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1. Executive Summary 
 
O-RAN Alliance’s charter is to transform Radio Access Networks (RAN) towards open, intelligent, virtualized 
and fully interoperable RAN. 

In this paper, we introduce a framework consisting of a domain specific language (DSL) to formally describe 
use cases, constraints, and multi-vendor hardware/software abstraction, supported by intelligent 
automation. It captures the capabilities of the vendor components (silicon or software) and interfaces at a 
level of abstraction relevant to meeting RAN requirements. It also allows the deployment use cases and 
constraints to be formally represented. Automation is then applied to all these inputs to match, integrate, and 
optimize the requirements on the target hardware at the system integration level.  

The framework we propose addresses efficient multivendor interoperability and deployment specific 
optimizations. It supports intelligent automation of all components of RAN and enables the goal of O-RAN 
Alliance. 

This is achieved via intelligent automation and an open-source RAN domain specific language (like Cirrus360 
RDSL™ 1) to facilitate interoperability, that is flexible enough to encompass a wide variety of use cases across 
vendors and industries. This extends the current O-RAN framework by advancing two important goals: 
software hardware disaggregation via abstraction and enabling a new level of control of multi-vendor 
components in the process of system integration. 

Rapid proliferation of O-RAN deployments is driving a wide ecosystem of Software and Hardware vendors 
providing various open RAN solutions, delivering choice and flexibility for Operators. One of the challenges of 
this wider ecosystem is multivendor integration and optimization across a wide variety of use cases and traffic 
scenarios. These challenges are currently being addressed in many ways from open-source software solutions 
to standard interfaces from the O-RAN Alliance itself and have made progress towards delivering the Open 
RAN vision of an open disaggregated RAN ecosystem. Continuing this journey will require a new level of 
abstraction beyond simply interfaces and towards automated platforms that optimize for system level 
requirements as well as integrating multi-vendor components, as explained in the Vodafone whitepaper on 
System Integration [1], further reducing the cost and time required to introduce the latest features and 
technology to the O-RAN ecosystem. 

Additionally, the enablement of the RAN Intelligent Controller (RIC) interface is a critical goal for O-RAN 
adoption. Unlocking the full potential of the RIC will require flexible insertion of new functionality on both 
sides of the RIC interface, and this will also benefit software hardware disaggregation and a more flexible 
system integration platform. 

The framework introduced in this paper speeds up system integration, reducing the integration challenges of 
O-RAN’s wide and diverse ecosystem by enabling a common language (RDSL™), that abstracts the interactions 
across the O-RAN interfaces into system and hardware constraints. Intelligent Automation can then be used to 
meet the system level KPI (Key Performance Indicator) and drive a robust deployable solution.  

 
1 Please reach out to Cirrus360 team (chaitali@cirrus3sixty.com) for a description and examples of RDSL™. 
RDSL™ has been defined by Cirrus360 and will be open-sourced in the near future. 
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2. Next Steps 
 
The goal of this paper is to seek the support of operators and ecosystem partners behind the principle that 
ORAN must compete with highly integrated, single vendor solutions. We then posit that open box solutions 
based on a Domain Specific Language for description, with software/hardware disaggregation driven by 
automation, are a necessary step for the ORAN community to take to facilitate this goal. From there we can 
jointly work towards standardizing the abstraction concept as an essential element to enable such 
disaggregation and automation. The next steps in this process include: 

1. Jointly developing a work item to be introduced to the ORAN Alliance.  
2. Continue to collaborate on development of an Open DSL (such as RDSL™) to drive standardization 

within ORAN 
3. Open-source basic tool chains, example RDSL code, formats for hardware discovery and system 

constraints files, and requirements to enable middleware adaptation as described in the Appendix in 
Section 7. Develop a community around the open box concept. 

3. Challenges addressed and solution summary 
 
The open RAN ecosystem and the O-RAN Alliance has made tremendous strides toward a more open and 
disaggregated Radio Access Network (RAN) through the introduction and detailed definition of interfaces that 
allow multiple vendors’ products to communicate in a plug-and-play manner. This disaggregation of the RAN 
as shown in Figure 1 [2] opens new opportunities for new and existing vendors to innovate and provide cost 
effective solutions for a growing set of new use cases and markets. 
 
However, the journey toward disaggregation and automation is not complete. This has become increasingly 
clear as open RAN deployments have progressed in the last two years [3]. In this whitepaper we outline the 
challenges now facing open RAN proponents and provide a path to solving these problems using a process of 
Intelligent Automation that goes beyond just Interface Definitions.  
 
We argue that meeting the challenges outlined below requires a common language supported by automation 
that is flexible enough to encompass a wide variety of use cases across vendors and industries. In keeping with 
the goals of the O-RAN Alliance, the challenges we address in this paper are not related to radio performance 
such as cell capacity and massive MIMO algorithms. We focus on system implementation challenges of the 
RAN O-DU, as well as the O-RU and O-CU, such as hardware software disaggregation, power and cost, 
upgradability, software release maintenance and so on. 
 
 

mailto:gatherer@cirrus3sixty.com


                                                                                                                                                                     
                              

Cirrus360 Corp., Richardson, TX. Contact: gatherer@cirrus3sixty.com  3 

C2 General 

 
Figure 1: Open RAN system integration challenges. Graphic from 0[2] 

The paper is organized as follows. We first summarize four important future topics for the O-RAN Alliance to 
address to increase the competitiveness of RAN deployments. We then summarize the three technology 
pillars that we need to develop to address these challenges. The remainder of the paper adds more details to 
the topics and technology pillars and describes how the technologies address the topics. 
 

1. Future Topics that the O-RAN Alliance Must Address: 
A. Seamless multi-vendor interoperability meeting deployment goals and enforcing system constraints in 

addition to open interface API  

B. Rapid innovation by reducing cost of onboarding new and upgrade of existing solutions  

C. More efficient usage of RAN hardware, leading to lower TCO. 

D. Simplify System Level optimization via Automation 

 
 
 
 
 
 

Figure 2: Open RAN system integration challenges 

 
2. Three Pillars for a Solution for Automated Integration in ORAN: 

 
1. ORAN Common Language for RAN requirements and IP agnostic abstraction of components 

2. Automated and Explainable Optimization of CAPEX and OPEX 

3. RIC level Machine Learned patterns used in automation 
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Figure 3: Three pillars for a solution for automated integration in Open RAN  

Having identified these requirements and solutions, Cirrus360, Intel and Vodafone are developing technology 
in line with the three pillars. We currently have demonstrations of all pillars at some level of maturity. The 
critical challenges we outline are now becoming clear threats to the progress of open RAN. The time is right to 
engage an industry wide effort to address them as we describe, including making sure the ORAN Alliance puts 
the proper standardization in place to allow industry traction and acceleration. We invite all operators to 
engage in this process. 

4. The Four Future Topics ORAN Must Address to Simplify Multi-vendor System 
Integration 

 
We identify the main objectives that when achieved an operator, or enterprise integrator can enhance and 
optimize a multivendor solution in their network.  
 

3. Seamless multi-vendor interoperability meeting deployment goals and enforcing system 
constraints in addition to open interface API  

From mid 4G onwards RAN requirements have become increasingly complicated due to the addition of data 
applications. 5G has increased this complexity significantly with the addition of explicit classes of applications 
and the complexity will continue to grow rapidly through the life of 5G.  
 
Complex and multifaceted requirements make it difficult to identify worst case scenarios in pre-deployment 
lab testing. In practice, intermittent errors in the field, called Heisenbugs, will appear, often in situations that 
are not particularly loaded. A common root cause is some combination of new user classes and sudden bursts 
of new user requests while others are at critical set up or tear down points. This means that simply testing 
highly loaded scenarios in the lab will not provide a robust solution in the field. A more formal methodology is 
required to describe allowed scenarios and to describe how they will interact. Even when a fault does not lead 
to a system crash it may both increase packet loss rates and cause violation of other user requirements such as 
latency, generally decreasing the QoS of the network.  
 
All of the above are general problems for single vendor networks and become more difficult to deal with in 
multi-vendor networks [3]. In this white paper we address how to manage the issue though Open RAN with 
open standard interfaces and disaggregated hardware and software. 
 
 

4. Rapid innovation by reducing cost of onboarding new and upgrade of existing solutions 
In a multivendor environment onboarding any new hardware or software requires the integration of multiple 
vendor IP. A lack of a formal description of system level integration requirements leads to system level 
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incompatibilities between components, even if their interfaces are compliant. Individual vendor feature 
differentiation, one of the strengths of O-RAN, can exacerbate this problem. A Software based Open RAN 
Solution that allows for Continuous Development and Continuous Integration can mitigate this problem if it is 
integrated at the system level with a formal definition of requirements. Otherwise, the System Integrator will 
need to be closely involved in compatibility issues between vendor components, increasing Time To Market. 
 

5. More Efficient usage of RAN hardware, leading to higher TCO RAN resource 
The increasing diversity of applications supported in 5G provides room for optimization of OPEX and CAPEX in 
specific deployments. Small improvements in each site’s deployment can lead to large savings at the network 
level. However, this requires deployment sensitive optimizations that are based on knowledge of the use of 
the RAN in the network. ORAN has addressed this issue with an external function, the RIC, which can monitor 
the rest of the RAN and provide optimization parameters. To do so the RIC app often needs new functionality 
to be added to the DU/RU/CU it is monitoring to collate and groom the analytics the RIC app needs. 
Additionally, the DU/RU/CU vendor may not have supplied the hooks necessary for a RIC app to manage the 
DU/RU/CU resources. So being able to add new analytics functionality and control ability to an existing vendor 
component, without disruption of its function is an important topic. This requires an open box component 
approach with a formal language abstracted modelling of the component at the system level. 
 

6. Simplify System Level optimization via Automation 
Effective performance feedback requires Key Performance Indicators (KPIs) that can be collected and used, 
often within the RIC, to improve some aspect of the performance of the RAN. In a well-maintained network 
with evolving use cases KPIs are constantly being discovered and many are deployment dependent. For 
lifecycle maintenance and improvement, the operator needs to be able to add and subtract (because they also 
take resources) KPI collection functionality from DU, RU and CU deployments. This requires an open box 
component approach with a formal language abstracted modelling of the component at the system level. 

5. Three Pillars for Automated Integration in ORAN 
 

7. ORAN Common Language for RAN requirements and IP agnostic abstraction of components 
 
This pillar addresses the need to be able to construct a complete RAN solution from multiple vendor IP using 
operator and deployment specific constraints. We propose a simple Domain Specific Language which we call 
the RAN Domain Specific Language (RDSL™) to achieve this goal. 
 
Requirements for the RDSL™ include: 

• The construction of the RAN must be described in a manner that is precise and unambiguous.  

• The description must be hardware agnostic as much as is possible to allow the same RDSL™ application 

to be ported to different hardware SKUs of the same platform or even different platforms. 

• The RDSL™ must allow for an automated implementation on the target platform. An abstract platform 

description and system constraint parameters are required. The system constraint parameters define 

constraints on the use of the hardware. One important example of system constraints would be timing 

of input and output of the platform allowing properly timed hook up of the DU to the RU. System 

parameters can also allow definition of memory use by the IP blocks so that efficient mapping of IP to 

hardware can be automatically optimized 

To achieve these goals, we propose a declarative and immutable language. This is common in DSL [4] and 
allows target agnostic exposure of potential parallelism in both compute, memory, and interface resources in 
hardware. To this common framework we add an explicit awareness of time that is similar to that used in 
reactive systems such as Lingua Franca [5], but has been adapted to the specific needs of the Periodic Firm 
Real Time Systems that characterize RAN at CU, DU, and RU levels.  
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Such a description also precisely defines all of the worst-case paths through the construction allowing an 
automated tool to choose the best solution for a particular deployment on a particular target platform. System 
constraints are used to bound the construction to a feasible solution given memory sizes, system timings and 
compute resources. The RDSL™ we propose leads to a highly redundant description of the system where many 
possible corner cases are exposed. Because the description is declarative (by which we mean it describes the 
requirement but not how to implement it) and also immutable (by which we mean there are no time varying 
values in the description) an automated tool can safely reason about the best implementation. Though this 
may sound like a complicated programming paradigm, we have shown that the resulting language is simple 
and intuitive because we add an explicit definition of time and periodicity for the RAN functionality. 
 
The declarative nature of the RDSL™ allows multiple sources of code from multiple vendors to be combined 
because these sources do not describe an implementation but only intent. The multiple sources can then be 
jointly optimized for implementation on a given platform. 
 
In order to implement the constructive description of the RDSL™ on a platform we need an abstract 
description of the platform. We believe the current effort in O-RAN WG6 to define extensions to the AAL will 
allow for a suitable hardware abstracted platform description. So RDSL™ is very synergistic with the current O-
RAN efforts and can be seen as the “missing piece” to allow full automation of RAN system integration. 
To abstract the system, we break down the platform into high level components such as accelerator, 
processor, memory subsystem, interface and so on. We allow the platform provider to decide on the level of 
granularity with which to abstract their system and only require a simple constructive description language to 
show how these components hook together in terms of their real time usage requirements. In addition, we 
recommend a low complexity and high reliability scheduler for mapping functionality to the abstracted 
components, such as those commonly used in safety critical systems [6]. This allows cloud based offline 
analysis to be used to automate, for example, 

• how functionality is mapped to processors and accelerators. 

• how data management and data structure are organized to minimize power. 

• finding optimal schedules that remove heisenbugs. 

• minimizing the resources required to achieve the deployment goals. 
 
We also use the system constraints of the RAN to define performance of functional blocks on the hardware 
component IP. RAN functionality vendors only need to publish timing and resource use requirements for their 
functions and these can be easily tested in abstraction without revealing the details of this vendor IP.  
Multiple vendors can now compete. The operator will identify functional components that meet the functional 
performance requirements of the RAN (for instance baseline SNR, dropped call probability etc). Improving 
system performance (for instance maximum number of users supported in the DU, latency of uplink decode, 
power requirements for a given traffic model) can be automated by allowing automation of the decision 
process of which available functional blocks can be used and how they should be connected.  
 
In general, the operator can use automation to construct the full RAN system to meet the network system 
performance requirements given the components available to the RAN in a fraction of the time and cost of 
traditional manual methods. The disaggregation of functional performance and system performance is critical 
to the automation of RAN development. 
 

8. Automated and Explainable Optimization of CAPEX and OPEX 
 
In this section we describe how automation can be employed to explore rapidly the space of potential RAN 
solutions by automating construction of the real time components (DU, CU and potentially RU) from 
collections of simple unit functions. This exploration can be performed to optimize for one or more soft 

mailto:gatherer@cirrus3sixty.com


                                                                                                                                                                     
                              

Cirrus360 Corp., Richardson, TX. Contact: gatherer@cirrus3sixty.com  7 

C2 General 

constraints such as power, latency, resources used and so on. This is a new manifestation of automation in the 
RAN as it is for integration of the DU/CU/RU to meet the particular goals of a deployment. It is a challenging 
problem because of the need to implement a high availability real time solution. The operator can employ such 
a tool, to explore the performance of a particular RAN for different deployments without needing to 
understand the details of the hardware or be an expert in embedded system development. Results for 
differently constrained synthesis runs will allow optimized solutions for different RAN deployments, such as 
urban versus rural, or factory versus suburban. The operator can focus on exploring tradeoffs that maximize 
the overall network deployment rather than having to choose from one of a small number of fixed designs that 
may not provide a good solution at the network level. As the RAN lower layers represent a majority of the 
OPEX and CAPEX costs of deployments, automation of construction of these components in the most efficient 
way is therefore a critical aspect of the success of ORAN in providing fine grained analysis and synthesis for 
specific deployment scenarios. We have developed and demonstrated such a tool on RAN deployment 
examples. 
 
Changes to the RAN deployment is traditionally slowed due to concerns about heisenbugs and timing failures 
as an unintended consequence of changing runtimes and resource use of IP within the RAN. With automation 
any of these kinds of failures, even if they are not visible in test and verification runs, are flagged by the 
automation tool, allowing the system integrator to adjust the system deployment constraints or add mitigation 
strategies for any rare corner cases. With this assurance in place the system integrator can become more 
aggressive in improving the system level performance of the RAN. 
 
Automation will also allow for a continuous tracking and searching for heisenbugs and timing failures in the 
RAN. These can be fixed as they are found. We discuss this more in the Machine Learning section of this paper. 
Automation of the process allows for an abstract digital twin of the RAN deployment to be created. Any new 
constraints or changes in understanding of the RAN environment can be fed back into this digital twin and a 
more optimal and performant RAN solution produced for deployment. The deployment could also be 
automated using a standard Container as a Service (CaaS) methodology so that the RAN could continue to 
learn its environment. 
 
If the automation tool does not find a feasible solution given the system constraints provided by the operator, 
automated techniques can be applied to provide explanations for why the RAN will not work correctly with the 
current requirements and platform. These can be used by the operator or their chosen system integrator to 
make intelligent decisions on how to modify the system, either by relaxing the system requirements, reducing 
capacity, or adding hardware. In our experience, much of the art of system integration is in deciding what to 
do in the event that too much is asked of the available resources. Automation of explainability is therefore a 
critical tool for ORAN.  
 
 
 

9. RIC level Machine Learned patterns used in automation 
 
One source of new constraints for the automation is from machine learning and analytics in the RIC. Currently 
new apps in the RIC are constrained by the available analytics from the blackbox DU [7] as shown in Figure 4 
(a). This limits innovation and diversity of vendor for RIC apps [7]. Our proposal unlocks the value of the RIC by 
enabling the addition of new analytics modules in the DU/RU/CU to support new RIC app capability as shown 
in Figure 4 (b). As the construction and functionality of the RAN is defined in RDSL™ the operator can add RIC 
enabling modules into the RAN as they see fit and can switch on and off monitors in the RAN that feed the RIC 
with data for analysis. The RIC in turn provides the automation tool with updated environment constraints and 
these are used to re-optimize the solution automatically. So, automation of RAN deployment becomes a key 
enabler of the value of the RIC and therefore part of the key value chain of ORAN itself. 
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Figure 4: Evolution of RIC support with openbox DU 

 

6. Addressing the Objectives with the Three Pillars 
 
In this section we summarize how the three pillars of the solution can address the four topics. This summary 
therefore provides a simple motivation for the technology described in the three pillars. 
 

10. Seamless multi-vendor interoperability meeting deployment goals and enforcing system 
constraints in addition to open interface API 

Automation of the construction of the RAN for a specific deployment, with IP abstracted components, allows a 
formal, abstracted digital twin description of the RAN that can be searched and analyzed for the heisenbugs 
and timing errors that lead to performance loss and system failure. Failures observed in the field can be used 
to update the model for improved analysis. Explainability can be used to decide how to deal with automated 
fixes if they contradict performance goals. Many critical issues that currently require a red team from the 
vendor (now multi-vendor in ORAN making this an even more complicated effort) to fly in and deal with, can 
now be dealt with directly an immediately by the operator using automated analysis and explainability. 
 

11. Rapid innovation by reducing cost of onboarding new and upgrade of existing solutions 
Onboarding and upgrading are automated, leading to a dramatic reduction in cost and time. Machine Learning 
provides constant improvement of the model and therefore continuous upgrade opportunities can be 
identified. Abstraction of IP allows multivendor IP to be quickly swapped into the system to improve functional 
performance or to add new performance features. 
 

12. More Efficient usage of RAN hardware, leading to lower TCO 
RDSL™ allows for a precise description of the OPEX and CAPEX goals and automation can be used to 
continuously strive for the optimal OPEX and CAPEX even as traffic and features evolve over time. 
Explainability allows the operator to understand the tradeoffs of OPEX and CAPEX versus algorithmic 
improvements. A small improvement in channel capacity may be delayed due to its detrimental impact on 
CAPEX for instance. All this can be analyzed automatically and presented in an explainable manner at the 
appropriate level within the operator decision making process. 
 

13. Simplify System Level optimization via Automation 
The abstract model of the RAN allows changes to be made to components that are currently black boxes in the 
ORAN model. These changes are automated while still supporting multivendor IP. Performance issues 

R  New R  
app

  blac bo 

   provided
analy cs  

R  New R  
app

  openbo 

   provided
analy cs

   R  closed
loop interac on

New analy cs
module

 a   RAN today  a   RAN proposed

mailto:gatherer@cirrus3sixty.com


                                                                                                                                                                     
                              

Cirrus360 Corp., Richardson, TX. Contact: gatherer@cirrus3sixty.com  9 

C2 General 

observed in the field can be analyzed through automation on the digital twin and new deployments can be 
quickly decided on. These deployments can be very site specific. 
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7. Appendix: Applying RDSL™ and Automation to Intel® FlexRAN TM 
 
The automation framework described in this paper has been applied to the Intel® FlexRANTM solution using 
 irrus360’s RAN automation platform  Gabriel™) and RDSL™. As shown in Figure 5, the 5G NR protocol real 
time behavior and flows have been represented to Gabriel™ using RDSL™ as well as an abstract description of 
the Intel® Xeon Gold along with the Intel® vRAN Accelerator ACC100. Several tests were conducted spanning 
sub-6 and mMIMO scenarios with a range of target deployment constraints such as latency. 
 
The automation platform analyzed and explored the solution space to find a feasible schedule of the software 
on the given hardware, such that the target deployment constraints were met, while the solution was 
optimized for maximum power savings opportunities. Using this methodology, the automation framework was 
able to significantly increase the power savings opportunity in the optimized FlexRANTM solution compared to 
the manually optimized default configuration of FlexRAN TM. 
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Figure 5: RDSL™ and Intelligent Automation from Cirrus360 applied to Intel® FlexRANTM 

As an example of how significant changes can be represented clearly within the declarative language of RDSL™ 
we show two code fragments in Figure 6. The first fragment implements a flow (a specific type in RDSL™) 
which processes streams (also a type) of data such that several channel compensation operations are declared 
independently. In the other fragment, all of the channel compensation occurs within a single logical function. 
This algorithm difference is often seen when optimizing for high Doppler (the top RDSL™ fragment) versus 
medium to low doppler. Apart from swapping out these two flow definitions, nothing else was changed in the 
RDSL™ description of uplink 5G mMIMO processing. Gabriel processed the RDSL™ declaration of the uplink 
functionality, along with constraints and the abstract description of the hardware, as shown in Figure 5. For a 
small enough latency constraint on uplink processing, we saw that the first flow could be scheduled but the 
second could not. When the latency constraint was relaxed so that both had a feasible solution, this was 
achieved in the second flow by pushing more equalization and subsequent processing towards the end of the 
latency budget and rearranging the other functions to accommodate this. 

 
Figure 6: Example RDSL™ fragments 

The conclusion, as we have seen in many examples implemented using FlexRANTM reference software and 
RDSL™, is that a change in algorithm can be easily accommodated using the methodology described in this 
paper, even when a significant amount of rescheduling of functions is required in the FlexRANTM reference 
software to meet latency or other constraints. This allows the FlexRANTM reference software to be optimized 
for very specific deployment requirements, potentially saving power and cost in the network. For the example 
in Figure 6, the two different flows can both be part of the RDSL™ declaration and the relative amount of each 
type can be added as a constraint, so balancing high and low doppler support for a specific deployment. Such 
fine granularity deployment tradeoffs are only possible with the automation approach described in this paper. 
 

In this RDSL™ example four channel 
compensation operations are called out 

explicitly, each can be scheduled by 

automation constrained by the availability of 
their inputs. Each input to be compensated is 

taken from a tensor stream of inputs to the 
flow.

In this RDSL™ example a single channel 
compensation operation operates on the  

complete set of input symbol streams in the 

tensor stream. The schedule of the 
compensation is therefore constrained by the 

availability of all streams and must run on a 
single computational unit within the hardware.
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8. Appendix: Onboarding new Software and Hardware Vendors 
The onboarding process consists of three steps: 

1. Identify or develop a middleware capable of supporting the scheduling of SoC (System on Chip) 
resources 

2. Provide envelope data on functions in RAN Software Development Kit (SDK) 
3. Provide an abstract .xml description of the hardware at the middleware level 

 
Middleware 
Gabriel provides a Configuration and Control Layer (CCL) file to the middleware that describes a collection of 
operations on the resources described in the hardware abstraction file. So, middleware needs to be able to 
control the operation of unit functions on the hardware to perform specific operations at specific times. How 
this is achieved by the middleware is up to the middleware developer (for instance the SoC provider). For 
standardization purposes only the format of the description file needs to be defined. We have successfully used 
an extensible xml format and have written generators for this format allowing a simple creation and 
modification process for hardware abstraction. This approach to hardware abstraction is already in use for AAL 
in ORAN standardization. 
 
SDK 
Envelope data for SDK functions defines basic runtime and memory use bounds for the function running on a 
defined resource in the hardware abstraction file. As the resource is abstracted, no detailed information on the 
type of resource is required. For instance, it might be an FPGA block or a CPU but the optimization process 
does not care except that it needs the runtime envelop of the function for that resource. A very basic and 
extensible set of rules needs to be defined to allow any optimizer to read envelope data. 
 
Hardware Abstraction 
Starting with the current AAL abstraction we can extend the AAL to encompass the rest of the SoC. Hardware 
abstraction needs to be extended to include performance information, such as latency models for interfaces. 
Some of this work is already ongoing in ORAN today. 

9. Appendix: Systems Optimization versus Performance Optimization for RAN 
 
System integration is the process of combining multiple IP blocks to form a larger system that meets specific 
system level goals. These goals can be divided into radio performance goals and system implementation goals. 
Examples of radio performance goals are: 

• Cell throughput at a given SNR. 

• Support of 3GPP specific features such as MIMO, beamforming, LDPC modes and their impact on system 

performance for different traffic types and loads. 

• End to End latency requirements. 

• Radio parameter tuning to optimize radio performance, which may in turn be performed by Machine 

Learning algorithms in the RIC. 

• Rate of SRS, RACH and other network maintenance signaling. 

All of these goals are focused on maximizing user satisfaction, user density and meeting certain critical 
algorithmic performance criteria for correct operation. They must be achieved regardless of the 
implementational details of the RAN. For this reason, we will informally call them “3GPP requirements” 
Examples of system implementation goals are: 

• Power Constraints within the chassis and power minimization to meet OPEX goals. 
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C2 General 

• Implementation of upgrades on a variety of existing deployed hardware with minimum onboarding time 

and cost. 

• Simplicity of, and bug traceability of, software releases. 

• Integration of multivendor software IP on a single existing hardware platform. 

• Integration of a single software upgrade across multivendor and multi-SKU hardware platforms. 

• Maximizing cell capacity in terms of number of cells that can be run on the hardware. 

•  ntegration of Functionality of one vendor with another vendor’s functionality. For instance: 

o The data access timing requirements of Vendor A RU being incompatible with vendor B DU. 

o Latency budgeting across multivendor IP that was developed before latency requirements were set, 

to achieve latency but also optimize for hardware and power requirements. 

o Integration of CU and DU on the same hardware platform where the two IP share resources, such as 

the DDR interface. 

All of these goals focus on the development of a flexible, maintainable and low-cost network that can react 
quickly to new feature requirements while minimizing heisenbugs and other unplanned faults. They allow the 
system integrator to constantly optimize their network in a very fine-grained manner to minimize OPEX and 
CAPEX. For this reason, we will informally call them “ RAN requirements”. Achieving them is critical for the 
success of the Open RAN concept. 
 
In this paper we focus on the ORAN requirements. Without further discussion we posit that 3GPP 
requirements can be achieved in a multivendor environment through the development of better algorithms 
provided ORAN requirements are already achieved. 
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