
Kafka Meetup | PG CDC with Debezium | 2018-11-04

PG Change Data
Capture with
Debezium
Hannu Valtonen

Me

● Aiven co-founder
● Maintainer of Open Source

projects: PGHoard, pglookout and
pgmemcache

● PostgreSQL user for last 18 years

Kafka Meetup | PG CDC with Debezium | 2018-11-04

CDC Definition

Kafka Meetup | PG CDC with Debezium | 2018-11-04

In databases, Change Data Capture (CDC) is a set of software design patterns
used to determine (and track) the data that has changed so that action can be
taken using the changed data.

- Wikipedia

CDC - The Why

● Data’s journey through your company’s systems usually
just starts with its initial storing

● Real-time change information stream - as it happens

● No need to do bulk updates anymore with all their assorted
errors

● Much more efficient, way fewer resources required since
only delta is transferred

Kafka Meetup | PG CDC with Debezium | 2018-11-04

● Apache Kafka is meant for streaming data

● Huge ecosystem of tools to handle data streams

● Reliable

● Scalable

● Natural “message bus” for data from different databases

CDC - Why Apache Kafka

Kafka Meetup | PG CDC with Debezium | 2018-11-04

Foreword on examples

CREATE TABLE source_table (
id SERIAL PRIMARY KEY,

 important_data text NOT NULL,
 create_time TIMESTAMPTZ NOT NULL DEFAULT clock_timestamp(),
 update_time TIMESTAMPTZ NOT NULL DEFAULT clock_timestamp(),
 updated BOOLEAN NOT NULL DEFAULT FALSE
);

ALTER TABLE source_table REPLICA IDENTITY FULL;

INSERT INTO source_table (important_data)
VALUES ('first bit of very important analytics data');

INSERT INTO source_table (important_data)
 VALUES ('second bit of very important analytics data');

Kafka Meetup | PG CDC with Debezium | 2018-11-04

CDC - in the age of the Dinosaur

Kafka Meetup | PG CDC with Debezium | 2018-11-04

<Imagine a dinosaurs roaming freely through an idyllic landscape>

We’re now talking about prehistoric times that predate
the early 2000’s

CDC - In the age of the Dinosaur

● Nightly database dump of some or all tables often done with pg_dump

● ETL from multiple databases to a single system

● Batch based

● Maybe using some proprietary ETL

● PostgreSQL COPY command made this less onerous

Kafka Meetup | PG CDC with Debezium | 2018-11-04

CDC - In the age of the Dinosaur

● Timestamp / sequence / status column based approach

● Add a column updated_timestamp to your table which you then read afterwards
to try to find changed rows

● Same thing by having an updated boolean column in your table

● Possible limitations for noticing deletes or updates in naive implementations

● Confluent’s Kafka JDBC connector works like this

Kafka Meetup | PG CDC with Debezium | 2018-11-04

CDC - in the age of the Dinosaur

SELECT * FROM source_table
 WHERE id >= 0
 ORDER BY id ASC LIMIT 1;

SELECT * FROM source_table
WHERE timestamp >= y

 ORDER BY timestamp ASC LIMIT 1;

SELECT * FROM source_table
 WHERE updated IS FALSE
 ORDER BY id ASC LIMIT 1;

Kafka Meetup | PG CDC with Debezium | 2018-11-04

CDC - in the age of the Dinosaur

SELECT * FROM source_table
 WHERE updated IS FALSE
 ORDER BY id LIMIT 1;
UPDATE source_table SET updated = ‘t’

WHERE id = (SELECT id FROM source_table
 WHERE updated IS FALSE
 ORDER BY id ASC LIMIT 1)
 RETURNING *;

Kafka Meetup | PG CDC with Debezium | 2018-11-04

CDC - Trigger based approaches

You create change tables that contain the INSERTed UPDATEd or DELETEd rows

● Slony, PGQ (Londiste) and plenty of homespun solutions

● Allows all DML (INSERTs, UPDATEs, DELETEs) to be extracted

● Bad performance as in doubles all writes done to the database

● Doesn’t handle DDL (ALTER TABLE etc) gracefully

Kafka Meetup | PG CDC with Debezium | 2018-11-04

CDC - Trigger based approaches continued

● CREATE TRIGGER store_changes AFTER UPDATE, INSERT, DELETE ON
source_table FOR EACH ROW EXECUTE PROCEDURE store_change();

● And then the trigger just INSERTs the contents of the change to a change table with
the information stating whether it was an INSERT, UPDATE or DELETE

● The change table contents are read and applied from start to finish in some other
database

Kafka Meetup | PG CDC with Debezium | 2018-11-04

Kafka Meetup | PG CDC with Debezium | 2018-11-04

CDC - Advent of a new age

<Imagine something very modern>

PG’s built-in logical decoding saga started with
the release of 9.4 at the end of ‘14

CDC - Logical decoding - What is it?

● PostgreSQL can keep track of all the changes happening in a database

● Decodes WAL to desired output format

● Multiple logical decoding output plugins exist

● Very performant, low-overhead solution for CDC

● Avoids the multiple write problem with triggers by using the WAL that PG was
going to write anyway

Kafka Meetup | PG CDC with Debezium | 2018-11-04

CDC - Logical decoding - What can it do?

● Track all DML (INSERT, UPDATE, DELETE) changes

● Unit of Change is a row of data that’s already committed

● Allows reading only the wanted subset of changes

● Use cases include auditing, CDC, replication and many more

● Logical replication connections supported in multiple PostgreSQL drivers (JDBC,
Python psycopg2)

Kafka Meetup | PG CDC with Debezium | 2018-11-04

CDC - Logical decoding - What can’t it do?

● Replicate DDL

● Possible to set up event triggers that write to a table and then have your replication
system run the DDL based on it

● Depending on output plugin some data types not supported

● Failovers not handled gracefully as replication slots exist only on master nodes

● Changes tracked are limited to a single logical DB

Kafka Meetup | PG CDC with Debezium | 2018-11-04

CDC - Logical decoding - How to set it up?

postgresql.conf:
wal_level=logical
max_replication_slots = 10 # At least one
max_wal_sender = 10 # At least one

$ CREATE ROLE foo REPLICATION LOGIN;

Before PG 10 also needs changes to pg_hba.conf

Kafka Meetup | PG CDC with Debezium | 2018-11-04

CDC - wal2json

● Author: Euler Taveira de Oliveira

● Decodes logical changes into JSON format

● Datatype limitations (JSON doesn't natively support everything)

● Supported by multiple DBaaS vendors (Aiven, AWS RDS, https://github.com/eulerto/wal2json)

● Supported by Debezium 0.7.x+

Kafka Meetup | PG CDC with Debezium | 2018-11-04

https://github.com/eulerto/wal2json

Debezium

● Apache Kafka Connect Connector plugin (http://debezium.io/)

● Uses logical replication to replicate a stream of changes to a Kafka topic

● Supports PostgreSQL, MongoDB, MySQL, (Oracle)

● Uses log compaction, only needs to keep the latest value (if you pre-create topics)

● Can run arbitrary transformation code on the data as it's received

● Supports protobuf output plugin or wal2json

Kafka Meetup | PG CDC with Debezium | 2018-11-04

http://debezium.io/

Why Debezium

● Gets the data in real-time from PostgreSQL - No more waiting

● Once you get the data to Kafka you can process it whichever way

● Plenty of other Kafka Connect connectors to send it to the next system

● Basis for Kafka centric architectures

● You don’t need to know beforehand who is going to consume the data or why

Kafka Meetup | PG CDC with Debezium | 2018-11-04

Debezium gotchas

● Remember to set REPLICA IDENTITY FULL to see UPDATE, DELETE changes

● When PG master failover occurs, PG replication slot disappears

○ Need to recreate state

● If you don’t pre-create topics they use DELETE not COMPACT as cleanup policy

● Limited datatype support

● Unlike documentation says, sslmode param is “require”, not “required”

Kafka Meetup | PG CDC with Debezium | 2018-11-04

curl -H "Content-type:application/json" -X POST
https://avnadmin:zqv9z695oo5e1k3h@debezium-pg-demoproject.aivencloud.com:25649/connectors -d
'{
 "name": "test_connector",
 "config": {
 "connector.class": "io.debezium.connector.postgresql.PostgresConnector",
 "database.hostname": "debezium-pg-demoproject.aivencloud.com",
 "database.port": "22737",
 "database.user": "avnadmin",
 "database.password": "nqj26a2lni8pi2ax",
 "database.dbname": "defaultdb",
 "database.server.name": "debezium-pg",
 "table.whitelist": "public.source_table",
 "plugin.name": "wal2json",
 "database.sslmode": "require"
 }
}'

Debezium example

Kafka Meetup | PG CDC with Debezium | 2018-11-04

Demo

Kafka Meetup | PG CDC with Debezium | 2018-11-04

If we have time...

CDC - Recap

● Logical decoding and replication have revolutionized the way CDC can be done with
PostgreSQL

● We’re only seeing the very beginnings of its adoption

● Note that logical decoding is not a perfect solution (yet)

● Apache Kafka a natural fit - it is meant for streaming data

Kafka Meetup | CDC with Debezium | 2018-11-04

Q & A

Time to ask me anything

Kafka Meetup | CDC with Debezium | 2018-11-04

The end

 https://aiven.io

 @aiven_io

 aiven

