinopathies and thalassemias (includes, but not limited to: Sickle Cell Anemia [HBB Gene], Alpha Thalassemia [HBA1/HBA2 Genes] and Beta Thalassemia [HBB Gene]) for couples planning pregnancy or seeking prenatal care medically necessary when General Medical Necessity Criteria AND ONE of the following criteria is met:

- 1. Family history of a hemoglobinopathy; or
- 2. Family member who is affected or is a carrier with a known mutation; or
- 3. Suspected hemoglobinopathy based on results of a complete blood count (CBC) and hemoglobin analysis, such as low mean corpuscular hemoglobin or mean corpuscular volume; or
- 4. African, Mediterranean, Middle Eastern, Southeast Asian, or West Indian descent

Spinal Muscular Atrophy Testing (SMN1 and SMN2)

The Plan considers spinal muscular atrophy genetic testing (SMN1 and SMN2) medically necessary when General Medical Necessity Criteria are met AND ONE of the following criteria is met:

- 1. Carrier screening for couples seeking prenatal care or planning pregnancy; or
- 2. In the fetus or as a pre-implantation test when both parents are known carriers of the mutation

Fragile X Testing (FMRI Gene)

The Plan considers fragile X testing (FMRI gene) in pregnant members or those planning pregnancy medically necessary when General Medical Necessity Criteria are met AND ONE of the following criteria is met:

- 1. A family history of fragile X syndrome, or
- 2. A family history of unexplained developmental delay/intellectual disability, autism or primary ovarian insufficiency (POI); or
- 3. Fetuses of known carrier mothers

Tay-Sachs Disease Testing (HEXA Gene)

The Plan considers Tay-Sachs disease testing (HEXA gene) in pregnant members or those planning pregnancy medically necessary when General Medical Necessity Criteria are met AND ONE of the following criteria is met:

- 1. The member has an abnormal or inconclusive beta-hexosaminidase A enzyme activity; or
- 2. The member has an affected or carrier family member in whom a mutation has been identified; or
- 3. The member or member's partner is of Ashkenazi Jewish, French Canadian, or Cajun descent; or
- 4. The member or member's partner is affected with or carrier of Tay-Sachs disease

Down Syndrome Testing

The Plan considers the following non-invasive testing options for Down syndrome in pregnant women wishing to undergo testing that have been adequately counseled medically necessary when General Medical Necessity Criteria are met AND ONE of the following criteria is met:

- 1. First trimester combined test, consisting of BOTH of the following tests, to be used when earlier identification of an euploidy is desired:
 - a. Nuchal translucency; and
 - b. PAPP-A and beta-HCG; or
- 2. Other first trimester tests: Non-invasive prenatal testing to support decision-making. Not to be used concurrently with the first trimester combined test, unless high risk; *or*
- 3. When nuchal translucency is not available or the results are indeterminate, serum analyte combined test consisting of BOTH of the following is warranted:
 - a. First trimester PAPP-A and beta-HCG; and
 - b. Second trimester quadruple screen; or
- 4. Second trimester quadruple screen, consisting of ALL of the following biomarkers:
 - a. Dimeric inhibin A; and
 - b. Human chorionic gonadotropin (hCG); and
 - c. Maternal serum alpha-fetoprotein (MSAFP); and
 - d. Unconjugated estriol; or
- 5. Full integrated testing, as defined by BOTH of the following:
 - a. First trimester combined test; and
 - b. Second trimester quadruple screen; or
- 6. Stepwise sequential testing, as defined by:
 - a. Initial first trimester combined test, followed by risk stratification, and if necessary, second trimester quadruple screen.

Additional Genetic Testing

The Plan considers genetic testing of the diseases listed in Table 1 medically necessary when General Medical Necessity Criteria are met AND ONE of the following criteria is met:

- 1. Genetic testing for a known familial variant mutation when it has been identified in the member, the member's partner, or a blood relative; *or*
- 2. Targeted mutation analysis when ONE of the following criteria is met:
 - a. The member or reproductive partner is a known carrier of a disease-causing recessively inherited mutation; *or*
 - b. A disease-causing recessively inherited mutation has been identified in a blood relative and the relative has not had testing or is unavailable for genetic testing; *or*
- 3. Gene sequencing and/or gene duplication/deletion analysis when ONE of the following criteria is met:
 - a. The member meets criteria for target mutation analysis above; or
 - b. Targeted mutation analysis is not available or was previously negative.

Table 1: Genetic diseases

Nuclear mitochondrial genes	Muscular dystrophies	Alpha and beta thalassemia
Long QT syndrome	DFNB1 non-syndromic hearing	21-hydroxylase deficiency
Retinoblastoma	loss and deafness	Niemann-Pick disease
Gaucher disease	Rett syndrome	Von Hippel-Lindau disease
PTEN-related disorders	Canavan disease	Huntington disease

Expanded Carrier Screening Panels

Expanded carrier screening may be considered medically necessary when General Medical Necessity Criteria are met and the indication and testing performed are consistent with ALL of the following criteria set forth by the American College of Obstetricians and Gynecologists Committee on Genetics:

- 1. The carrier frequency is greater than 1 in 100; and
- 2. The phenotype is well-defined; and
- 3. The condition will have a detrimental effect on quality of life; and
- 4. The condition will cause cognitive and/or physical impairment; and
- 5. The condition may require medical or surgical intervention; and
- 6. The condition can be diagnosed prenatally; and
- 7. The condition may be amenable to antenatal intervention to improve perinatal outcomes and may change delivery management; *and*
- 8. The condition is associated with early onset in life and not adult onset.

Chorionic Villus Sampling or Amniocentesis

For women with a major fetal structural abnormality detected on ultrasound examination and when MCG criteria are met, chorionic villus sampling or amniocentesis with chromosomal microassay are medically necessary.

State Law Conflicts

For any provision of this policy that directly conflicts with or is prohibited by state law, the provisions of the state law will apply instead of the provisions of this policy. This means that in instances where state regulations diverge from or directly oppose the Prenatal Testing (CG043) Medical Necessity Criteria for Clinical Review or requirements, the policy's criteria will not apply.

Experimental or Investigational / Not Medically Necessary

In addition to the following, please refer to Oscar Clinical Guideline: Experimental or Investigational Services, Products, Drugs, and Biologicals (CG012) for codes that are considered experimental, investigational, or unproven.

Noninvasive Prenatal Testing (NIPT) / Prenatal Cell-Free DNA Testing

Non-invasive prenatal testing (NIPT) or non-invasive prenatal screening (NIPS), also known as prenatal cell-free DNA (cfDNA) testing, is considered experimental, investigational, or unproven for the following indications:

- 1. Multiple gestation pregnancies with ≥ 3 fetuses
 - a. Rationale: The use of NIPT or prenatal cell-free DNA testing in multiple gestations more than twins is not endorsed by the ACOG, ACMG, SMFM, or other professional societies due to lack of testing in this population and concerns over a higher rate of false negatives given the potential for variable amounts of cell-free DNA from each fetus. As per Galeva, et al. (2019), the analysis of the risks and benefits of screening or diagnostic testing in patients carrying multiple fetuses is complex, given the lower effectiveness of screening and how the prenatal identification of a single aneuploid fetus might affect the pregnancy management.
- 2. Vanishing twin syndrome or demised twin
 - a. Rationale: There are increased rates of false positives in cases of vanishing or demised twin in cases where the twin was aneuploid. As per Curnow, et al. (2015), in a patient with both a vanishing twin and a viable intrauterine pregnancy, cell-free DNA screening is not advised because of the high risk for aneuploidy in the nonviable sac or embryo, which can lead to false positive results.
- 3. Screening for trisomy of chromosome: 7, 9, 16, or 22
 - a. *Rationale:* Evaluation for rare trisomies has not been fully explored in the literature, therefore the diagnostic utility of cell-free DNA testing in this setting has not yet been adopted by expert consensus guidelines. As per Norton, et al. (2015), the accuracy of

screening for fetal trisomy 7,9, 16 or 22 with cfDNA in regard to detection and the false-positive rate is not established.

4. Screening for microdeletions

a. cfDNA screening tests for microdeletions have not been validated clinically and are not recommended at this time (ACOG, 2020). Kagan et al. (2022) confirms the lack of clinical validity of microdeletion testing with cfDNA. This confirms that microdeletion testing by cfDNA is not validated clinically and is not recommended at this time.

5. Whole genome NIPT

a. Rationale: The outcomes and clinical utility of whole genome sequencing have not been validated in the scientific literature. Further research is required prior to guide clinical use. As per Zhang et al. (2024), the data on cfDNA screening with whole genome sequencing in regard to detection and the false-positive rate has not been established according to the most current review.

6. When used to determine the etiology of recurrent miscarriage

a. *Rationale:* The outcomes and clinical utility of cell-free DNA testing have not been validated in the scientific literature for evaluation of recurrent miscarriage. Further research is required prior to guiding clinical use.

7. When used to determine fetal sex

a. Rationale: While NIPT has demonstrated the potential for determining fetal sex, the clinical outcomes and medical necessity of this indication have not been validated in the literature and using NIPT to determine fetal sex has not received formal guidance from the expert societies.

8. Fetal rhesus D (RhD) genotyping

a. Rationale: NIPT has seen some adoption across Europe in prenatal determination of rhesus D (RhD) genotyping, however, has not yet demonstrated improvement in clinical outcomes across large, validated studies. The ACOG and SMFM currently do not recommend routine use of fetal rhesus D genotyping as an indication for NIPT cfDNA testing. However, as per 2024 ACOG practice advisory (expert opinion based) for Rho(D) Immune Globulin Shortages, in the event of a shortage of Rho(D) immune globulin (RhIg) then the testing Rh(D) status in cell-free DNA (cfDNA) from maternal plasma may help triage to administer RhIg.

9. Cystic hygroma

a. Rationale: Cystic hygroma is considered a high-risk condition for fetal aneuploidy and thus direct consideration for invasive testing should be the next step. ACOG guidelines for cell-free DNA testing state, "If a fetal structural anomaly is identified on ultrasound examination, diagnostic testing should be offered rather than cell-free DNA screening".

Non-Invasive Down Syndrome Screening

The following tests and biomarkers for the non-invasive screening for Down syndrome and other prenatal conditions are considered experimental, investigational, or unproven:

1. Second trimester screening with:

- a. Beta subunit of hCG
- b. Human placental lactogen
- c. Pregnancy-associated plasma protein A (PAPP-A)
- d. Urinary beta-core
- e. Rationale: The clinical efficacy of diagnosing trisomy syndromes with these biomarkers has been evaluated primarily for first trimester pregnancies and has not been established for use in the second trimester and may be inferior to first trimester use.
- 2. A disintegrin metalloprotease 12 (ADAM12)
 - a. Rationale: ADAM 12 has been evaluated as a potential serum marker for first- and second-trimester Down syndrome screening. Earlier studies produced inconsistent results, and these findings have not been consistently replicated in larger or more recent studies. Overall, the medical literature concludes that ADAM 12 has not demonstrated sufficient incremental benefit over current standard markers to be incorporated into clinical screening algorithms for Down syndrome. A 2017 Cochrane review by Alldred et al. found that conventional markers combined with nuchal translucency outperform ADAM 12 in sensitivity and specificity, and current guidelines from ACOG and ACMG do not include ADAM 12 in recommended screening panels.
- 3. Placental protein 13 (PP13)
 - a. Rationale: There is no recent published peer-reviewed evidence evaluating PP13 as a screening marker for fetal chromosomal abnormalities, and current ACOG and ACMG guidelines do not include PP13 in recommended screening panels.
- 4. First-trimester NT measurement alone (without first-trimester serum analyte testing) in the absence of fetal cystic hygroma in singleton pregnancies
 - a. Rationale: Nuchal translucency (NT) testing alone is not recommended by any of the expert consensus guidelines from ACOG or other speciality-specific societies. Research has shown that adding biomarker testing to the ultrasound decreases the rate of fetal karyotyping required and improves the predictive value.
- 5. First-trimester serum analyte testing (hCG* and PAPP-A) alone without NT measurement
 - a. Rationale: First trimester biomarker testing alone is not recommended by any of the expert consensus guidelines from ACOG or other speciality-specific societies. The FASTER and SURUSS studies have shown that combining first trimester screening with nuchal translucency or with second trimester quadruple screen increases the detection rate and decreases false positives.
- 6. First-trimester ultrasound assessment of the nasal bone
 - a. Rationale: The overall evidence base is insufficient to support the routine use of first-trimester ultrasound evaluation of the fetal nasal bone as a standalone screening marker for Down syndrome. Although studies suggest that absent or hypoplastic nasal bone is a highly specific marker for Down syndrome, sensitivity is moderate and variable by population and technique. Clinical practice guidelines do not endorse nasal bone assessment as a primary screening tool, and current consensus in the medical literature

is that it does not have sufficient sensitivity or evidence to justify routine use as a single screening marker for Down syndrome in the general population.

- 7. Any other biomarker not included in the medical necessity criteria, including but not limited to the following, is considered experimental, investigational, or unproven for prenatal screening:
 - a. First-trimester maternal serum anti-Mullerian hormone level
 - b. First-trimester maternal serum placental growth factor level
 - c. Maternal plasma microRNA
 - d. First-trimester maternal plasma levels of follistatin-related gene protein
- 8. Ultrasound evaluation of the aberrant right subclavian artery (ARSA)
 - a. Rationale: Multiple studies indicate that when an aberrant right subclavian artery (ARSA) is an isolated finding, its association with Down syndrome is weak. The current evidence base does not support ultrasound evaluation of ARSA as a standalone screening marker or as part of routine prenatal screening for Down syndrome in the general population.

Prenatal Lead Level Testing

Prenatal lead level testing is considered not medically necessary in women without risk factors for lead exposure.

1. Rationale: The Centers for Disease Control and Prevention (CDC) and the American College of Obstetricians and Gynecologists (ACOG) do not recommend blood lead testing of all pregnant women unless at least one risk factor is present for elevated lead levels.

Applicable Billing Codes

Table 1	Table 1	
CPT/HCPCS co	odes considered medically necessary if criteria are met:	
Code	Description	
0236U	SMN1 (survival of motor neuron 1, telomeric) and SMN2 (survival of motor neuron 2, centromeric) (eg, spinal muscular atrophy) full gene analysis, including small sequence changes in exonic and intronic regions, duplications, deletions, and mobile element insertions	
59015	Chorionic villus sampling, any method	
76813	Ultrasound, pregnant uterus, real time with image documentation, first trimester fetal nuchal translucency measurement, transabdominal or transvaginal approach; single or first gestation	

Table 1	
CPT/HCPCS codes considered medically necessary if criteria are met:	
Code	Description
76814	Ultrasound, pregnant uterus, real time with image documentation, first trimester fetal nuchal translucency measurement, transabdominal or transvaginal approach; each additional gestation (List separately in addition to code for primary procedure)
81161	DMD (dystrophin) (eg, Duchenne/Becker muscular dystrophy) deletion analysis, and duplication analysis, if performed
81220	CFTR (cystic fibrosis transmembrane conductance regulator) (eg, cystic fibrosis) gene analysis; common variants (eg, ACMG/ACOG guidelines)
81221	CFTR (cystic fibrosis transmembrane conductance regulator) (eg, cystic fibrosis) gene analysis; known familial variants
81229	Cytogenomic (genome-wide) analysis for constitutional chromosomal abnormalities; interrogation of genomic regions for copy number and single nucleotide polymorphism (SNP), comparative genomic hybridization (CGH) microarray analysis
81240	F2 (prothrombin, coagulation factor II) (eg, hereditary hypercoagulability) gene analysis, 20210G>A variant
81241	F5 (coagulation factor V) (eg, hereditary hypercoagulability) gene analysis, Leiden variant
81243	FMR1 (Fragile X mental retardation 1) (eg, fragile X mental retardation) gene analysis; evaluation to detect abnormal (eg, expanded) alleles
81244	FMR1 (Fragile X mental retardation 1) (eg, fragile X mental retardation) gene analysis; characterization of alleles (eg, expanded size and methylation status)
81255	HEXA (hexosaminidase A [alpha polypeptide]) (eg, Tay-Sachs disease) gene analysis, common variants (eg, 1278insTATC, 1421+1G>C, G269S)
81257	HBA1/HBA2 (alpha globin 1 and alpha globin 2) (eg, alpha thalassemia, Hb Bart hydrops fetalis syndrome, HbH disease), gene analysis, for common deletions or variant (eg, Southeast Asian, Thai, Filipino, Mediterranean, alpha3.7, alpha4.2, alpha20.5, and Constant Spring)

Table 1	Table 1	
CPT/HCPCS codes considered medically necessary if criteria are met:		
Code	Description	
81258	HBA1/HBA2 (alpha globin 1 and alpha globin 2) (eg, alpha thalassemia, Hb Bart hydrops fetalis syndrome, HbH disease), gene analysis; known familial variant	
81259	HBA1/HBA2 (alpha globin 1 and alpha globin 2) (eg, alpha thalassemia, Hb Bart hydrops fetalis syndrome, HbH disease), gene analysis; full gene sequence	
81269	HBA1/HBA2 (alpha globin 1 and alpha globin 2) (eg, alpha thalassemia, Hb Bart hydrops fetalis syndrome, HbH disease), gene analysis; duplication/deletion variants	
81329	SMN1 (survival of motor neuron 1, telomeric) (eg, spinal muscular atrophy) gene analysis; dosage/deletion analysis (eg, carrier testing), includes SMN2 (survival of motor neuron 2, centromeric) analysis, if performed	
81336	SMN1 (survival of motor neuron 1, telomeric) (eg, spinal muscular atrophy) gene analysis; full gene sequence	
81337	SMN1 (survival of motor neuron 1, telomeric) (eg, spinal muscular atrophy) gene analysis; known familial sequence variant(s)	
81361	HBB (hemoglobin, subunit beta) (eg, sickle cell anemia, beta thalassemia, hemoglobinopathy); common variant(s) (eg, HbS, HbC, HbE)	
81362	HBB (hemoglobin, subunit beta) (eg, sickle cell anemia, beta thalassemia, hemoglobinopathy); known familial variant(s)	
81363	HBB (hemoglobin, subunit beta) (eg, sickle cell anemia, beta thalassemia, hemoglobinopathy); duplication/deletion variant(s)	
81364	HBB (hemoglobin, subunit beta) (eg, sickle cell anemia, beta thalassemia, hemoglobinopathy); full gene sequence	
81412	Ashkenazi Jewish associated disorders (eg, Bloom syndrome, Canavan disease, cystic fibrosis, familial dysautonomia, Fanconi anemia group C, Gaucher disease, Tay-Sachs disease), genomic sequence analysis panel, must include sequencing of at least 9 genes, including ASPA, BLM, CFTR, FANCC, GBA, HEXA, IKBKAP, MCOLN1, and SMPD1	

Table 1		
CPT/HCPCS	CPT/HCPCS codes considered medically necessary if criteria are met:	
Code	Description	
81420	Fetal chromosomal aneuploidy (eg, trisomy 21, monosomy X) genomic sequence analysis panel, circulating cell-free fetal DNA in maternal blood, must include analysis of chromosomes 13, 18, and 21	
81443	Genetic testing for severe inherited conditions (eg, cystic fibrosis, Ashkenazi Jewish-associated disorders [eg, Bloom syndrome, Canavan disease, Fanconi anemia type C, mucolipidosis type VI, Gaucher disease, Tay-Sachs disease], beta hemoglobinopathies, phenylketonuria, galactosemia), genomic sequence analysis panel, must include sequencing of at least 15 genes (eg, ACADM, ARSA, ASPA, ATP7B, BCKDHA, BCKDHB, BLM, CFTR, DHCR7, FANCC, G6PC, GAA, GALT, GBA, GBE1, HBB, HEXA, IKBKAP, MCOLN1, PAH)	
81507	Fetal aneuploidy (trisomy 21, 18, and 13) DNA sequence analysis of selected regions using maternal plasma, algorithm reported as a risk score for each trisomy	
81508	Fetal congenital abnormalities, biochemical assays of two proteins (PAPP-A, hCG [any form]), utilizing maternal serum, algorithm reported as a risk score	
81509	Fetal congenital abnormalities, biochemical assays of three proteins (PAPP-A, hCG [any form], DIA), utilizing maternal serum, algorithm reported as a risk score	
81510	Fetal congenital abnormalities, biochemical assays of three analytes (AFP, uE3, hCG [any form]), utilizing maternal serum, algorithm reported as a risk score	
81511	Fetal congenital abnormalities, biochemical assays of four analytes (AFP, uE3, hCG [any form], DIA) utilizing maternal serum, algorithm reported as a risk score (may include additional results from previous biochemical testing)	
81512	Fetal congenital abnormalities, biochemical assays of five analytes (AFP, uE3, total hCG, hyperglycosylated hCG, DIA) utilizing maternal serum, algorithm reported as a risk score	
82105	Alpha-fetoprotein (AFP); serum	
82677	Estriol	
84163	Pregnancy-associated plasma protein-A (PAPP-A)	

Table 1		
CPT/HCPCS codes	CPT/HCPCS codes considered medically necessary if criteria are met:	
Code	Description	
86336	Inhibin A	
88235	Tissue culture for non-neoplastic disorders; amniotic fluid or chorionic villus cells	
88271	Molecular cytogenetics; DNA probe, each (eg, FISH)	
88291	Cytogenetics and molecular cytogenetics, interpretation and report	
84704	Gonadotropin, chorionic (hCG); free beta chain	

Table 2		
ICD-10 codes consi	ICD-10 codes considered medically necessary with Table 1 codes if criteria are met:	
Code	Description	
O09.00 - O09.03	Supervision of pregnancy with history of infertility	
O09.10 - O09.13	Supervision of pregnancy with history of ectopic pregnancy	
O09.A0 - 009.A3	Supervision of pregnancy with history of molar pregnancy	
O09.20 - O09.23	Supervision of pregnancy with other poor reproductive or obstetric history	
O09.30 - O09.33	Supervision of pregnancy with insufficient antenatal care	
O09.40 - O09.43	Supervision of pregnancy with grand multiparity	
O09.511 - O09.519	Supervision of elderly primigravida and multigravida	
O09.521 - O09.529	Supervision of elderly multigravida	
O09.611 - O09.619	Supervision of young primigravida and multigravida	
O09.70 - O09.73	Supervision of high risk pregnancy due to social problems	

Table 2	
ICD-10 codes considered medically necessary with Table 1 codes if criteria are met:	
Code	Description
O09.811 - O09.899	Supervision of other high risk pregnancies
O28.1	Abnormal biochemical finding on antenatal screening of mother
O28.5	Abnormal chromosomal and genetic finding on antenatal screening of mother
O30.001 - O30.099	Twin pregnancy
Z14.1	Cystic fibrosis carrier
Z14.01 - Z14.02	Hemophilia A carrier
Z14.8	Genetic carrier of other disease
Z31.430	Encounter of female for testing for genetic disease carrier status for procreative management
Z31.440	Encounter of male for testing for genetic disease carrier status for procreative management
Z31.5	Encounter for procreative genetic counseling
Z34.00 - Z34.93	Encounter for supervision of normal pregnancy
Z36.0 - Z36.9	Encounter for antenatal screening of mother
Z84.81	Family history of carrier of genetic disease

Table 3	
Additional ICD-10 codes considered medically necessary if criteria are met for prothrombin G20210A thrombophilia (F2 gene) or factor V leiden genetic testing:	
Code	Description
O22.30 - O22.33	Deep phlebothrombosis in pregnancy
Z86.718	Personal history of other venous thrombosis and embolism

Table 4		
ICD-10 codes not co	ICD-10 codes not considered medically necessary with Table 1 codes:	
Code	Description	
O30.101 - O30.199	Triplet pregnancy or greater	
O30.201 - O30.299	Quadruplet pregnancy	
O30.801 - O30.899	Other specified multiple gestation	
O30.90 - O30.93	Multiple gestation, unspecified	
O31.00x0 - O31.8x99	Complications specific to multiple gestation	
Q93.88	Other microdeletions	

Table 5	
CPT/HCPCS codes for genetic counseling that are required for prenatal testing to be considered medically necessary:	
96041	Medical genetics and genetic counseling services, each 30 minutes of total time provided by the genetic counselor on the date of the encounter
S0265	Genetic counseling, under physician supervision, each 15 minutes

Table 6	
CPT/HCPCS codes not considered medically necessary for indications in this guideline:	
Code	Description

0327U	Fetal aneuploidy (trisomy 13, 18, and 21), DNA sequence analysis of selected regions using maternal plasma, algorithm reported as a risk score for each trisomy, includes sex reporting, if performed
76815	Ultrasound, pregnant uterus, real time with image documentation, limited (e.g., fetal heart beat, placental location, fetal position and/or qualitative amniotic fluid volume), 1 or more fetuses • Due to various indications represented by this CPT/HCPCS code, specific exclusions are indicated: • When this code is billed for ultrasound assessment of nasal bone translucency, it is considered NOT medically necessary
81222	CFTR (cystic fibrosis transmembrane conductance regulator) (eg, cystic fibrosis) gene analysis; duplication/deletion variants
81223	CFTR (cystic fibrosis transmembrane conductance regulator) (eg, cystic fibrosis) gene analysis; full gene sequence • Due to various indications represented by this CPT/HCPCS code, specific exclusions are indicated: • When this code is billed for routine carrier screening, it is considered NOT medically necessary
81508	Fetal congenital abnormalities, biochemical assays of two proteins (PAPP-A, hCG [any form]), utilizing maternal serum, algorithm reported as a risk score • Due to various indications represented by this CPT/HCPCS code, specific exclusions are indicated: • When this code is billed in the second trimester, it is considered NOT medically necessary
81509	Fetal congenital abnormalities, biochemical assays of three proteins (PAPP-A, hCG [any form], DIA), utilizing maternal serum, algorithm reported as a risk score • Due to various indications represented by this CPT/HCPCS code, specific exclusions are indicated: • When this code is billed in the second trimester, it is considered NOT medically necessary
82397	 Chemiluminescent assay <u>Due to various indications represented by this CPT/HCPCS code, specific exclusions are indicated:</u> When this code is billed for anti-müllerian hormone level testing in the first trimester, it is considered NOT medically necessary

83516	Immunoassay for analyte other than infectious agent antibody or infectious agent antigen; qualitative or semiquantitative, multiple step method [not medically necessary for prenatal genetic testing]
83520	 Immunoassay, analyte, quantitative; not otherwise specified Due to various indications represented by this CPT/HCPCS code, specific exclusions are indicated: When this code is billed for prenatal genetic testing, it is considered NOT medically necessary
83632	 Lactogen, human placental (HPL) human chorionic somatomammotropin Due to various indications represented by this CPT/HCPCS code, specific exclusions are indicated: When this code is billed in the second trimester, it is considered NOT medically necessary

Table 7		
CPT/HCPCS codes considered experimental or investigational for prenatal screening:		
Code	Description	
0060U	Twin zygosity, genomic targeted sequence analysis of chromosome 2, using circulating cell-free fetal DNA in maternal blood	
0252U	Fetal aneuploidy short tandem-repeat comparative analysis, fetal DNA from products of conception, reported as normal (euploidy), monosomy, trisomy, or partial deletion/duplication, mosaicism, and segmental aneuploidy	
0341U	Fetal aneuploidy DNA sequencing comparative analysis, fetal DNA from products of conception, reported as normal (euploidy), monosomy, trisomy, or partial deletion/duplication, mosaicism, and segmental aneuploid	
81422	Fetal chromosomal microdeletion(s) genomic sequence analysis (e.g., DiGeorge syndrome, Cri-du-chat syndrome), circulating cell-free fetal DNA in maternal blood	

References

1. ACMG Board of Directors. (2019). Access to reproductive options after prenatal diagnosis-patient access and physician responsibilities: An updated position statement of the

- American College of Medical Genetics and Genomics (ACMG). Genetics in Medicine, 22(1), 3. https://doi.org/10.1038/s41436-019-0656-1
- ACMG Board of Directors. (2019). The use of ACMG secondary findings recommendations for general population screening: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genetics in Medicine, 21(7), 1467–1468. https://doi.org/10.1038/s41436-019-0502-5
- 3. Alldred, S. K., Takwoingi, Y., Guo, B., Pennant, M., Deeks, J. J., Neilson, J. P., & Alfirevic, Z. (2017). First and second trimester serum tests with and without first trimester ultrasound tests for Down's syndrome screening. *The Cochrane Database of Systematic Reviews*, 3(3), CD012599. https://doi.org/10.1002/14651858.CD012599
- American College of Obstetricians and Gynecologists (ACOG). (2017, reaffirmed 2025).
 Committee Opinion No. 691: Carrier Screening for Genetic Conditions.
 https://www.acog.org/clinical/clinical-guidance/committee-opinion/articles/2017/03/carrier-screening-for-genetic-conditions
- 5. American College of Obstetricians and Gynecologists (ACOG). (2017, reaffirmed 2025). Committee Opinion No. 690: Carrier Screening in the Age of Genomic Medicine. https://www.acog.org/clinical/clinical-guidance/committee-opinion/articles/2017/03/carrier-screening-in-the-age-of-genomic-medicine
- American College of Obstetricians and Gynecologists (ACOG). (2008, reaffirmed 2020).
 Committee Opinion No. 410: Ethical Issues in Genetic Testing.
 https://www.acog.org/clinical/clinical-guidance/committee-opinion/articles/2008/06/ethical-issues-in-genetic-testing
- 7. American College of Obstetricians and Gynecologists (ACOG). (2012, reaffirmed 2023). Committee Opinion No. 533. Lead Screening During Pregnancy and Lactation. https://www.acog.org/clinical/clinical-guidance/committee-opinion/articles/2012/08/lead-screening-during-pregnancy-and-lactation
- American College of Obstetricians and Gynecologists (ACOG). (2016, reaffirmed 2025).
 Committee Opinion No. 682: Microarrays and Next-Generation Sequencing Technology The Use of Advanced Genetic Diagnostic Tools in Obstetrics and Gynecology.
 <a href="https://www.acog.org/clinical/clinical-guidance/committee-opinion/articles/2016/12/microarrays-and-next-generation-sequencing-technology-the-use-of-advanced-genetic-diagnostic-tools-in-obstetrics-and-gynecology</p>
- American College of Obstetricians and Gynecologists (ACOG). (n.d.). Current ACOG Guidance. NIPT Summary of Recommendations. https://www.acog.org/advocacy/policy-priorities/non-invasive-prenatal-testing/current-acog-guidance
- American College of Obstetricians and Gynecologists (ACOG). (2019, reaffirmed 2024). Practice
 Advisory: Cell-free DNA to Screen for Single-Gene Disorders.
 https://www.acog.org/clinical/clinical-guidance/practice-advisory/articles/2019/02/cell-free-dna-t-o-screen-for-single-gene-disorders

- 11. American College of Obstetricians and Gynecologists (ACOG). (2018). Practice Bulletin No. 197: Inherited Thrombophilias in Pregnancy. Obstetrics and Gynecology, 132(1), e18–e34. https://doi.org/10.1097/aog.0000000000002703
- 12. American College of Obstetricians and Gynecologists (ACOG). (2020). Practice Bulletin No. 217: Prelabor Rupture of Membranes. Obstetrics and Gynecology, 135(3), e80–e97. https://doi.org/10.1097/aog.0000000000003700
- 14. American College of Obstetricians and Gynecologists (ACOG). (2024, reaffirmed 2025). Practice Advisory. Rho(D) Immun Globulin Shortages.
 https://www.acog.org/clinical/clinical-guidance/practice-advisory/articles/2024/03/rhod-immune-globulin-shortages
- Balaguer, N., Rodrigo, L., Mateu-Brull, E., Campos-Galindo, I., Castellón, J. A., Al-Asmar, N., Rubio, C., & Milán, M. (2024). Non-invasive cell-free DNA-based approach for the diagnosis of clinical miscarriage: A retrospective study. BJOG: An International Journal of Obstetrics & Gynaecology, 131(2), 213–221. https://doi.org/10.1111/1471-0528.17629
- 16. Benn, P., & Rebarber, A. (2021). Non-invasive prenatal testing in the management of twin pregnancies. *Prenatal Diagnosis*, 41(10), 1233–1240. https://doi.org/10.1002/pd.5989
- 17. Bianchi, D. W., & Chiu, R. W. (2018). Sequencing of circulating cell-free DNA during pregnancy. New England Journal of Medicine, 379(5), 464–473. https://doi.org/10.1056/nejmra1705345
- 18. Claudel, N., Barrois, M., Vivanti, A. J., Rosenblatt, J., Salomon, L. J., Jouannic, J. M., Picone, O., Carbillon, L., Vialard, F., Launay, E., Tsatsaris, V., Curis, E., El Khattabi, L., & APHP non-invasive prenatal screening group (2024). Non-invasive cell-free DNA prenatal screening for trisomy 21 as part of primary screening strategy in twin pregnancy. Ultrasound in Obstetrics & Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology, 63(6), 807–814. https://doi.org/10.1002/uog.26311
- 19. Dar, P., Jacobsson, B., MacPherson, C., Egbert, M., Malone, F., Wapner, R. J., Roman, A. S., Khalil, A., Faro, R., Madankumar, R., Edwards, L., Haeri, S., Silver, R., Vohra, N., Hyett, J., Clunie, G., Demko, Z., Martin, K., Rabinowitz, M., Flood, K., ... Norton, M. E. (2022). Cell-free DNA screening for trisomies 21, 18, and 13 in pregnancies at low and high risk for aneuploidy with genetic confirmation. *American Journal of Obstetrics and Gynecology*, 227(2), 259.e1–259.e14. https://doi.org/10.1016/j.ajog.2022.01.019
- 20. Deignan, J. L., Astbury, C., Cutting, G. R., Del Gaudio, D., Gregg, A. R., Grody, W. W., ... & Richards, S. (2020). CFTR variant testing: A technical standard of the American College of Medical Genetics and Genomics (ACMG). Genetics in Medicine, 22(8), 1288-1295.
- 21. Dungan, J. S., Klugman, S., Darilek, S., Malinowski, J., Akkari, Y. M. N., Monaghan, K. G., Erwin, A., & Best, R. G. (2022). Noninvasive prenatal screening (NIPS) for fetal chromosome abnormalities in a general-risk population: An evidence-based clinical guideline of the American College of Medical Genetics and Genomics (ACMG). Genetics in Medicine, 25(2), 100336. https://doi.org/10.1016/j.gim.2022.11.004

- 22. Galeva, S., Gil, M. M., Konstantinidou, L., Akolekar, R., & Nicolaides, K. H. (2019). First-trimester screening for trisomies by cfDNA testing of maternal blood in singleton and twin pregnancies: factors affecting test failure. Ultrasound in Obstetrics & Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology, 53(6), 804–809. https://doi.org/10.1002/uog.20290
- 23. Gilstrop Thompson, M., Corsetti, S., Jain, V., Ruhstaller, K., & Sciscione, A. (2020). Accuracy of routine prenatal genetic screening in patients referred for genetic counseling. American Journal of Perinatology, 37(3), 271–276. https://doi.org/10.1055/s-0039-1678533
- 24. Goldmuntz, E., Bassett, A. S., Boot, E., Marino, B., Moldenhauer, J. S., Óskarsdóttir, S., Putotto, C., Rychik, J., Schindewolf, E., McDonald-McGinn, D. M., & Blagowidow, N. (2024). Prenatal cardiac findings and 22q11.2 deletion syndrome: Fetal detection and evaluation. Prenatal Diagnosis, 44(6–7), 804–814. https://doi.org/10.1002/pd.6566
- 25. Gregg, A. R., Aarabi, M., Klugman, S., Leach, N. T., Bashford, M. T., Goldwaser, T., Chen, E., Sparks, T. N., Reddi, H. V., Rajkovic, A., Dungan, J. S., & ACMG Professional Practice and Guidelines Committee (2021). Screening for autosomal recessive and X-linked conditions during pregnancy and preconception: A practice resource of the American College of Medical Genetics and Genomics (ACMG). Genetics in Medicine, 23(10), 1793–1806. https://doi.org/10.1038/s41436-021-01203-z
- 26. Hayes, Inc. Clinical Utility Evaluation. *Cell-Free DNA (CfDNA) [Formerly NIPS, NIPT] Screening For Fetal Sex Chromosome Aneuploidy.* Lansdale, PA: Hayes, Inc; Annual Review October 2020.
- 27. Hayes, Inc. Clinical Utility Evaluation. *Cell-Free DNA (CfDNA) [Formerly NIPS, NIPT] Screening For Fetal Trisomy 21, 18, And 13 In High-Risk Women.* Lansdale, PA: Hayes, Inc; February 2020.
- 28. Hayes, Inc. Clinical Utility Evaluation. *Cell-Free DNA (CfDNA) [Formerly NIPS, NIPT] Screening For Fetal Trisomy 21, 18, And 13 In Low-Risk Women.* PA: Hayes, Inc; September 2020.
- 29. Hayes, Inc. Germline Rapid Report. *Expanded Carrier Screening*. Lansdale, PA: Hayes, Inc; August 2020.
- 30. Hayes, Inc. Precision Medicine Research Brief. *Fetal RhD Noninvasive Prenatal Testing*. Lansdale, PA: Hayes, Inc; July 2024.
- 31. Judah, H., Gil, M. M., Syngelaki, A., Galeva, S., Jani, J., Akolekar, R., & Nicolaides, K. H. (2021). Cell-free DNA testing of maternal blood in screening for trisomies in twin pregnancy: updated cohort study at 10-14 weeks and meta-analysis. *Ultrasound in Obstetrics & Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology*, 58(2), 178–189. https://doi.org/10.1002/uog.23648
- 32. Kagan, K. O., Sonek, J., & Kozlowski, P. (2022). Antenatal screening for chromosomal abnormalities. Archives of Gynecology and Obstetrics, 305(4), 825–835. https://doi.org/10.1007/s00404-022-06477-5
- 33. Manegold-Brauer, G., Maymon, R., Shor, S., Cuckle, H., Gembruch, U., & Geipel, A. (2019). Down's syndrome screening at 11-14 weeks' gestation using prenasal thickness and nasal bone length. *Archives of Gynecology and Obstetrics*, 299(4), 939–945. https://doi.org/10.1007/s00404-019-05083-2

- 34. Manolio, T. A., Rowley, R., Williams, M. S., Roden, D., Ginsburg, G. S., Bult, C., Chisholm, R. L., Deverka, P. A., McLeod, H. L., Mensah, G. A., Relling, M. V., Rodriguez, L. L., Tamburro, C., & Green, E. D. (2019). Opportunities, resources, and techniques for implementing genomics in clinical care. *Lancet* (London, England), 394(10197), 511–520. https://doi.org/10.1016/S0140-6736(19)31140-7
- 35. Marton, T., Erdélyi, Z. R., Takai, M., Mészáros, B., Supák, D., Ács, N., Kukor, Z., Herold, Z., Hargitai, B., & Valent, S. (2025). Systematic review of accuracy differences in NIPT methods for common aneuploidy screening. Journal of Clinical Medicine, 14(8), 2813. https://doi.org/10.3390/jcm14082813
- 36. Messerlian, G.M., Halliday, J.V., & Palomaki, G.E. (2025). Down syndrome: Overview of prenatal screening. *UpToDate*. Retrieved from https://www.uptodate.com/contents/down-syndrome-overview-of-prenatal-screening
- 37. Middeldorp, S. (2025). Factor V Leiden and activated protein C resistance. *UpToDate*. Retrieved from https://www.uptodate.com/contents/factor-v-leiden-and-activated-protein-c-resistance
- 38. Mustafa, H. J., Najjariasl, P., Aghajani, F., Sambatur, E. V., Khalil, A., Moise, K. J., Jr, & Shamshirsaz, A. A. (2025). Diagnostic accuracy of cell-free DNA for the determination of fetal red blood cell antigen genotype: A systematic review and meta-analysis. *American Journal of Obstetrics and Gynecology*, S0002-9378(25)00308-4. Advance online publication. https://doi.org/10.1016/j.ajog.2025.05.004
- 39. Norwitz, E. R., McNeill, G., Kalyan, A., Rivers, E., Ahmed, E., Meng, L., Vu, P., Egbert, M., Shapira, M., Kobara, K., Parmar, S., Goel, S., Prins, S. A., Aruh, I., Persico, N., Robins, J. C., Kirshon, B., Demko, Z. P., Ryan, A., Billings, P. R., ... Hedriana, H. L. (2019). Validation of a single-nucleotide polymorphism-based non-invasive prenatal test in twin gestations: Determination of zygosity, individual fetal sex, and fetal aneuploidy. Journal of Clinical Medicine, 8(7), 937. https://doi.org/10.3390/jcm8070937
- 40. Nshimyumukiza, L., Menon, S., Hina, H., Rousseau, F., & Reinharz, D. (2018). Cell-free DNA noninvasive prenatal screening for aneuploidy versus conventional screening: A systematic review of economic evaluations. *Clinical Genetics*, 94(1), 3–21. https://doi.org/10.1111/cge.13155
- 41. Özaslan, A., Kayhan, G., İşeri, E., Ergün, M. A., Güney, E., & Perçin, F. E. (2021). Identification of copy number variants in children and adolescents with autism spectrum disorder: A study from Turkey. Molecular Biology Reports, 48, 7371-7378.
- 42. Palomaki, G. E., Chiu, R. W. K., Pertile, M. D., Sistermans, E. A., Yaron, Y., Vermeesch, J. R., Vora, N. L., Best, R. G., & Wilkins-Haug, L. (2021). International Society for Prenatal Diagnosis Position Statement: cell free (cf)DNA screening for Down syndrome in multiple pregnancies. Prenatal Diagnosis, 41(10), 1222–1232. https://doi.org/10.1002/pd.5832
- 43. Palomaki, G., Halliday, J.V., & Russo, M.L. (2025). Prenatal screening for common aneuploidies using cell-free DNA. *UpToDate*. Retrieved from https://www.uptodate.com/contents/prenatal-screening-for-common-fetal-aneuploidies-cell-freedna-test

- 44. Prabhu, M., Louis, J. M., Kuller, J. A., Society for Maternal-Fetal Medicine, & SMFM Publications Committee. (2024). Society for Maternal-Fetal Medicine Statement: RhD immune globulin after spontaneous or induced abortion at less than 12 weeks of gestation. American Journal of Obstetrics and Gynecology, 230(5), B2-B5.
- 45. Schlaikjær Hartwig, T., Ambye, L., Gruhn, J. R., Petersen, J. F., Wrønding, T., Amato, L., Chi-Ho Chan, A., Ji, B., Bro-Jørgensen, M. H., Werge, L., Petersen, M. M. B. S., Brinkmann, C., Ribberholt, J. B., Dunø, M., Bache, I., Herrgård, M. J., Jørgensen, F. S., Hoffmann, E. R., Nielsen, H. S., & COPL consortium (2023). Cell-free fetal DNA for genetic evaluation in Copenhagen Pregnancy Loss Study (COPL): a prospective cohort study. Lancet (London, England), 401(10378), 762–771. https://doi.org/10.1016/S0140-6736(22)02610-1
- 46. Shao, L., Akkari, Y., Cooley, L. D., Miller, D. T., Seifert, B. A., Wolff, D. J., Mikhail, F. M., & ACMG Laboratory Quality Assurance Committee (2021). Chromosomal microarray analysis, including constitutional and neoplastic disease applications, 2021 revision: A technical standard of the American College of Medical Genetics and Genomics (ACMG). Genetics in Medicine, 23(10), 1818–1829. https://doi.org/10.1038/s41436-021-01214-w
- 47. Shear, M. A., Swanson, K., Garg, R., Jelin, A. C., Boscardin, J., Norton, M. E., & Sparks, T. N. (2023). A systematic review and meta-analysis of cell-free DNA testing for detection of fetal sex chromosome aneuploidy. Prenatal Diagnosis, 43(2), 133–143. https://doi.org/10.1002/pd.6298
- 48. Singhal, U., Horrow, C., Kesselheim, A. S., & Morgan, T. M. (2023). Modernizing federal oversight of laboratory-developed tests toward safety, validity, and utility. The New England Journal of Medicine, 389(19), 1735-1737.
- 49. Soster, E., Dyr, B., Rafalko, J., Almasri, E., & Cacheris, P. (2023). Positive cfDNA screening results for 22q11.2 deletion syndrome—Clinical and laboratory considerations. Frontiers in Genetics, 14. https://doi.org/10.3389/fgene.2023.1146669
- 50. U.S. Food and Drug Administration. (2022). Genetic Non-Invasive Prenatal Screening Tests May Have False Results: FDA Safety Communication. Date issued: April 19, 2022. Retrieved from https://www.fda.gov/medical-devices/safety-communications/genetic-non-invasive-prenatal-screening-tests-may-have-false-results-fda-safety-communication
- 51. van Eekhout, J. C. A., Bekker, M. N., Bax, C. J., & Galjaard, R. H. (2023). Non-invasive prenatal testing (NIPT) in twin pregnancies affected by early single fetal demise: A systematic review of NIPT and vanishing twins. Prenatal Diagnosis, 43(7), 829–837. https://doi.org/10.1002/pd.6388
- 52. Zhang, J., Wu, Y., Chen, S., Luo, Q., Xi, H., Li, J., Qin, X., Peng, Y., Ma, N., Yang, B., Qiu, X., Lu, W., Chen, Y., Jiang, Y., Chen, P., Liu, Y., Zhang, C., Zhang, Z., Xiong, Y., Shen, J., ... Huang, H. (2024). Prospective prenatal cell-free DNA screening for genetic conditions of heterogenous etiologies. Nature Medicine, 30(2), 470–479. https://doi.org/10.1038/s41591-023-02774-x

Clinical Guideline Revision / History Information

Original Date: 10/11/2017

Reviewed/Revised: 1/18/2018, 11/6/2018, 10/21/2019, 10/21/2020, 10/21/2021, 12/01/2021,

10/20/2022, 10/19/2023, 04/16/2024, 11/1/2024, 02/01/2026