
FaunaDB 2.5.4
Kyle Kingsbury

2019-3-5

FaunaDB is a distributed, indexed document store based on the Calvin transaction protocol. We found that basic
key-value operations in FaunaDB 2.5.4 appeared to provide snapshot isolation up to strict serializability, de-
pending on workload. However, queries involving indices, temporal queries, or event streams failed to live up
to claimed guarantees. We found 19 issues in FaunaDB, including nontransactional schema changes, lockups
removing nodes from clusters, unavailability in response to clock skew and reboots, indices which failed to return
negative integer values or skipped records at the end of pages, and multiple snapshot isolation violations in tem-
poral and indexed queries. By 2.6.0-rc10, Fauna had addressed almost all issues we identified; some minor work
around availability and schema changes is still in progress. Fauna has written a companion blog post to this
piece, which is available here. This work was funded by Fauna, and conducted in accordance with the Jepsen
ethics policy.

1 Background

In 2012, Thomson, Diamond, Weng, et al. published
Calvin: Fast Distributed Transactions for Partitioned
Database Systems: a transactional protocol optimized
for geographic replication. Each Calvin cluster is com-
prised of multiple replicas, where a replica is a collec-
tion of nodes which store a complete copy of the dataset.
Communication within replicas is assumed to be rela-
tively fast, whereas communication between replicas
(e.g. those situated in different datacenters) may incur
high latency costs.

Calvin’s key insight is that ordering transactions, and
actually executing those transactions, are separable
problems.1 Traditional databases lock objects, or use
multi-version concurrency control over read and write
sets to provide an implicit transaction order. Calvin,
by contrast, establishes a total order of transactions
up front, then executes those transactions in parallel
across all replicas.

In order to do this, Calvin transactions must be sub-
mitted in a single request, rather than the interactive
sessions provided by many traditional databases. An
ordering system, called the sequencer, accepts trans-
actions, batches them up into time windows, and ap-
pends those batches to a sharded, totally ordered log.

In FaunaDB, this process requires a round trip to a
majority of log replicas in order to obtain consensus.

With consensus on log entries, each Calvin replica can
read the log and execute the transactions in it indepen-
dently: no coordination with other replicas is required.
This is possible so long as transactions are pure—i.e.,
they do not perform external IO, and execute the same
way given the same state at each replica. Purity also al-
lows Calvin-based systems to batch and pipeline trans-
actions before consensus, improving throughput.

Because replicas execute transactions independently,
the only time replicas must communicate is when the
sequencer is constructing the log. Rather than the
multiple rounds required by two-phase commit, Calvin
transactions require only a single round trip between
replicas (as well as a few short message delays within
each replica).

In addition, Calvin avoids a common problem with dis-
tributed transaction protocols: there is no single point
of coordination for cross-shard transactions. While
many databases can execute operations on each shard
independently, they may fail to support transactions
across shards (e.g. MongoDB, Cassandra), or introduce
a global coordinator (e.g. Zookeeper, VoltDB). Calvin
has no single coordinator in the transaction path–
sequencers can be made up of independent shards,

1Subject to some constraints. For instance, Calvin transactions must know their read and write sets in advance, which may require
some special pre-processing.

1

https://fauna.com
http://cs.yale.edu/homes/thomson/publications/calvin-sigmod12.pdf
https://fauna.com/blog/faunadbs-official-jepsen-results
https://fauna.com/
https://jepsen.io/ethics.html
https://jepsen.io/ethics.html
http://cs.yale.edu/homes/thomson/publications/calvin-sigmod12.pdf
http://cs.yale.edu/homes/thomson/publications/calvin-sigmod12.pdf

each backed by a consensus system like Raft or Paxos.
The total order is derived by deterministically com-
bining short windows of transactions from each shard.
This introduces a fixed latency floor, since executors
must wait for each window to complete before they can
begin executing that window’s transactions, but this
floor can be tuned to be small, relative to the inter-
replica latency within a shard’s consensus group.

Some systems, like Spanner and CockroachDB, avoid
the need for coordination between shards by relying on
semi-synchronized wall clocks. If clock skew exceeds
a certain critical threshold, such systems can exhibit
transactional anomalies. In Calvin, clock skew has no
impact on correctness.

1.1 FaunaDB

FaunaDB adapts the Calvin protocol for use in a mod-
ern, indexed, and temporal document store. Fau-
naDB bypasses Calvin’s requirement that transactions
know their read & write sets before execution; instead,
snapshot-isolated reads are executed by a coordinator
before sequencing the transaction. An optimistic con-
currency control protocol includes read timestamps in
the transaction sent to the sequencer, allowing execu-
tors to identify whether objects have been modified
since they were last read. Since transactions are pure,
these conflicts can be transparently retried.

FaunaDB’s records are JSON-style objects, called in-
stances; each instance is identified by a primary key
called a ref. Instances belong to a collection, called a
class, which defines a namespace for keys as well as
an optional, partial schema. An index system extracts
data from instances and maintains maps of terms to
values, providing uniqueness constraints, secondary
indices, and materialized views. Indices and classes
are namespaced inside of logical databases, which can
be nested.2

To ensure purity, each transaction is a single query ex-
pression; there is no concept of an interactive trans-
action.3 To accommodate this, FaunaDB’s query lan-
guage is richer than most databases’, embedding a
full functional programming language based on the
lambda calculus. FaunaDB queries include compos-
ite datatypes like vectors and maps, first-order anony-
mous functions, let bindings, do notation for execut-
ing multiple side effects like writes, and higher-order
functional constructs like join, map and filter. For

instance, to extract names and ages from a collection
of cats, indexed by type:

(q/map (q/paginate (q/match cats "tabby"))
(q/fn [cat-ref]

(q/let [cat (q/get cat-ref)]
[(q/select ["data" "name"] cat)
(q/select ["data" "age"] cat)])))

We’ve written this query in a Clojure DSL, but the
JSON AST it constructs is essentially the same—just
a little more verbose. We take our index cats, and
ask for every value matching the term "tabby", pag-
inating those results. Each result is a reference to a
cat instance, which we transform using an anonymous
function. That function looks up the value of each ref-
erence, binds that value to a variable cat, and returns
an array with two elements: the cat’s name and age.
This query might return results like:

[["Professor Tiddlywinks", 11]
["Little Miss Snookums", 3]
...]

This expression-oriented syntax makes for easily com-
posable queries that lend themselves well to program-
matic construction.

1.2 Consistency

Fauna’s home page advertises “strong consistency”. Its
datasheet claims FaunaDB is “100% ACID”, providing
“data accuracy and transactional correctness without
compromise4”, thanks to “global strongly consistent
replication”.

In the October 2018 blog post Consistency Without
Clocks, Fauna claimed their consistency protocol, un-
like many competitors, prevents stale reads:

… once a transaction commits, it is guar-
anteed that any subsequent transaction—
no matter which replica is processing it—
will read all data that was written by the
earlier transaction. Other NoSQL systems,
and even most SQL systems, cannot guar-
antee global replica consistency.

And goes on to say:

FaunaDB is an elegant, software-only so-
lution for achieving global ACID transac-

2Fauna plans to rename instances to documents, and classes to collections.
3However, FaunaDB offers a form of session consistency. Each FaunaDB client maintains a local index of the last timestamp it interacted

with, which should ensure that successive queries on the same client must take effect at logically higher times.
4There are, as usual, some compromises.

2

https://fauna.com/
https://app.fauna.com/documentation/reference/instances
https://app.fauna.com/documentation/reference/instances
https://app.fauna.com/documentation/reference/indexconfig
https://fauna.com
http://www2.fauna.com/fdbdatasheet
https://fauna.com/blog/consistency-without-clocks-faunadb-transaction-protocol
https://fauna.com/blog/consistency-without-clocks-faunadb-transaction-protocol

tions, with complete guarantees of serial-
izability and consistency.

The official documentation has little to say about con-
sistency invariants. However, Fauna wrote their own
Jepsen tests, and published a report which made more
specific claims:

FaunaDB provides strict serializability—
or linearizability—for transactions that
write, and serializability for transactions
that only read data.

This is, however, not entirely correct. A more nuanced
story may be found in an architecture blog post from
2017, which lays out FaunaDB’s replication algorithm
and guarantees in detail:

Read-write transactions in FaunaDB
where all reads opt in to optimistic locking
as described above are strictly serializable.

The key detail here is “where all reads opt in”: indices
in Fauna do not participate in optimistic locking by de-
fault, and only guarantee snapshot isolation. However,
by enabling an index’s serialized mode, we can re-
cover serializability for indices. Unique indices imply
serialized as well.

Furthermore, read-only transactions, for performance
reasons, also execute at snapshot isolation, and may
return stale data:

Since read-only transactions in FaunaDB
always have a specific snapshot time but
are not sequenced via the transaction log,
they run at snapshot isolation, which for
read-only transactions is equivalent to se-
rializable.

After careful consultation with Fauna’s engineers, we
believe FaunaDB’s intended consistency levels fall
between snapshot isolation and strict serializability,
depending on whether the transaction is read-only,
whether indices are used, and whether those indices
are flagged as serializable.

Read-Write Read-Only

No indices Strict-1SR Serializable
Serializable indices Strict-1SR Serializable
Indices SI SI

Although snapshot isolation allows anomalies like
stale reads and write skew, it’s still a relatively strong
consistency model. We expect to observe snapshot iso-
lation at a minimum, and where desired, we can pro-

mote SI or serializable transactions to strict serializ-
ability: the gold standard for concurrent systems.

2 Test Design

Fauna wrote their own Jepsen tests, which we refined
and expanded throughout our collaboration. We eval-
uated FaunaDB 2.5.4 and 2.5.5, as well as several de-
velopment builds up to 2.6.0-rc10. Our tests used three
replicas, and 5–10 nodes, striped across replicas evenly.
Log node topologies in 2.5.4 and 2.5.5 were explicitly
partitioned, with a copy in every replica. We waited
for data movement to complete, and for all indices to
signal readiness, before beginning testing.

Starting a FaunaDB cluster in 2.5.5 and 2.5.6 was a
slow process, requiring ~10minutes to stabilize. While
FaunaDB will service requests during this time, la-
tencies are highly variable. Moreover, queries against
newly created indices can return inconsistent data un-
til data movement completes. To speed up testing, we
shut down every node and cache their data files after
completing the initial join process, and begin subse-
quent tests by resetting the cluster to that saved state.
Fauna reports that cluster bootstrap time has been im-
proved in version 2.6.1.

We evaluated a variety of network failure modes,
including partitions isolating a single node, major-
ity/minority partitions within a single replica, and par-
titions isolating a single replica from the others. We
checked FaunaDB’s behavior through process crashes
and restarts, small and large jumps in clock skew, and
rapidly strobing clocks. We also tested with rolling
restarts, while changing FaunaDB’s log node configu-
ration, and removing and adding nodes to the cluster.

We designed a family of workloads for FaunaDB using
the Jepsen library, designed to stress inserts, single-
key linearizable transactions, multi-key snapshot iso-
lation, pagination, phantoms, monotonicity, temporal
queries, and internal consistency within transactions.

2.1 Sets

Our set test inserts a series of unique numbers as sep-
arate instances, one per transaction, and attempts to
read them back through an index. Previous Jepsen
analyses relied on a single final read to determine
the fate of each element, but for FaunaDB, we de-
signed a more thorough, quantitative analyzer: we
read throughout the test, and measure whether suc-
cessfully inserted instances eventually disappeared, or

3

https://app.fauna.com/documentation/
https://www2.fauna.com/correctnessreport
https://fauna.com/blog/acid-transactions-in-a-globally-distributed-database
https://jepsen.io/consistency/models/snapshot-isolation
https://jepsen.io/consistency/models/strict-serializable
https://github.com/fauna/jepsen/blob/b5c3b20d27166ca87796b48077ac17feec2937f9/src/jepsen/faunadb/auto.clj#L77-L88
https://github.com/fauna/jepsen/blob/b5c3b20d27166ca87796b48077ac17feec2937f9/src/jepsen/faunadb/nemesis.clj#L20
https://github.com/fauna/jepsen/blob/b5c3b20d27166ca87796b48077ac17feec2937f9/src/jepsen/faunadb/runner.clj#L30-L57
https://github.com/jepsen-io/jepsen
https://github.com/fauna/jepsen/blob/b5c3b20d27166ca87796b48077ac17feec2937f9/src/jepsen/faunadb/set.clj
https://github.com/jepsen-io/jepsen/blob/3e215342a2678cde716e2875faccb5adbdcc8644/jepsen/src/jepsen/checker.clj#L388-L503
https://github.com/fauna/jepsen/blob/b5c3b20d27166ca87796b48077ac17feec2937f9/src/jepsen/faunadb/set.clj#L88

were visible to all reads after some time t. We also
compute latency distributions for both lost and stable
reads, e.g. how long must one wait to ensure that a suc-
cessful write is visible to all future reads.

Because FaunaDB treats read-only and update trans-
actions differently, a variant of the set test uses a
“strong read” transaction, which includes a spurious
write to an unrelated class in order to force the trans-
action to go through the full commit path.

2.2 Registers

Strict serializability implies linearizability, so we eval-
uated whether FaunaDB supports linearizable oper-
ations on single instances, using an undocumented
/linearized endpoint in the FaunaDBAPI.We gener-
ate randomized reads, writes, and compare-and-set op-
erations, and measure whether the resulting history is
linearizable using the Knossos linearizability checker.

2.3 Bank

As with other transactional systems like CockroachDB
and Dgraph, we stressed FaunaDB’s snapshot isola-
tion in a simulated bank-account system. We model
each account as a single FaunaDB instance, and trans-
fer money between accounts in transactions. Because
transfers write every value they read, transfer transac-
tions are serializable under snapshot isolation. Snap-
shot reads should therefore observe a constant total
balance, across all accounts.

To stress reads of recently created and deleted in-
stances, one variant of this test deletes accounts when
their balance falls to zero, and creates new ones when
necessary. To explore both instance and index reads,
we perform reads by directly querying all n accounts,
or by reading their balances from an index. We can
also test temporal queries by reading at a particular
snapshot time, vs reading the current value.

2.4 Pagination

Exploratory testing suggested that reading multiple
pages of records (e.g. from an index) could result in in-
consistent results. To quantify this behavior, we de-
signed a test specifically to stress FaunaDB’s query
pagination mechanism. We insert groups of n in-
stances in a single transaction, and, concurrently, pag-
inate through all records in the index. We expect that
if any instance from an insert transaction is present

in a read, then that read should also contain all other
instances inserted in the same transaction; violations
imply read skew.

2.5 G2

The bank test verifies snapshot isolation, but serial-
izability implies more restrictive invariants—for in-
stance, the absence of Adya’s phenomenon G2: anti-
dependency cycles. To stress FaunaDB’s support for
serializable indices, we execute pairs of transactions,
each of which performs an index read looking for a spe-
cific write which would have been performed by the
other transaction. If the other transaction’s write is
detected, we abort the transaction. In a serializable
system, at most one of these transactions may commit,
but in a weaker isolationmodel, like snapshot isolation
or repeatable read, these anti-dependency cycles may
be allowed.

2.6 Internal

Many of our tests measure the isolation boundaries
between different transactions; ensuring, for instance,
that a transaction’s effects become visible all at once,
or that there exists an apparent total order of trans-
actions. However, transactions should also exhibit in-
ternal consistency: changes made within a transaction
should be visible to later reads within that same trans-
action.

We explore internal ordering effects by creating objects
matching a predicate, and within the same transac-
tion, querying that predicate to check whether or not
they appear. We also alter those objects, changing
what predicate they fall under, and confirm that old
and new predicates reflect that change.

2.7 Monotonic

FaunaDB clients keep track of the highest timestamp
they’ve interacted with, and provide it with each re-
quest to ensure that they always read successive states
of the system; although reads may observe stale states,
they should never observe an older state than one that
client previously observed. To verify this, we set up a
counter which increments over time. Since the counter
value always increases, successive reads of that value
by any single client should observe monotonically in-
creasing transaction timestamps and values.

4

https://jepsen.io/consistency/models/linearizable
https://github.com/fauna/jepsen/blob/b5c3b20d27166ca87796b48077ac17feec2937f9/src/jepsen/faunadb/register.clj#L30-L62
https://github.com/fauna/jepsen/blob/b5c3b20d27166ca87796b48077ac17feec2937f9/src/jepsen/faunadb/register.clj#L30-L62
https://github.com/fauna/jepsen/blob/b5c3b20d27166ca87796b48077ac17feec2937f9/src/jepsen/faunadb/register.clj#L78-L81
https://github.com/fauna/jepsen/blob/b5c3b20d27166ca87796b48077ac17feec2937f9/src/jepsen/faunadb/register.clj#L78-L81
https://github.com/jepsen-io/knossos
https://jepsen.io/analyses/cockroachdb-beta-20160829
https://jepsen.io/analyses/dgraph-1-0-2
https://github.com/fauna/jepsen/blob/b5c3b20d27166ca87796b48077ac17feec2937f9/src/jepsen/faunadb/bank.clj
https://github.com/fauna/jepsen/blob/b5c3b20d27166ca87796b48077ac17feec2937f9/src/jepsen/faunadb/bank.clj#L102-L129
https://github.com/fauna/jepsen/blob/b5c3b20d27166ca87796b48077ac17feec2937f9/src/jepsen/faunadb/bank.clj#L102-L129
https://github.com/fauna/jepsen/blob/b5c3b20d27166ca87796b48077ac17feec2937f9/src/jepsen/faunadb/pages.clj
https://github.com/fauna/jepsen/blob/b5c3b20d27166ca87796b48077ac17feec2937f9/src/jepsen/faunadb/pages.clj
https://github.com/fauna/jepsen/blob/b5c3b20d27166ca87796b48077ac17feec2937f9/src/jepsen/faunadb/pages.clj#L67-L144
http://pmg.csail.mit.edu/papers/adya-phd.pdf
https://github.com/fauna/jepsen/blob/b5c3b20d27166ca87796b48077ac17feec2937f9/src/jepsen/faunadb/g2.clj#L56-L62
https://github.com/jepsen-io/jepsen/blob/d85dfd497d4f981b4fb84cae7476404c49752b82/jepsen/src/jepsen/tests/adya.clj#L69-L84
https://github.com/fauna/jepsen/blob/b5c3b20d27166ca87796b48077ac17feec2937f9/src/jepsen/faunadb/internal.clj#L79-L120
https://github.com/fauna/jepsen/blob/b5c3b20d27166ca87796b48077ac17feec2937f9/src/jepsen/faunadb/internal.clj#L79-L120
https://github.com/fauna/jepsen/blob/b5c3b20d27166ca87796b48077ac17feec2937f9/src/jepsen/faunadb/internal.clj#L122-L131
https://github.com/fauna/jepsen/blob/b5c3b20d27166ca87796b48077ac17feec2937f9/src/jepsen/faunadb/internal.clj#L139-L190
https://github.com/fauna/jepsen/blob/b5c3b20d27166ca87796b48077ac17feec2937f9/src/jepsen/faunadb/internal.clj#L139-L190
https://github.com/fauna/jepsen/blob/b5c3b20d27166ca87796b48077ac17feec2937f9/src/jepsen/faunadb/monotonic.clj#L100-L110
https://github.com/fauna/jepsen/blob/b5c3b20d27166ca87796b48077ac17feec2937f9/src/jepsen/faunadb/monotonic.clj#L151-L172
https://github.com/fauna/jepsen/blob/b5c3b20d27166ca87796b48077ac17feec2937f9/src/jepsen/faunadb/monotonic.clj#L151-L172

We also perform temporal queries, reading from a
timestamp a few seconds in the past or future. Of
course the resulting timestamps and values are non-
monotonic, since we are reading from random times.
However, the relationship between timestamps and
values should be globally monotonic.

3 Multi-monotonic

We observed sporadic failures in the monotonic test,
and designed a variant optimized for read and write
throughput, while removing write contention. Instead
of performing increment transactions (which read a
register’s value, add one, and write the resulting value
back) we perform blind writes of sequential values
from a single process. This still guarantees that the
values in the database should increase monotonically,
but reduces transaction retries (and potential race con-
ditions) due to increment contention. Unlike the mono-
tonic test, which observes only a single register, we
work with several registers concurrently, giving us
more chances to observe non-monotonic behavior.

Read transactions fetch the current values of a ran-
domly selected subset of recently written keys, and
record not only the time that the read transaction exe-
cuted, but also the modification timestamps from each
observed register. We then order reads by transac-
tion timestamp, and verify that the values observed for
each key monotonically increase.

4 Results

4.1 Performance Limitations

FaunaDB’s recovery from a network partition was rel-
atively slow: in 2.5.4 and 2.5.5, it took 20–80 seconds,
depending on cluster topology, to recover from a par-
tition isolating a single replica. This limited the rate
at which we could create meaningful network faults,
and reduced our probability of reaching interesting
failure states. Fauna is aiming for recovery times of
500ms or less—in line with similar consensus systems.
Presently, development builds of 2.6.1 can take 30 sec-
onds to recover from some network partitions. Fauna
reports that this issue is related to the responsiveness
of the Φ-accrual failure detector, and has been fixed in
the upcoming 2.6.2 release.

4.2 Possible Surprises

FaunaDB’s query documentation says that let bind-
ings and do expressions evaluate their forms sequen-
tially, left-to-right. However, the evaluation seman-
tics for collection literals, like [1, 2, 3] or {type:
"cat", sound: "meow"} were not explicitly specified.
As it turns out, those forms are also evaluated in array
or object literal order, so a query like…

{a: Paginate(Match(index ...))
b: Create(...)
c: Paginate(Match(index ...))}

means that a will not reflect the results of the Create
call, but c will. Users should be careful to use order-
preserving maps when constructing FaunaDB queries
in their language, to avoid the accidental reordering of
side effects. Fauna has since documented this.

This also applies to temporal queries: normally,
At(some-timestamp, Paginate(...)) will always
return the same results, based on the state of the
database at the given timestamp. However, if a tempo-
ral query’s timestamp is the same as the current trans-
action timestamp, the value of that temporal query de-
pends on that transaction’s prior writes.

4.3 Minor Issues

FaunaDB’s data definition language (DDL) is non-
transactional: schema changes are asynchronously
cached, and may take several seconds to apply. This
allows some unusual transient behaviors, including:

• In 2.5.4, you cannot create a class and an index
on that class in the same transaction; you have to
perform a second transaction to create the index.

• Classes and indices cannot be transactionally up-
serted. Queries that create a class iff that class
does not currently exist may fail to observe an al-
ready created class, then, on inserting, throw an
“instance not unique” error. This behavior was a
known bug in 2.5.4, and a fix is planned for 2.7.

• Creating a class does not necessarily guarantee
a subsequent transaction will be able to insert
into that class. In FaunaDB 2.5.4, for example,
inserts into recently created classes may return
errors like “invalid ref: Ref refers to undefined
class”. A fix is planned for 2.7.

• Newly created indices are queryable, but are
built asynchronously. Even if the collection be-
ing indexed is empty, transactions using that in-
dex could return inconsistent data for several

5

https://github.com/fauna/jepsen/blob/b5c3b20d27166ca87796b48077ac17feec2937f9/src/jepsen/faunadb/monotonic.clj#L118-L128
https://github.com/fauna/jepsen/blob/b5c3b20d27166ca87796b48077ac17feec2937f9/src/jepsen/faunadb/monotonic.clj#L194-L219
https://github.com/fauna/jepsen/blob/b5c3b20d27166ca87796b48077ac17feec2937f9/src/jepsen/faunadb/multimonotonic.clj#L318-L331
https://github.com/fauna/jepsen/blob/b5c3b20d27166ca87796b48077ac17feec2937f9/src/jepsen/faunadb/multimonotonic.clj#L318-L331
https://github.com/fauna/jepsen/blob/b5c3b20d27166ca87796b48077ac17feec2937f9/src/jepsen/faunadb/multimonotonic.clj#L97-L105
https://github.com/fauna/jepsen/blob/b5c3b20d27166ca87796b48077ac17feec2937f9/src/jepsen/faunadb/multimonotonic.clj#L179-L242
https://github.com/fauna/jepsen/blob/b5c3b20d27166ca87796b48077ac17feec2937f9/src/jepsen/faunadb/multimonotonic.clj#L179-L242
https://app.fauna.com/documentation/reference/queryapi#let
https://app.fauna.com/documentation/reference/queryapi#let
https://app.fauna.com/documentation/reference/queryapi#do

seconds (and, for clusters undergoing data move-
ment, potentially much longer). Users should be
careful to poll newly created indices until they
show active: true, which indicates that the in-
dex is ready for use. We observed this problem
in 2.5.4 through 2.6.0-rc10; it is fixed in develop-
ment builds of 2.6.1.

We also encountered problems changing cluster topol-
ogy:

• In 2.5.5, we found that one cannot follow the doc-
umented procedure for removing a node: asking
a node to remove itself from the cluster will al-
ways fail. Instead, removes must be initiated on
a different node. Fauna fixed this in 2.6.0-rc1.

• We were unable to remove nodes from 2.5.5 clus-
ters, either by removing the node before killing it,
or by stopping or killing the node to be removed
first, then asking remaining nodes to remove it.
Removed nodes would complete the drain pro-
cess, but never actually leave the cluster. This
bug was fixed in 2.5.6-rc4.

• In 2.5.5, configuration and topology changes
could result in nodes returning unexpected inter-
nal server errors to clients, including “FaunaDB
Service is uninitialized” and “Transaction Log is
uninitialized.” These errors include a warning to
contact Fauna’s support team, but appear harm-
less; Fauna fixed these in 2.6.0-rc1.

• In 2.5.5 and 2.5.6-rc4, rebooting nodes to apply
topology changes could result in nodes throwing
“operator error: No configured replica for key:
0x…” until the topology had stabilized. These er-
rors appear harmless, and Fauna removed them
in 2.6.0-rc1.

• In 2.6.0-rc1, Fauna removed the need to manu-
ally assign nodes to log shards in the config file,
allowing FaunaDB to manage log topology auto-
matically. However, we identified a bug in this
system: nodes could leave the cluster before their
log partitions had been spun down ormigrated to
other nodes, which could cause future node leave
operations to stall indefinitely. Fauna addressed
this in 2.6.0-rc7.

• In 2.6.0-rc7, removing nodes could stall when
transaction pipelines blocked, awaiting transac-
tions from a log segment that was already closed
(but not yet destroyed). Fixed in 2.6.0-rc10.

And availability issues on startup:

• In 2.5.6-rc4 and -rc9, concurrently rebooting

nodes to apply configuration changes, or reboot-
ing nodes when other nodes are inaccessible due
to a network partition, could result in nodes con-
necting to the cluster, but never binding port
8444, which is used for client queries and ad-
ministrative operations. When a node is unable
to join the consensus ring which manages the
cluster, it blocks the node from completing the
startup process. This issue is addressed in 2.6.0-
rc10.

4.4 Clock Skew Unavailability

FaunaDB’s replication protocol uses consensus, not
wall clocks, to construct its transaction logs. Indeed, in
Consistency Without Clocks, Fauna repeatedly claims
that “FaunaDB requires no clock synchronization.”
However, the installation instructions mention that
one must first install “NTP, with the clocks synced
across nodes”.

Specifically, FaunaDB still relies on wall clocks to de-
cidewhen to seal timewindows in the log, whichmeans
that clock skew can delay transaction processing. We
tested FaunaDB with a range of clock skews from mil-
liseconds to hundreds of seconds, over multi-second
windows, and strobing rapidly every few milliseconds,
as well as gradually increasing and decreasing offsets.
We applied these clock adjustments to randomly se-
lected single nodes, repeatedly to a single node, and
to randomly selected subsets.

In none of our clock tests did FaunaDB exhibit new
safety violations. However, clock skew can cause par-
tial or total unavailability. Specifically, when a single
node is skewed by offset seconds relative to the rest
of the cluster…

• Small positive skews appear to have little im-
pact.

• Skews over 10 seconds can result in 5-second
timeouts for all requests on the affected node,
until the clock skew is resolved. Once the clock
is resynchronized, it takes an additional offset
seconds for the node to recover.

• Small negative skews can result in elevated la-
tencies (~20 seconds) on single nodes.

• Negative skews more than 10 seconds can re-
sult in 60 second timeouts on that node, which
persist until the clock skew is resolved. How-
ever, they can also cause cluster-wide disrup-
tion, where most requests encounter 60 second
timeouts, while a few requests proceed normally.
Ending the clock skew resolves the unavailability
immediately.

6

https://app.fauna.com/documentation/howto/operations/removenode
https://app.fauna.com/documentation/howto/operations/removenode
https://fauna.com/blog/consistency-without-clocks-faunadb-transaction-protocol
https://app.fauna.com/documentation/howto/operations/newclustersetup
http://jepsen.io.s3.amazonaws.com/analyses/faunadb-2.5.4/20181204T004801-20-second-negative-skew.zip
http://jepsen.io.s3.amazonaws.com/analyses/faunadb-2.5.4/20181204T004801-20-second-negative-skew.zip

Skews on multiple nodes, or skews which change over
time, can result in complex combinations of these be-
haviors, including total unavailability. Predicting ex-
actly how FaunaDB will respond is somewhat difficult;
we believe effects depend on whether the primary node
for a given log partition was affected, and whether the
skew was forward or backwards in time. There may
also be a dependence on internal and client timeouts.

Clock synchronization is theoretically not required for
FaunaDB availability; Fauna plans to address this is-
sue in 2.7.

4.5 Missing Negative Integer Values

Initial designs of the pagination test inserted positive
and negative pairs of integers in the same transaction,
e.g [-5, 5]. To our surprise, querying the index for
all values returned only positive numbers, never nega-
tive ones. This occurred because FaunaDB began pag-
inating result sets at 0, not at MIN_LONG. Because Fau-
naDB sorts doubles after longs, and traversal begins
at the long value 0, this problem only affected integers,
not floating-point numbers.

We found this issue in 2.5.4, and it was fixed in 2.5.5.
As a workaround, users on 2.5.4 and lower can begin
any pagination of sets containing negative integer val-
ues with {after: MIN_LONG}.

4.6 Time is a Flat Circle

As a temporal database, FaunaDB exposes an events
query which returns the history of events (e.g. creates,
updates, and deletes) affecting a given instance, or
predicate query. However, when we used event queries
to check the history of a single instance, we discov-
ered the returned sequence of events formed an infinite
loop.

When paginating through events, FaunaDB returns
the most recent page of events first, but in chronolog-
ical order. That is, if we number events 0, 1, 2, …,
then the first page of results might return events [10,
11, 12, 13]. This makes some sense; one is typically
more interested in recent than ancient history. How-
ever, the pointers to request additional pages are bro-
ken: there is no before page, and the next page be-
gins at event 9. Requesting the next page iterates in
ascending order from 9, returning the exact same page:
[10, 11, 12, 13], rather than [6, 7, 8, 9].

Fauna fixed this issue in 2.6.0-rc10.

4.7 Non-Transactional Pagination

By design, FaunaDB has no way to return unbounded
result sets. Instead, one requests a page of results of
a certain size—by default, 64 elements. Page objects
also include references to the previous and next pages
of results, which provides “cursor-like semantics”.

The mechanism Fauna used in their Jepsen tests was
to fetch the first page of results, and with the after
cursor from that page, make the same paginated query,
but after the given cursor, and to continue traversing
the result set until no after cursor remained. This
is also how the FaunaDB Javascript client iterates
through results.

This approach is intuitive, sensible, and wrong. Pagi-
nation cursors only encode the value that the next page
should begin after, not the time. Since each page is
fetched in a separate query, and since each query exe-
cutes at a different transaction time, modifications to
result sets during traversal may result in inconsistent
snapshots. For instance, a transaction could insert the
numbers 80 and 81 together, but if the two elements
happen to fall on different pages, a paginated query
could observe 81 but not 80, which violates snapshot
isolation.

The documentation says that pagination can be used
to “walk the result set in blocks”, but doesn’t actually
claim that result sets are transactional. Whether this
behavior violates Fauna’s claimed invariants depends
on how users interpret the documentation. FaunaDB
is a temporal database, so one might reasonably ex-
pect pagination cursors to include temporal informa-
tion. However, each page is fetched in a different query,
and FaunaDB generally does not enforce transactional
isolation across queries.

When paginating, users should be aware of the possi-
bility of read skew, missing elements, duplicated ele-
ments, etc., and use the same timestamp for all pages
where snapshot isolation is required.

4.8 Definitely Non-Transactional Pagination

To work around this issue, we redesigned how Jepsen
iterates through paginated results; we fetch the snap-
shot time ts along with the first page of results,
and wrap every subsequent page query in At(ts,
Paginate(...)), ensuring that every page observes
the same logical timestamp. Unfortunately, pagina-
tion tests continued to show read skew, both with nor-
mal and serialized indices.

7

https://app.fauna.com/documentation/reference/queryapi#paginate
https://github.com/fauna/faunadb-js/blob/be691716c076d1277849a77b521d275da273fc7f/src/PageHelper.js
https://github.com/fauna/jepsen/blob/b5c3b20d27166ca87796b48077ac17feec2937f9/src/jepsen/faunadb/client.clj#L224-L265
https://jepsen.io.s3.amazonaws.com/analyses/faunadb-2.5.4/20181011T111249.000-0400-pages-serialized-index-inconsistent.zip

[{:op
{:type :ok,
:f :read,
:value
[-9750
-9282
...
9937
9991],

:process 18,
:time 667358917338,
:index 82},

:errors
#{{:expected #{2392 -1576 -3715 3539},

:found #{3539}}
...

In this particular read, several transactions were only
partly visible: for instance, 2392, -1576, -3715, and
3539 were inserted in the same transaction, but of
those, only 3539 was actually visible in the read. These
problems occurred in version 2.5.4, in healthy clusters
without faults.

This anomalymanifested regardless of whether indices
had one or multiple data partitions. Moreover, care-
ful inspection revealed that not only could FaunaDB
exhibit read skew between pages, but that a single
page could include incomplete writes from other trans-
actions. This suggested a more fundamental problem
than pagination—perhaps the index structure itself
was improperly isolated.

4.9 Inconsistent Indices

To explore this more fully, we designed two variants
of the bank test: one which reads all accounts by mak-
ing requests for n specific keys, and one which requests
all values from an index. We found that although in-
stance reads appeared safe, index reads could observe
wildly inconsistent values. For instance, in a system of
8 bank accounts containing $100, with 10 clients mak-
ing concurrent transfers up to $5, the observed total
of all account values could fluctuate between $27 and
$126. This clearly violates FaunaDB’s claims of snap-
shot and serializable isolation for indices.

Figure 1: Plot of total balances over time, colored by node. In a snapshot isolated system, every read would
return exactly 100.

In healthy clusters, on versions 2.5.4, 2.5.5, and 2.6.0-
rc7, we found roughly 60% of reads could observe in-
consistent states. This occurred with both serialized
and normal indices, and both fixed and dynamic pools
of account instances.

These read skew issues stemmed from an incomplete
implementation of bitemporal indices: while Fauna

planned to allow queries to observe a consistent view
of an index at any point in time, that system was only
partly implemented prior to 2.6.0.

Internally, changes to FaunaDB instances are tracked
by assigning each change a distinct version, and retain-
ing old versions of instances for a configurable period
(by default, 30 days) before garbage collection. To read

8

http://jepsen.io.s3.amazonaws.com/analyses/faunadb-2.5.4/20181011T151047.000-0400-bank-serialized-index-fixed-instances.zip
http://jepsen.io.s3.amazonaws.com/analyses/faunadb-2.5.4/20181011T151047.000-0400-bank-serialized-index-fixed-instances.zip

the state of an instance r at timestamp t, a transaction
would ensure that the server had applied every trans-
action up to t in the log, then find the version of r with
the highest timestamp tr such that tr < t.

Unlike instances, index entries did not always store a
separate version for every change. Instead, if an in-
dex entry with the same value already existed, that
entry’s timestamp t1 would be overwritten with a new
timestamp t2.

Now imagine an index read executed at some time t
between t1 and t2—either one executed explicitly in
the past, or circa some update to the given index en-
try. That read should observe our index entry, since it
was present at t1. However, because the index entry’s
timestamp was changed to t2, the read would skip that
entry, and instead observe some older state for that
index term—perhaps the empty state, or some prior
value. Voilà: read skew! Fauna fixed this issue in 2.6.0-
rc9.

4.10 Missing Records During Pagination

Unfortunately, bitemporal indices were not the only
problem leading to read skew. In FaunaDB 2.6.0-rc7,
our pagination test observed that reads of uniformly
distributed integers could return fewer records than
expected—in some cases, less than a quarter of in-
stances that should have been present. For instance,
a read might observe:

[-9759 -9748 -9714 ... 4279 4291 5195]

In this particular history, elements -9714, -6722, 7406,
and 7901 were inserted in the same transaction, but
traversal appears to have stopped after 5195: elements
7406 and 7901 are missing. These read skew errors
were ubiquitous, even in healthy clusters, with both
normal and serialized indices.

This occurred because of a bug in index traversal: the
query engine filtered out unapplied transactions from
the index, but still counted those unapplied transac-
tions towards the total number of results for a given
page—effectively skipping n records at the end of each
page, where n was the number of uncommitted trans-
actions visible during the traversal. Fauna fixed this
bug in 2.6.0-rc9.

4.11 Non-temporal Temporal Queries

As a temporal database, FaunaDB allows queries to
inspect the state of the database at any point in time.
Any query can be wrapped with At(t, ...) to ob-
serve what that query would have seen at timestamp
t. However, temporal queries for the state of a single
instance at time t exhibited inconsistent behavior sim-
ilar to the bitemporal index problem: queries would be
prohibited from returning the state of that instance af-
ter t, but could observe any state—not just the most
recent state—before t.

Figure 2: Plot of register values vs FaunaDB timestamps, broken down by process. Queries are performed at
the current FaunaDB timestamp, plus or minus 100 seconds. Notice that the values of registers can appear to
decrease as timestamps increase, even for a single process talking to a single server.

9

http://jepsen.io.s3.amazonaws.com/analyses/faunadb-2.5.4/20181205T153816-serialized-indices-pages.zip

This resulted in apparent paradoxeswhere transaction
T1 would read at time t1, and T2 read at a later time
t2—but T2 observed an earlier state than T1. This is-
sue affected instance reads, not just indices.

For example, in the monotonic test, we read an in-
stance with a monotonically increasing value. Be-
cause the value never decreases, reads at higher times
should show higher values. However, if we perform
temporal queries at the current transaction time plus
or minus, say, 10 seconds, we observe a distinctly non-
monotonic relationship between timestamps and val-
ues.

In this graph, note that the spread of timestamps
which can observe the same value is roughly 100 sec-

onds. This occurs because reads at future timestamps
(up to 100 seconds from the current time) observewhat-
ever current state some node has available, resulting
in a spread of possible values for the same timestamp,
whereas reads at past timestamps observe the fixed
value for that timestamp, giving rise to the clean up-
per bound on observed values.

Moreover, this bug allowed temporal reads of multiple
instances to return the state of one instance at t1, and
the state of another at t2, allowing read skew. For in-
stance, in this bank test, we replace our normal reads
with temporal reads, +/- 10 seconds from the current
time. Network partitions cause some replicas to lag
behind others in applying transactions. Out of 7190
reads, 5 observed an inconsistent state.

Figure 3: Plot of total balances over time, colored by node. In a snapshot isolated system, every read should
have observed $100.

Unusually, some reads observed no accounts whatso-
ever, which would be a legal read of the database state
before the test had ever begun. However, this test
reads at most 10 seconds into the past—and the read
of zero occurred over a hundred seconds into the test.
We found that temporal reads in 2.5.5 weren’t just able
to read recent (but non-monotonic) states—in general,
they can read quite old ones, including the empty state.

Fauna was aware of this bug before Jepsen identified
it in 2.5.5, and fixed the issue in FaunaDB 2.6.0-rc9.
Near-present and future reads no longer result in fre-
quent non-monotonic anomalies.

4.12 Non-monotonicity, Long Fork, Read
Skew

While 2.6.0-rc9 resolved the largest cause of read skew
in temporal queries, Jepsen continued to see occa-
sional test failures inmonotonic, multi-monotonic, and
bank tests. We observed these errors sporadically
in healthy clusters and more frequently with process
crashes and restarts, and they occurred with both nor-
mal and temporal queries.

For instance, in monotonic tests (even without tempo-
ral reads) a single process reading a single increment-
only instance could read 4, 5, 6, then 5 again. This
is legal under snapshot isolation, because read-only

10

http://jepsen.io.s3.amazonaws.com/analyses/faunadb-2.5.4/20181026T110252-bank-at-queries.zip

transactions are allowed to observe any past times-
tamp. However, this behavior violates FaunaDB’s ses-
sion guarantee: clients should always read a state at
least as recent as any they have in the past.

As it turns out, Fauna discovered a race condition
in the client, which updated the client’s highest-seen
timestamp after, not before, returning results to a
caller. However, our anomalies were caused by some-
thing different: read timestamps did increase mono-
tonically, but values occasionally went backwards.

We designed the multi-monotonic test to explore this
behavior in more detail, and discovered two things.
First, this behavior occurs only sporadically, but when
it does occur, several readsmay observe non-monotonic
state, which suggests some sort of transition within
the FaunaDB cluster may be to blame. Second, the
problem is worse than simple non-monotonicity.

To understand why, consider this test run, which ex-
hibited six non-monotonic reads. The fourth (at index
526670) observed a value and write timestamp for key
3676 which were lower than observed by a prior read
(at index 526569).

Read ts Value ts Value

00:38:13.695940 1544747893688800 291
00:38:13.752572 1544747893588600 290

However, these two read transactions observed more
than key 3676—they read other keys as well. We’ll con-
sider just a few of those here, for illustrative purposes:

Key 3297 3676 4189 5432

Read 1 380 291 264 347
Read 2 380 290 265 348

Key 3297 is unchanged, 3676 has decreased, and 4189
& 5432 both increased. Consider the possible orders of
writes which could lead to such a snapshot: in order to
observe 4189 increasing, read 1must precede the write
increasing 4189 to 265, and read 2 must come there-
after. Therefore, read 1 must precede read 2. How-
ever, the exact opposite constraint applies on key 3676:
read 2 must precede read 1. These snapshots are not
compatible with a total order of write transactions.

This particular anomaly is known as “long fork”: two
write transactions T1 & T2 which write disjoint keys
can have their writes observed in contradictory orders:
one read observes T1 but not T2, while another ob-
serves T2 but not T1. This violates snapshot isolation,
although it is legal under parallel snapshot isolation.

Figure 4: In this run, process crashes and restarts allowed bank queries to occasionally read a total value of
accounts slightly lower or higher than expected.

11

http://jepsen.io.s3.amazonaws.com/analyses/faunadb-2.5.4/20181213T192148-non-monotonic-long-fork.zip
http://www.news.cs.nyu.edu/~jinyang/pub/walter-sosp11.pdf

We believe the bug which underlies this issue also al-
lows for sporadic bank test failures. For instance, in
this run, version 2.6.0-rc9 returned incorrect total bal-
ances for five reads. Since the value returned to nor-
mal, rather than shifting permanently, we suspect this
read-skew anomaly may only affect read-only transac-
tions.

Careful inspection of the histories suggests that all of
these anomalies have a common etiology: reads may
fail to observe the most recent state of some (but not
necessarily all) instances read in a transaction, instead
observing some other, past state. Specifically, when a
transaction reads a version of an instance with a times-
tamp equal to the query snapshot time, that version is
interpreted as being in the present, and then rewrit-
ten.

This problem was introduced in 2.6.0-rc9 by a patch for
the bitemporal index problem, and did not impact pro-
duction releases. Fauna fixed the issue in 2.6.0-rc10.

4.13 Acute, Persistent Read Skew

Finally, version 2.6.0-rc9 introduced a new class of
behavior: under rare conditions, randomized process
crashes & restarts could put FaunaDB into a state
where almost every read observes an incorrect balance.
In some cases, FaunaDB recovers and returns the cor-
rect value after a burst of incorrect reads. More of-
ten, though, reads remain wildly inconsistent for the
remainder of the test, even if we restart every node
and allow the cluster to stabilize.

For example, in this test run, we transfer money be-
tween a pool of 8 fixed bank accounts, containing
$100 total. All reads are performed directly on in-
stances, not indices, and we use normal, non-temporal
reads—although this problem manifests with tempo-
ral queries too.

Figure 5: An acute, persistent bank failure, beginning at 1069 seconds. Values fluctuate from 30 to 222, instead
of 100.

746 seconds into the test, something terrible happens:
observed values fluctuate randomly between 30 and
222. There are some windows of downtime due to ad-
ditional process crashes and restarts; finally, at 1069
seconds, we restart every node and let the cluster run
in a healthy state until 1636 seconds. Despite this long
window for recovery, observed values do not stabilize.
More worryingly, a dense streak of reads at ~160 sug-
gests that perhaps skewed reads were written back to
the database, permanently corrupting state—since the

value never stabilizes, it’s hard to tell.

During this time, FaunaDB fails some transfer trans-
actions with errors like “Mismatched transaction re-
sults Vector”, which begin at 750 seconds, and continue
throughout the remainder of the test. This error sug-
gests that FaunaDB’s internal isolation mechanisms
have failed.

Every transaction epoch in FaunaDB is partitioned
across segments. In 2.6.0-rc9, Fauna made changes to

12

http://jepsen.io.s3.amazonaws.com/analyses/faunadb-2.5.4/20181219T000947-bank-occasional-read-skew.zip
http://jepsen.io.s3.amazonaws.com/analyses/faunadb-2.5.4/20181218T164321-bank-catastrophe.zip

the dynamic log management code which introduced
an off-by-one error in recovery after a node restarts.
This error involves three conditions:

1. The applied transaction state for the current
epoch had been partially synced to disk on the
node.

2. The node shut down immediately after the par-
tial sync, before additional epochs were applied.

3. The node restarted immediately thereafter.

After restarting, a node has two types of on-disk state
to recover from: the transaction log (where every com-
mitted entry is fsynced to disk), and the applied trans-
action state, which is periodically synced—by default,
every two minutes, or when buffers are full. The node
needs to take the last applied state, and replay trans-
actions from the log against that state to catch up.

However, when the applied transaction state is only

partially synced, the node would choose the next log
segment, rather than the segment which had not been
completely applied. Any transactions in the tail of the
previous log segment would be skipped on this partic-
ular node, which led to nodes disagreeing about the
applied transaction state.

Moreover, the timestamps of those missing transac-
tions would be applied to the next transaction in the
epoch. Future epochs would be unaffected, as would
transactions executed on other nodes. This divergence
also contributed to read skew.

Operators could recover from this scenario by running
a repair task, or by identifying and replacing the af-
fected node, recovering data from their (hopefully cor-
rect) peers.

Fauna introduced this issue in 2.6.0-rc9, and fixed it in
2.6.0-rc10. It did not impact production releases.

Figure 6: A successful bank test in 2.6.0-rc10, in which no reads observed inconsistent state.

5 Discussion

FaunaDB’s core operations on single instances in 2.5.4
appeared solid: in our tests, we were able to reliably
create, read, update, and delete records transaction-
ally at snapshot, serializable, and strict serializable
isolation. Acknowledged instance updates were never
lost to single-instance reads. In 2.6.0-rc10, with serial-
ized indices, FaunaDB even prohibited subtle anoma-
lies like predicate phantoms.

However, we found serious safety issues in index, tem-
poral, and event queries, race conditions in index and
class creation, and multiple safety issues in pagina-
tion, including read skew andmissing records. We also
found a number of bugs in cluster topology changes,
including nodes getting stuck leaving and rebooting to
apply configuration changes. There were serious safety
issues in individual-instance operations in release can-
didates, but these did not impact production releases.

13

№ Summary Event Required Fixed in

1 Can’t create a class & index on that class in same txn None Unresolved
2 Can’t upsert classes or indices None Unresolved
3 Can’t insert into newly created class None Unresolved
4 New indices return inconsistent data None 2.6.1-dev
5 Can’t ask nodes to remove themselves Node removed 2.6.0-rc1
6 Removed nodes stall, never leave cluster Node removed 2.5.6-rc4
7 Unexpected, harmless component uninitialized errors Topology change 2.6.0-rc1
8 Unexpected, harmless operator errors Topology change 2.6.0-rc1
9 Removed nodes stall due to impossible log topologies Node removed 2.6.0-rc1
10 Removed nodes stall due to closed transaction pipelines Node removed 2.6.0-rc10
11 Failure to bind port 8444 when consensus ring unavailable Restart + isolated 2.6.0-rc10
12 Elevated latencies & unavailability due to clock skew Clock skew Unresolved
13 Default pagination never returns negative integers None 2.5.5
14 Infinite loop paginating instance events None 2.6.0-rc10
15 Incomplete bitemporal indexes Index read 2.6.0-rc9
16 Missing records during pagination None 2.6.0-rc9
17 Temporal queries for future times observe local present Temporal read 2.6.0-rc9
18 Occasional non-monotonic reads, long fork, read skew None 2.6.0-rc10
19 Acute, persistent read skew, possible write corruption Restart after sync 2.6.0-rc10

5.1 Recommendations

Two major bugs impacted transactional safety in re-
leased versions of FaunaDB.

First, index queries in 2.5.4 through 2.6.0-rc7 did not
necessarily return the current (as of the read times-
tamp) state of records, due to an incomplete implemen-
tation of bitemporal indices. Users can mitigate this
problem by fetching specific instances instead of using
indices. This problem is fixed in 2.6.0-rc9.

Second, temporal queries in 2.5.5 and prior could re-
turn incorrect values for instance reads when a node
had not yet applied all updates prior to the requested
time. Users canmitigate this problem by avoiding tem-
poral queries for recent (or future) timestamps. This
problem is also fixed in 2.6.0-rc9.

While 2.6.0-rc9 fixed several safety issues, it also exhib-
ited new bugs, including occasional non-monotonicity,
long fork, and read skew. These issues appear tran-
sient and, so far, limited to read-only transactions. In
addition, when nodes are restarted, FaunaDB 2.6.0-
rc9 can wind up in a state where most queries return
dramatically inconsistent data. FaunaDB occasionally
recovers on its own, but in the majority of our testing,
read skew persists even after nodes are restarted, and
the cluster allowed to stabilize. Fauna has since re-
leased version 2.6.0, which includes fixes for the prob-
lems we identified in 2.6.0-rc9.

Jepsen recommends all users upgrade to 2.6.0 as
quickly as practical.

Users should also be aware of issues around pagina-
tion: prior to 2.5.5, pagination would skip negative in-
tegers by default. In 2.5.4 and prior versions, users
can work around this issue by explicitly beginning pag-
ination at MIN_LONG. Users should also be aware that
pagination may skip some records at the end of each
page when records are modified concurrently with pag-
ination; this issue is fixed in 2.6.0-rc9. Finally, users
should be careful to explicitly pass a timestamp to pag-
inated queries to avoid duplicated or missing items, or
read skew, when traversing multiple pages. Some offi-
cial client libraries, like the FaunaDBJavascript client,
fail to do this correctly.

In 2.5.4 and 2.5.5, schema operations were non-
transactional in several ways—for instance, one can-
not create a class and index on that class in the
same transaction, creating a class does not guaran-
tee that one can immediately5 insert instances into
that class, and classes and indices can not be safely
upserted. Since schema operations are generally in-
frequent in production environments, and rarely con-
current, we do not expect these issues to manifest of-
ten in production—although development and testing
environments may be more likely to encounter them.
These issues are now documented and scheduled to be
addressed in 2.7, but users can work around some of
them in the mean time: for instance, it’s safe to sim-

5Class creation may take up to cache_schema_ttl_seconds seconds to take effect. By default, this can be up to 60 seconds.

14

ply ignore duplicate record errors when concurrently
creating classes or indices.

Index creation in FaunaDB is asynchronous: newly
created indices are queryable, but may return incom-
plete or transactionally invalid data for several min-
utes, depending on data volume and cluster state.
Users should be careful to poll indices after creation,
and avoid querying them until they return active:
true. Fauna has changed this behavior in 2.6.1, so that
querying an incomplete index throws an error.

Our work also uncovered several bugs in topology
changes, mostly involving clusters which locked up
while trying to remove nodes. Some of these issues
were resolved in 2.6.0-rc9, and the remaining problems
addressed in 2.6.0. However, our tests for topology
changes did not exercise these processes thoroughly,
and in general, topology changes are a hard problem.
Users should exercise caution when adding and remov-
ing nodes.

FaunaDB is based on peer-reviewed research into
transactional systems, combining Calvin’s cross-shard
transactional protocol with Raft’s consensus system for
individual shards. We believe Fauna’s approach is fun-
damentally sound: the bugs that we’ve found appear to
be implementation problems, and Fauna has shown a
commitment to fixing these bugs as quickly as possible.

However, Fauna’s documentation for consistency prop-
erties was sparse, inconsistent, and overly optimistic:
claiming, for example, that FaunaDB offered “100%
ACID” transactions and strict serializability, when, in
fact, users might experience only snapshot isolation.
We recommend that Fauna clarify that strict serializ-
ability only applies to read-write transactions using
serializable indices, that read-only transactions may
observe stale state, and that transactions interacting
with default indices may only experience snapshot iso-
lation.

Fauna has since dramatically expanded their docu-
mentation for isolation levels, discussing the isola-
tion levels for different types of transactions, how to
promote transactions to stronger isolation levels by
adding writes and changing index flags, and the im-
pact of those isolation levels on transactional correct-
ness.

5.2 General Comments

FaunaDB’s composable query language, temporal
queries, and support for transactional consistency
models ranging from snapshot isolation to strict serial-
izability are welcome choices, and they work together

well. For example, the At form establishes lexical tem-
poral scope for any query expression, and allows users
to compare two states of the database at different times
in a single transaction. Many databases offer a total
order of updates through snapshot isolation or even se-
rializability, but making time explicit allows users to
obtain consistent views across multiple transactions,
and thread causality through multiple actors. We’re
pleased to see these ideas brought together in Fau-
naDB.

Many consensus systems rely on fixed node member-
ship, which is cumbersome for operators. FaunaDB
is designed to support online addition and removal
of nodes with appropriate backpressure. Moreover,
Fauna recently removed the need for manual assign-
ment of log shard topologies, making FaunaDB mem-
bership fully dynamic. Membership changes are no-
toriously difficult to get right, especially in consensus
systems, and we appreciate Fauna’s efforts on behalf
of their users.

We’re also excited to see commercial adaptations of
the Calvin paper, as it makes a distinct set of trade-
offs specifically intended for geographically distributed
transaction processing. While Jepsen focuses on safety,
rather than performance, we suspect that Calvin-based
systems like FaunaDB could play an important future
role in the distributed database landscape.

Finally, note that Jepsen takes an experimental ap-
proach to safety verification: we can prove the presence
of bugs, but not their absence. While we believe Fau-
naDB’s replication and transactional algorithm are
theoretically sound, and although we make extensive
efforts to uncover potential bugs, we cannot prove the
correctness of FaunaDB in general.

5.3 Future Work

In keeping with its temporal model, FaunaDB allows
any query to be expressed as a stream of change events.
Our work did not evaluate this functionality in detail.
Nor have we examined conjunctions of node failures
with changes to cluster topology; topology changes are
sensitive to failure, and our technique for introducing
randomized topology changes could have deadlocked or
made unsafe changes (e.g. removing the only copy of
some data) in the presence of faults.

Indeed, our mechanism for causing automated topol-
ogy changes remain fragile—our tests deadlock every
few hours. While issues with nodes joining, parting,
and restarting were addressed in FaunaDB just prior
to the conclusion of our research, we have not yet re-

15

https://docs.fauna.com/fauna/current/reference/isolation_levels.html
https://docs.fauna.com/fauna/current/reference/isolation_levels.html

solved deadlock issues in the test suite itself. A more
robust test suite could give us more confidence in the
correctness of topology changes.

We have also not explored coordinated crashes
(e.g. those affecting an entire replica, log partition, or
cluster), which might expose weaknesses in error re-
covery and write-ahead logs, or filesystem-level faults.

FaunaDB has a more complex topology than many
systems Jepsen has tested, involving log shards dis-
tributed across multiple nodes, each replicated across
multiple replicas. The flow of messages through this
system is more complex than single-shard systems like
Zookeeper or Etcd, which makes the space of distinct

meaningful faults larger. Moreover, with FaunaDB,
we typically tested clusters of nine (rather than five)
nodes, which further increases the space of potential
faults. We chose to test the isolation of single nodes, of
single replicas, and of partitions within replicas, but
did not explore asymmetric or generally randomized
partitions. Future work could employ more sophisti-
cated failure modes.

This work was funded by Fauna, and conducted in ac-
cordance with the Jepsen ethics policy. We wish to
thank the Fauna team for their invaluable assistance—
especially Evan Weaver, Brandon Mitchell, Matt Freels,
Jeff Smick, and Attila Szegedi.

16

https://fauna.com
https://jepsen.io/ethics

	Background
	FaunaDB
	Consistency

	Test Design
	Sets
	Registers
	Bank
	Pagination
	G2
	Internal
	Monotonic

	Multi-monotonic
	Results
	Performance Limitations
	Possible Surprises
	Minor Issues
	Clock Skew Unavailability
	Missing Negative Integer Values
	Time is a Flat Circle
	Non-Transactional Pagination
	Definitely Non-Transactional Pagination
	Inconsistent Indices
	Missing Records During Pagination
	Non-temporal Temporal Queries
	Non-monotonicity, Long Fork, Read Skew
	Acute, Persistent Read Skew

	Discussion
	Recommendations
	General Comments
	Future Work

