Climate Change Adaptation Progress Report 2021 Defra Approved 17.12.21 ## Contents | 1. Introduction | 3 | |---|--------| | 1.1 Purpose and scope | 3 | | 2. Progress in adapting to climate change | 4 | | 2.1 Overview | 4 | | 2.2 Reviewing our assessment of climate change risk | 4 | | 2.3 Progress against previously identified actions | 8 | | 3. Interdependencies | 10 | | 4. Monitoring and review | 12 | | Appendix A - Climate change risk register |
14 | ## 1. Introduction ### 1.1 Purpose and scope In 2011 Birmingham Airport Ltd (BAL) produced its first Climate Change Adaptation Report. This report was completed under direction from the Department Environment, Food and Rural Affairs (Defra) under the Adaptation Reporting Power as a regulatory requirement of the Climate Change Act 2008. The 2011 report identified the risks posed to Birmingham Airport from a changing climate in order to assist the business with preparing for climate change and contributed to the Government's first round of national adaptation reporting (ARP1). We have subsequently produced a 2016 Climate Change Adaptation Progress Report which formed part of a five-year cycle and the second round of national adaptation reporting (ARP2). This 2021 report is the third update and outlines the progress made in adapting to the predicted effects of current and future climate change on our organisation since our previous 2016 Climate Change Adaptation Progress Report. It also reviews our Climate Change Risk Register and will form part of the third round of national adaptation reporting (ARP3). We have assessed our climate change adaptation risks against information from the latest UK Climate Projections available (UKCP18), produced by the Met Office Hadley Centre. In addition to our work on climate change adaptation, we are also engaged in climate change mitigation with a commitment to become a net zero carbon airport by 2033, prioritising zero carbon airport operations and minimising carbon offsets. Whilst this progress report focuses exclusively on climate change adaptation, information regarding our climate change mitigation activities can be found within our Sustainability Strategy. We are developing a Net Zero Carbon Strategy in support of our Net Zero commitment; this will be published in early 2022. ## 2. Progress in adapting to climate change #### 2.1 Overview We recognise that the UK's climate is changing and that recent decades have been warmer, wetter and hotter compared to the 20th century, with the MET Office's recent State of the UK Climate Report showing that 2020 was the third warmest, fifth wettest and eighth sunniest year on record for the UK. The concept of climate change is embedded within all areas of the business and our 2016 climate change adaptation progress report identified a number of actions required in order to prepare the business for the likely impacts of climate change. We have made significant progress against these actions and this is detailed at section 2.3. During this round of reporting, we have reviewed and updated our climate change risk register. As part of this review, a number of climate change risk workshops have been held to engage both internal and external stakeholders. Our climate change risk register has been updated to reflect the progress that has been made against previous actions, and the input of changes in technology and development. ## 2.2 Reviewing our assessment of climate change risk During 2021 we have reviewed our climate change risk register with all applicable stakeholders. This included representatives a range of internal company from departments, in addition to members of the Airport Consultative Committee (ACC). The ACC, representing the interests of local authorities, resident groups, industry bodies and Airport users, plays a vital role as a communication channel between the Airport and its many stakeholders. In total four workshops were held to review the risks identified in the previous round of reporting (2016) and to identify any new climate change risks. We have re-evaluated the identified climate change risks against information from the latest UK Climate Projections (UKCP18), produced by the Met Office Hadley Centre. There are various different emissions scenarios that can be used when generating data: - Representative Concentration Pathway (RCP) 2.6 (low emissions scenario) - RCP 4.5 and RCP 6.0 (medium emissions scenario) - RCP 8.5 (high emissions scenario) - SRES A1B (medium emissions scenario used in previous climate predictions - CP09) In 2011 and 2016 the Airport Company chose two of the key timelines to discuss: 2020 and 2050. Within this current round of reporting climate change issues, three timelines have been considered within our climate change risk register: 2025, 2050 and 2080. UKCP18 climate variables for the West Midlands region are summarised in Tables 1, 2 and 3 below. | Climate Variable | 2050s
RCP2.6 | 2050s
RCP6.0 | 2080s
RCP2.6 | 2080s
RCP6.0 | |------------------------------|-----------------|-----------------|-----------------|-----------------| | Mean Annual
Temperature | +1.2°C | +1.2°C | +1.3°C | +2.4°C | | Mean Winter Temperature | +1.1°C | +1.1°C | +1.2°C | +2.0°C | | Mean Summer
Temperature | +1.7°C | +1.5°C | +1.9°C | +3.2°C | | Mean Summer
Precipitation | -15% | -15% | -19% | -26% | | Mean Winter Precipitation | +6% | +5% | +9% | +14% | Table 1. UKCP18 Climate Projections for temperature and rainfall for the West Midlands region, for low (RCP2.6) and medium (RCP6.0) emission scenarios. These figures are relative to a 1981-2000 baseline. | | | Time P | eriod | | |---|-----------------------------|--------|--------|--------| | Climate Variable | Baseline
(1981-
2000) | 2025's | 2050's | 2080's | | Temperature: number of frost days (days with a temperature equal or lower than 0°C) | 36 | 22 | 17 | 9 | | Temperature: number of hot days (days with a maximum temperature higher than 25°C) | 20 | 32 | 52 | 70 | | Precipitation: number of dry spells (10 days+ with no precipitation) | 9 | 9 | 9 | 11 | | Precipitation: winter mean (mm/day) | 1.75mm | 1.8mm | 2.0mm | 2.09mm | Table 2. UKCP18 Climate Projections for temperature (frost and hot days) and rainfall (dry spells and winter daily rainfall) for the West Midlands region, for medium (RCP6.0) emission scenario relative to a 1981-2000 baseline. | Climate Variable | Long-term climate projection to 2080 | |------------------|--| | Storms | An increase in frequency and severity | | Wind-speed | A general calming of surface wind speeds (<10%) is projected for all seasons. | | Fog | Spring: >35% decrease in fog events Summer: >65% decrease in fog events Autumn: 10 - 30% decrease in fog events Winter: 20% increase in fog events | | Lightning | Winter: Similar Spring: increase to 6-10 days from 4-5 days Summer: increase to 8-13 days from 8-9 days Autumn: increase to 5-9 days from 2-3 days | | Snow | Days of snowfall: Autumn/spring: 80% less Winter: 70% less Heavy snow events: Spring: 80% reduction Winter: 60% reduction | Table 3. High level overview of other climate parameters considered and their long-term climate projections out to 2080. Our risk assessment process considers impact and likelihood on a scale of 1 to 5. The impact and likelihood scores are multiplied to calculate the risk score, with the maximum risk rating for any risk being 25. The risk matrix used is shown in Table 3 below. This method aligns with other airports through the Airport Operators Association, providing input on a sectoral climate change risk register template which has been developed in conjunction with Defra. This template is being used across reporting airports in order to increase the consistency of reporting and allows identified climate risks to be assessed and quantified in the same way across the sector. Our 2021 climate change risk register can be found in Appendix A. Actions arising from identified climate risks have been assigned to one of three categories: - Watching brief; to be maintained in the short-term using the latest climate projections. - Investigate; risk to be investigated in order to be fully understood before determining if action is needed. - 3. **Action**; identified as needed in order to adapt to a climate change risk. | | | Clima | te Change R | isk Matrix | | | |----------|---|--|---|--|---|---| | | | | | Likelihood | | | | | | Improbable (1) Event may occur in exceptional circumstances. Should virtually never occur. | Unlikely (2) Remote. Event could occur at some time. Possible but not likely. | Less than likely (3) Occasional. Event should occur at some time. Possible to occur. | More than likely (4) Event will probably occur in most circumstances. Likely to happen. Can be anticipated. | Highly probable (5) Frequent. Event is expected to occur in most circumstances. Almost certain. | | | Minimal (1) Noticeable event but manageable or absorbed through normal activity. | 1 | 2 | 3 | 4 | 5 | | | Minor (2) An event which can be managed via existing processes. Minor adverse consequences. | 2 | 4 | 6 | 8 | 10 | |
Impact | Moderate (3) A significant event which requires prompt action to prevent escalation. Can usually be managed under normal circumstances | 3 | 6 | 9 | 12 | 15 | | <u>E</u> | Major (4) A large event that requires a high-level of engagement, special arrangements and effective management. Crisis Management Teams activated. | 4 | 8 | 12 | 16 | 20 | | | Catastrophic (5) A critical event with extremely devastating consequences. Potential or actual disaster for the business. Loss of Life. | 5 | 10 | 15 | 20 | 25 | Table 4. Climate change risk matrix. ## 2.3 Progress against previously identified actions The progress made against actions identified as part of our first round of climate change adaptation reporting (2011) is detailed below. All actions remained open at our 2016 review. Due to the long-term nature of the timeframes considered in our climate change risk assessment, specific completion dates have not been set. Since reporting started in 2011, Birmingham Airport has taken a number of actions as a result of adaptation to climate change issues. Number: CCAA01 **Action:** Work with the Carbon Trust on the development of on-site Renewable Energy Biomass Combined Heat & Power (CHP) and/or Photovoltaic Solar Farm or a shared renewable energy generation facility will result in increased security of supply and a reduction of CO₂ emissions. **Progress:** The security of electricity supply from the grid could be adversely impacted by future predicted extreme weather events caused by climate change. Increased summer temperatures will increase energy requirements for cooling across the UK and an increase in lightning strikes could cause a reduction in grid reliability. Since this action was identified in 2011, progress has been made with the investment and installation of 212 rooftop solar panels on the roof of our terminal building. Investigations into further renewables will form part of our Net Zero Roadmap which is currently in development. This investigation is detailed as a new action as part of our 2021 climate change risk register review, CCAA09: to reduce reliance on grid and increase security of electricity supply through on-site renewable electricity generation (Solar PV). Current Status: Action closed. **Number: CCAA02** Investigate: Work with De Montfort University to investigate how the existing Airport building stock can be made more resilient in terms of heating and cooling capacity and ensure compliance with the Energy Performance of Buildings Directive, with Energy Performance Certificates obtained for all buildings, these provide detailed energy efficiency improvement actions. Progress: Current airport infrastructure capability is managed through the asset management programme. We recognise that climate change presents a high risk to the resilience of our Heating, Ventilation and Cooling (HVAC) System and that this has been incorporated into two new adaptation actions as part of our 2021 climate change risk register review. CCAA07: to carry out an enhanced review of heavily glazed building areas temperature control requirements e.g. ATC tower/ terminal buildings and CCAA08: to carry out a full review of HVAC system and building performance standards. The Airport compliant with remains the Performance of Buildings (England and Wales) Regulations 2012, obtaining and displaying Energy Performance Certificates (EPC's) as required. Current Status: Action closed. Number: CCAA03 **Action:** Incorporate an analysis of climate change resilience into all capital investment appraisals for future infrastructure and building developments. **Progress:** All infrastructure projects that require a capital investment appraisal are required to be evaluated to ensure sustainability criteria are met. This action will remain open for continual review of sustainability criteria within the capital expenditure process. Current Status: Action open. **Number: CCAA04** **Action:** Carry out a Flood Risk Assessment (FRA) as part of the planning application for the runway extension. **Progress:** The Airport Company carried out a Flood Risk Assessment (FRA) as part of the planning application process for the runway extension. This was in accordance with Planning Policy Statement 25: Development and Flood Risk (PPS25). The modelling considered the flood risk of the Low Brook in relation to the proposed runway extension works (these works were carried out in 2012). The FRA showed that the engineering and drainage works to be carried out as part of the runway extension works, including the realignment of the A45 and the diversion of upstream watercourses, reduce the potential flood levels upstream of the Airport to a 1 in 100-year event. Current Status: Action closed. Number: CCAA05 **Investigate:** Undertake a study to assess flood risk from the Hatchford Brook at the northern end of the airfield, in order to determine if any mitigation works are required. **Progress:** The North Airfield Drainage system was installed in 2013 and has alleviated some of the flood risk from Hatchford Brook. This has increased the storage potential during heavy rainfall events and allows discharge to either foul sewer or Hatchford Brook. Flood prevention measures were also put in place at one of the critical airport substations due to flooding issues in 2016 within the Hatchford Brook area. Further works have been deemed necessary at Hatchford Brook inflow with this work detailed as a new action as part of our 2021 climate change risk register review (CCAA11) to: carry out de-silting and bank stabilisation works at the Hatchford Brook inflow to increase channel capacity. **Current Status:** Investigation closed. **Number: CCAA06** **Investigate:** Consider the need for equipment and/or data that will provide improved real time information on wind, wind shear and monitoring for storms. **Progress:** Increased wind gusts and potential changes in direction are expected as a result of climate change, but details are uncertain. Extreme weather events are continually monitored on the airfield. Details are still uncertain on future predicted extreme weather events as a result of climate change. The airport has responded adequately to extreme events that have occurred and is capable of accepting aircraft diverts due to weather events at other airports. **Current Status:** Investigation open. Eight new actions have been identified and these are detailed within our 2021 climate change risk register at Appendix A. ## 3. Interdependencies Birmingham Airport does not operate in isolation and works in partnership with a variety of internal and external stakeholders on a collaborative approach to climate change adaptation. Our previous two rounds of reporting identified and considered a number of key interdependencies as outlined below. | | I | Key Stakeholdeı | rs | | |---|--|--|--|--| | Industry | Airport
Community | Local
Community | Business
Community | Government
Regulators | | Sustainable
Aviation Airlines NATS Airport
Operators
Association | Employees Tenants Concessions | Residents Parish/Town Councils | Small Businesses Landowners Regional Business Community Chambers of Commerce | Local
Authorities Department
for Transport Department
for
Environment,
Food and
Rural Affairs Department
for Business,
Energy &
Industrial
Strategy Civil Aviation
Authority | #### **Surface Access** Birmingham Airport relies on other modes of transport for surface allow access. to passengers and staff to access the Airport. Stakeholders involved include Highways England, Network Rail, Solihull Metropolitan Borough Council, Birmingham City Council, Warwickshire County Council, Train Operating Companies and Bus and Coach operators. These functions are important to the success of Birmingham Airport's Surface Access Strategy. #### **Communications** Both land and wireless communication feature heavily in Birmingham Airport's interdependencies, particularly in the operational field of Air Traffic Control. At Birmingham Airport, Air Traffic Control sits as an internal function, giving greater control over the asset. #### **Energy Suppliers** Birmingham Airport is currently dependent on an energy supply from external energy suppliers, as are other businesses which operate at the Airport, including partner airlines and concessions. Action CCAA09 aims to reduce reliance on the grid and increase security of energy supply through on-site renewable electricity generation in the form of Solar PV. Details of this will form part of our Net Zero roadmap which is currently in development. #### **Airport Operators Association** Birmingham Airport is also a member of the Airport Operators Association, allowing us to collaborate with other UK airports on climate change adaptation. #### **Sustainable Aviation** At an industry level we work extensively with Sustainable Aviation, a collaboration of UK airlines, airports, air navigation service providers and major aerospace manufacturers which sets a long-term strategy for collective action to tackle the challenge of ensuring a cleaner, quieter, smarter future
for our industry. Other interdependencies identified in this round of reporting include: Airlines, Handling Agents, aircraft fuel providers, other airports, local planning authorities and West Midlands Fire Service. All interdependencies have been considered as part of the climate change risk register at Appendix A and we continue to monitor these and engage wherever necessary. . ## 4. Monitoring and review The concept of climate change and the need to adapt to a changing climate is integrated throughout the business, with our overarching aim being to ensure that the Airport remains resilient to a changing climate and is in a position to benefit from any potential opportunities. This is outlined within our Sustainability Strategy which is publicly available via our website. We are committed to ensuring the airport is prepared to adapt to a changing climate and this message is communicated to all employees, partners and contractors through our <u>Sustainability Statement of Intent</u>, which represents the views of our Board and is available to the public via our website. Risks, opportunities and actions identified as part of our Climate Change Risk Register (Appendix A) contribute to the Airport Company's corporate risk register and are documented, reviewed and progressed through our Environmental Management System to ensure continuity. The actions will be reviewed annually through the Airports Environmental Management Review Group to ensure they are still relevant to the business and that progress is continuing. risks/opportunities identified within the Climate Change Risk Register have been assigned a risk owner, with progress monitored through BAL's internal governance structure. Climate change adaptation is embedded into key organisational processes, including our asset management register, procurement, development and operational processes which include Airport Instructions and Local Operating Procedures. Further work incorporate climate change underway to adaptation into our Sustainable Building Design and Construction Standards which are currently in development. This will ensure responsible design in any construction and/or renovation projects at Birmingham Airport. The climate change risk register will be reviewed whenever any significant changes are identified to areas that are potentially high risk to the business or to infrastructure at the airport. Progress against the actions identified will be regularly reviewed and we will undertake a full review of our climate change risk register in five years. #### **Case Study: ATC Tower Design** The design of the 33m high Air Traffic Control Tower, which opened in 2013, considered future climate predictions. As a result, the tower has many features to mitigate against future climate change, including a heating and cooling system designed to cope with more extreme hot and cold weather conditions, external shutters to limit solar gain, internal blinds to allow for optimum temperature control and stabilising technology to limit movement during stormy weather. # Case Study: Flood & Pollution Control System Upgrades We operate a dedicated Flood & Pollution Control System across the site which is made up of four Total Organic Carbon (TOC) monitors and 10 polluted water holding tanks. In 2019 we replaced all the TOC monitors in the system at a cost of over £60,000. The system is designed to prevent surface water contaminated with substances such as deicing fluid from entering on-site watercourses. In the winter of 2019/20 over 150,000 litres of de-icer was used on aircraft and on the airfield, so the system has a very important role to play. Flooding remains a prominent risk on site and monitoring of watercourse levels is undertaken continually. We have committed to a new action (CCAA10) to assess drainage system capacity, maintenance and upgrade requirements, to determine if there are any further flood prevention measures that are necessary to protect key infrastructure and assets. # **Appendix A - Climate change risk register** | | | Risk Identifi | cation | | | Business Co | ontext | | Risk Scoring | | | | | | | | Control & Action | | | |------------|------------------------------------|--|--|--|---------------------------------------|---|---|----------------------------------|---------------|-------------------|------------------------|---------------|-------------------|------------------------|---------------|-------------------|------------------------|--|--| | | | Risk/ Opportunity | | Potential | | | | | R | isk Score (2025 |) | Ri | sk Score (2050 | 's) | Ri | sk Score (2080' | s) | | | | Risk
No | Climate
Variable | (including indirect
and
interdependency
risks/opportunities) | Decision threshold,
process or trigger
point for action on
the risk | Consequences
(Functions,
Services,
Assets affected) | Interdependencies | Location/
Business
Area | Risk Owner | Previously
Identified
Risk | Impact
(I) | Likelihood
(L) | Risk
Score
(IxL) | Impact
(I) | Likelihood
(L) | Risk
Score
(IxL) | Impact
(I) | Likelihood
(L) | Risk
Score
(IxL) | Existing Controls | Further Actions (if required) | | CCR01 | Increased
Summer
Temperature | Thermal expansion of building infrastructure, such as concrete and steel, reducing longevity. | No specific decision threshold | Operational
disruption
Airport closures
Financial cost to
repair/ replace
affected
infrastructure | No
interdependencies
identified | All
buildings | Development
Asset
Owners | Yes | 3 | 2 | 6 | 3 | 2 | 6 | 3 | 3 | 9 | Maintenance programme
Conformance with building
regulations
Consideration of climate
change for all future builds as
part of design works | Watching Brief | | CCR02 | Increased
Summer
Temperature | Airfield surface and sub-surface structural damage to runway and aprons caused by temperatures exceeding design standards i.e. melting, cracking. | UK tarmac standards (roads, aprons) begin to lose integrity once temperatures in the shade exceed 32°C. Tarmac itself is black, absorbs heat and can hit 80°C at such temperatures. Runway surfaces design standards withstand far higher temperatures to be able to cope with aircraft braking. | Operational
disruption
Airport closures
Financial costs to
repair damage
Reputational
damage
Consequential
damage | No
interdependencies
identified | Airfield | Head of
Airfield
Operations | Yes | 3 | 2 | 6 | 3 | 3 | 9 | 3 | 3 | 9 | Runway, taxiway and apron
maintenance programme
Visual inspections | Watching Brief | | CCR03 | Increased
Summer
Temperature | Landside surface
and sub-surface
structural damage to
bitumous surfaces,
such as car parks,
landside roads
caused by extreme
heat. | UK tarmac standards (roads, aprons) begin to lose integrity once temperatures in the shade exceed 32°C. Tarmac itself is black, absorbs heat and can hit 80°C at such temperatures. | Operational
disruption
Financial costs to
repair damage
Reputational
damage | No
interdependencies
identified | Landside -
all
bitumous
surfaces
(car parks,
on-site
roads) | Head of
Commercial
(car parks)
Development | Yes | 2 | 2 | 4 | 2 | 3 | 6 | 2 | 3 | 6 | Maintenance programme | Watching Brief | | CCR04 | Increased
Summer
Temperature | Increased accumulation of rubber on runway | Requirement to
maintain appropriate
friction requirements
in line with runway
friction assessments | Operational
disruption due to
runway closure
Runway
excursion
Health & Safety
incident | No
interdependencies
identified | Airfield | Head of
Airfield
Operations | Yes | 2 | 2 | 4 | 2 | 2 | 4 | 2 | 3 | 6 | Runway inspection regime including runway frictions assessment Rubber removal contractor retained and works carried out to schedule | Watching Brief | | CCR05 | Increased
Summer
Temperature | Decrease in passenger comfort within airport buildings caused by inadequate cooling systems and inability of air handling units (AHU's) to 'dump' hot air from internal to external due to high external temperature | 28°C - 30°C | Decline in
revenue and
passenger
numbers
Negative impact
on passenger
wellbeing
Reputational
damage
Increase in
Health & Safety
incidents/
accidents | No
interdependencies
identified | All
buildings | Head of
Engineering
Services | No | 2 | 4 | 8 | 2 | 4 | 8 | 3 | 5 | 15 | Building Management System to manage hot days
Existing heating, ventilation
and air conditioning
system
efficiency in newer buildings
e.g. ATC tower
Maintenance regime of
chilling infrastructure
Conformance to BREEAM
standards | Investigate CCAA07 - Carry out an enhanced review of heavily glazed building areas temperature control requirements e.g. terminal buildings Investigate CCAA08 - Carry out a full review of HVAC system and building performance standards | | CCR06 | Increased
Summer
Temperature | Decrease in staff/
contractor comfort
within airport
buildings caused by
inadequate cooling
systems and inability
of air handling units
(AHU's) to 'dump'
hot air from internal
to external due to
high external
temperature | 28°C - 30oC | Increased staff
absence
Negative impact
on staff wellbeing
Reputational
damage
Increase in
Health & Safety
incidents/
accidents | No
interdependencies
identified | All
buildings | Head of
Engineering
Services | No | 3 | 4 | 12 | 3 | 4 | 12 | 3 | 5 | 15 | Building Management System to manage hot days
Existing heating, ventilation
and air conditioning system
efficiency in newer buildings
e.g. ATC tower
Maintenance regime of
chilling infrastructure
Conformance to BREEAM
standards | Investigate CCAA07 - Carry out an enhanced review of heavily glazed building areas temperature control requirements e.g. terminal buildings Investigate CCAA08 - Carry out a full review of HVAC system and building performance standards | |-------|--|---|-----------------------------------|--|---------------------------------------|--|------------------------------------|-----|---|---|----|---|---|----|---|---|----|--|--| | CCR07 | Increased
Summer
Temperature | More residents' windows open, particularly at night, leading to greater disturbance from aircraft operations | No specific decision threshold | Requirement for
additional noise
mitigation
Operational
restrictions
imposed
Reputational
damage | No
interdependencies
identified | Airport
noise
footprint | Head of
Sustainability | Yes | 2 | 2 | 4 | 2 | 2 | 4 | 2 | 2 | 4 | Noise Action Plan
Sound Insulation Scheme
Noise Complaints Procedures
Introduction of newer quieter
aircraft | Watching Brief | | CCR08 | Increased
Summer
Temperature | Flashpoint of
aviation fuel
exceeded on hot
days causing a
potential fire hazard. | Aviation fuel flash point is 38°C | Financial costs
for damage
caused
Operational
disruption
Health & Safety
Incident | Aircraft fuel providers | Airfield | Head of
Airfield
Operations | Yes | 4 | 2 | 8 | 4 | 2 | 8 | 4 | 3 | 12 | Spillage reporting and clean up procedures. Refuelling procedures | Investigate
CCAA09 – Look at
future aircraft types and
their refuelling
requirements | | CCR09 | Increased
Summer
Temperature | Increase in local air
quality pollutants
such as ozone | No specific decision threshold | Environmental
damage due to
increase in
pollutants
Restrictions on
future planning
and development
activity | No
interdependencies
identified | Local air
quality | Head of
Sustainability | Yes | 1 | 3 | 3 | 2 | 3 | 6 | 3 | 3 | 9 | Air quality monitoring for a range of pollutants in place | Watching Brief | | CCR10 | Increased
Summer
Temperature | Reduced lift for
departing aircraft
due to 'thin air' and
reduced engine
efficiency in very hot
weather | No specific decision threshold | Requirement for additional noise mitigation Operational restrictions imposed | No
interdependencies
identified | Airport
noise
footprint | Head of
Sustainability | Yes | 3 | 1 | 3 | 3 | 2 | 6 | 3 | 2 | 6 | Potential to change load factors Existing noise footprint monitoring and mitigation | Watching Brief | | CCR11 | Increased
Summer
Temperature | Increased expansion
and contraction of
pipework damaging
pipes | No specific decision threshold | Injury and
damage to
assets
Financial cost of
maintenance and
repair | No
interdependencies
identified | All
buildings | Head of
Engineering
Services | No | 3 | 2 | 6 | 3 | 3 | 9 | 3 | 3 | 9 | Maintenance and replacement regime | Watching Brief | | CCR12 | Increased
Summer
Temperature | Reduced cabin
comfort on-board
aircraft during
turnaround | No specific decision threshold | Reputational
damage
Passenger
distress | Airlines | Aircraft | Head of
Customer
Experience | Yes | 3 | 2 | 6 | 3 | 3 | 9 | 3 | 3 | 9 | Air conditioning on board
aircraft during turnaround | Watching Brief | | CCR13 | Increased
Summer
Temperature
Increased
Intense
Periods of
Rainfall | Hardening of natural
surfaces with
reduced natural
drainage function
resulting in
increased run-off
and risk of flooding | No specific decision threshold | Operational
disruption due to
excess surface
water | No
interdependencies
identified | Airfield -
stands,
taxiways &
access
roads) | Head of
Airfield
Operations | No | 3 | 2 | 6 | 3 | 3 | 9 | 3 | 3 | 9 | Grounds Maintenance ensure ground inspections take place | Watching Brief | | CCR14 | Increased
Summer
Temperature
Increased
Intense
Periods of
Rainfall | Increased ground movement, leading to: - instability of surrounding objects/ buildings/ structures - damage to underground infrastructure (drainage and utility pipes, cables and chambers) - changes to tree stability | No specific decision threshold | Operational
disruption
Airport closure
Financial costs to
repair damage/
replace affected
asset
Health & Safety
incident
Reputational
damage | No
interdependencies
identified | All
buildings
and
undergrou
nd
infrastructu
re | Asset
Owners | Yes | 3 | 2 | 6 | 3 | 2 | 6 | 3 | 2 | 6 | Monitoring and maintenance
programme
Completion of Civil Aviation
Authority 'CAP 232' annual
airside survey | Watching Brief | | CCR15 | Increased
Summer
Temperature
Lightning | Increased fire risk due to hotter dryer summers and increased incidence of lightning in summer. Grass/ vegetation fires could cause poor visibility due to smoke, with possible fire damage to outlying structures. Risk of fires off site impacting aircraft operations to/from the airport. Risk of fire resulting from use of bird scaring flares. | No specific decision threshold | Financial costs
for damage
caused
Operational
disruption
Health & Safety
Incident | West Midlands Fire
Service | Sitewide + off site within smoke range/ at destination s | Head of
Health,
Safety & Fire
Head of Fire
&
Emergency
Planning | Yes | 4 | 1 | 4 | 4 | 2 | 8 | 4 | 2 | 8 | On-site Fire & Rescue
Department
Procedures for use of flares | Watching Brief | |-------|--|---|--------------------------------|---|---------------------------------------|--|---|-----|---|---|---|---|---|---|---|---|----|---|---| | CCR16 | Increased
Summer
Temperature | Effect of air
temperature on the
(increased) speed of
aircraft landing | No specific decision threshold | Harder, faster
landing affecting
the structural
integrity of the
runway | Airlines | Airfield | Head of Air
Navigation
Services
Head of
Airfield
Operations | No | 3 | 2 | 6 | 3 | 2 | 6 | 3 | 2 | 6 | Runway, taxiway and apron
maintenance programme
Visual inspections
Regular engagement with
airlines through flight safety
committee
Review of landing procedures | Watching Brief | | CCR17 | Increased/
Decreased
Summer/
Winter
Temperature | Increased energy
demand for
cooling,
ventilation and
heating - increased
reliance on energy
suppliers being able
to supply this
demand | No specific decision threshold | Power outages -
critical equipment
failure
Operational
disruption
Airport closures | Energy supplier | All
buildings | Head of
Sustainability | Yes | 3 | 2 | 6 | 3 | 3 | 9 | 3 | 4 | 12 | On-site diesel generators for
back-up power for business
critical operations | Action CCAA09 - Reduce reliance on grid and increase security of energy supply through on-site renewable energy generation electricity generation (Solar PV) - this will form part of the Net Zero roadmap (currently in development) | | CCR18 | Increased/
Decreased
Summer/
Winter
Temperature
Increased/
Decreased
Rainfall | Increased risk to the health and wellbeing of outside workers due to a failure to exercise appropriate duty of care for outside workers caused by changes in climate, including hotter working conditions, wetter working conditions, colder working conditions | No specific decision threshold | Health & Safety
Incident
Reputational
Damage | No
interdependencies
identified | Outside
workers | Head of
Health,
Safety & Fire | Yes | 3 | 2 | 6 | 3 | 3 | 9 | 3 | 3 | 9 | Occupational Health department on site Health & Safety Department on site Individual departmental risk assessments and wellbeing currently include provision for hot weather working | Watching Brief | | CCR19 | Increased/ Decreased Summer/ Winter Temperature Increased/ Decreased Rainfall | Increase in disease
vectors at the airport
resulting from
changes to their
distribution, leading
to tropical and other
diseases | No specific decision threshold | Increased staff
absence
Operational
disruption | No
interdependencies
identified | Sitewide | Head of
Health,
Safety & Fire | Yes | 2 | 2 | 4 | 2 | 2 | 4 | 2 | 2 | 4 | Occupational Health
Department on site
Regular liaison with port
health
Health & Safety Department
on site | Watching Brief | | CCR20 | Increased/ Decreased Summer/ Winter Temperature Increased/ Decreased Rainfall | Changes to airfield
habitats and bird
populations
impacting wildlife
control and
increasing risk of
bird strike | No specific decision threshold | Additional
management of
wildlife required
Health & Safety
incident
Reputational
damage | No
interdependencies
identified | Airfield | Head of
Airfield
Operations | Yes | 3 | 2 | 6 | 3 | 2 | 6 | 3 | 2 | 6 | Airfield wildlife management
in place
Habitat management regime
in line with the Civil Aviation
Authority 'CAP 772'
requirements | Watching Brief | | CCR21 | Increased
Rainfall | Release of
contaminated
surface water to
brooks as a result of
polluted water
holding tanks
exceeding capacity | No specific decision threshold | Regulatory
notification/ fines
Reputational
damage
Restriction of
future
development | No
interdependencies
identified | Airfield
brooks
(Hatchford,
Westley &
Low
brooks) | Head of
Engineering
Services | Yes | 3 | 3 | 9 | 3 | 3 | 9 | 3 | 3 | 9 | Surface water drainage system feeding into 10 polluted water holding tanks - control mechanisms if holding tanks reach full capacity EA permits in place to manage polluted water, allowing discharge to brook in event of full capacity Monitoring of overflow to brook days | Investigate CCAA10 - Carry out an assessment of drainage system capacity, maintenance and upgrade requirements. | | CCR22 | Increased
Rainfall | Inadequate site
drainage system
capacity leading to
stand/ taxiway/
access road/ general
site flooding | Flooding of stand/
taxiway/ access road
of airfield | Operational disruption due to excess surface water Airport closures Financial cost to repair/ replace affected infrastructure | No
interdependencies
identified | Airfield -
stands,
taxiways &
access
roads) | Head of
Engineering
Services | Yes | 3 | 2 | 6 | 3 | 2 | 6 | 3 | 3 | 9 | Drainage maintenance
regime
Monitoring of brook levels
Flood & pollution control
system in place. | Investigate CCAA10 - Carry out an assessment of drainage system capacity, maintenance and upgrade requirements. | |-------|-------------------------------|---|---|--|---------------------------------------|--|---|-----|---|---|---|---|---|---|---|---|---|--|--| | CCR23 | Increased
Rainfall | Overflow of brooks
(and culverts)
leading to stand/
taxiway/ access
road/ general site
flooding | Flooding of stand/
taxiway/ access road
of airfield | Operational
disruption due to
excess surface
water
Airport closures | No
interdependencies
identified | Airfield -
stands,
taxiways &
access
roads) | Head of
Engineering
Services | Yes | 3 | 2 | 6 | 3 | 2 | 6 | 3 | 3 | 9 | Brook maintenance regime
Monitoring of brook levels
Flood & pollution control
system in place. | Action CCAA11 - Carry out de-silting and bank stabilisation works at on-site brooks to increase channel capacity. | | CCR24 | Increased
Rainfall | Intense rainfall and
standing water
affecting the
accuracy of ILS
readings | No specific decision threshold | Operational
disruption due to
excess surface
water
Airport closures | No
interdependencies
identified | Airfield -
stands,
taxiways &
access
roads) | Head of
Engineering
Services
Head of Air
Navigation
Services | No | 4 | 1 | 4 | 4 | 1 | 4 | 4 | 2 | 8 | Improved drainage at ILS | Watching Brief | | CCR25 | Increased
Rainfall | Torrential rain creates hazardous conditions for vehicles and aircraft i.e. airside and landside rota vinige and landing aircraft, due to: -reduced visibility -icy or wet conditions | No specific decision threshold | Financial costs to repair/replace equipment Operational disruption Reduced aircraft movements Aircraft/vehicle collision Health & Safety incident Costs to meet additional deicing volume requirements | No
interdependencies
identified | Sitewide | Head of
Airfield
Operations | Yes | 3 | 1 | 3 | 3 | 2 | 6 | 3 | 3 | 9 | Winter operations plan and activities
Airfield safety plan and activities | Watching Brief | | CCR26 | Increased
Rainfall | Rain ingress in roof
of certain airport
buildings increasing
the occurrence of
false fire alarm
activation | No specific decision threshold | Increase in
frequency of
false fire alarm
activation | No
interdependencies
identified | All
buildings | Head of
Health,
Safety & Fire | No | 2 | 3 | 6 | 2 | 3 | 6 | 2 | 3 | 6 | Fault reporting system | Investigate CCAA12 - Carry out building fabric survey to determine areas where more immediate roofing work is required | | CCR27 | Increased
Rainfall | Flood damage to
aircraft navigation
systems/buildings
and instrument
landing system
(ILS), leading to
equipment shut
down due to water
exposure and/or
unavailability of
critical navigational
aid systems | No specific decision threshold | Financial costs to
repair/replace
equipment
Operational
disruption
Reduced aircraft
movements | No
interdependencies
identified | Aircraft
Navigation
Systems/IL
S | Head of Air
Navigation
Services | Yes | 4 | 1 | 4 | 4 | 2 | 8 | 4 | 2 | 8 | Regular equipment
monitoring of known wet and
boggy areas
Daily checks
Maintenance regime
Equipment installed on higher
ground to mitigate against
water damage | Watching Brief | | CCR28 | Reduced
Summer
Rainfall | Pollution of local
watercourses due to
debris accumulated
in pipework during
longer dry spells
then being washed
out | No specific decision threshold | Regulatory
notification/ fines
Reputational
damage | No
interdependencies
identified | Airfield
brooks
(Hatchford,
Westley &
Low
brooks) | Head of
Engineering
Services | Yes | 3 | 2 | 6 | 3 | 2 | 6 | 3 | 2 | 6 | Water quality monitoring and review programme Maintenance of key parts of the flood & pollution control system equipment | Watching Brief | | CCR29 | Reduced
Summer
Rainfall | Dry areas of soil
being picked up in
high winds/storms
and becoming
foreign object debris
(FOD) | No specific decision threshold | Operational disruption | No
interdependencies
identified | Airfield | Head of
Airfield
Operations | No | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 4 | Existing FOD arrangements | Watching Brief | | CCR30 | Fog | Seasonal changes
to fog related
disruption (increase
in winter months,
decrease for
remainder of year). | Low Visibility
Procedures take
effect when the
Instrument Runway
Visual Range (IRVR)
is less than 600m
and/or the cloud
ceiling
is 200ft or less | Operational
disruption
caused by
runway closure
and low ground
visibility Reduced
aircraft
movements
Reputational
damage | No
interdependencies
identified | Airfield | Head of
Airfield
Operations | Yes | 3 | 1 | 3 | 3 | 2 | 6 | 3 | 2 | 6 | Low visibility operating and notification procedures in place | Watching Brief | | CCR31 | Lightning | Increase in lightning events leading to: -refuelling suspension -changes to flight routing -asset damage due to strike/fire, including essential ATC and IT equipment -decrease in ground handling agent's operational performance | No specific decision threshold | Operational disruption caused by decrease in aircraft movements Increased insurance claims Reputational damage H&S incident | Aircraft fuel providers | All aircraft
on airfield/
in airspace
controlled
by BAL
ATC | Head of Air
Navigation
Services | Yes | 4 | 2 | 8 | 4 | 2 | 8 | 4 | 2 | 8 | All commercial aircraft are tested for resilience to lightning strike as part of their certification. Aircraft can withstand lightning strike in the air but during take-off and landing instrument loss would be critical Diversion procedures Lightning protection system Back-up generators for power loss to critical equipment | Investigate CCAA13 - Review and assess adequacy of lightning protection system airport wide | |-------|---------------------|--|--------------------------------|--|--|--|---------------------------------------|-----|---|---|----|---|---|---|---|---|----|---|--| | CCR32 | Snow and Ice Events | Snow events leading to schedule disruption, staff & PAX difficulties getting to/from the airport site | No specific decision threshold | Operational
disruption
caused by
runway closure
Reduced aircraft
movements
Reputational
damage | Surface Access:
ground transport
connections for PAX
and staff travelling
to/from site in snow
conditions
Handling agents
Third parties | Airfield | Head of
Airfield
Operations | Yes | 4 | 3 | 12 | 4 | 2 | 8 | 4 | 1 | 4 | Winter operations plan and activities Airfield safety plan and activities | Watching Brief | | CCR33 | Snow and Ice Events | Increase in aircraft de-icing needed | No specific decision threshold | Operational
disruption
Increased risk of
pollution incident | Handling agents
carrying out de-icing
De-icer supply chain | Airfield | Head of
Airfield
Operations | Yes | 2 | 3 | 6 | 2 | 2 | 4 | 2 | 1 | 2 | Winter operations plan and activities Flood & pollution control system processes | Watching Brief | | CCR34 | Storms | Rain, wind, snow
affecting passengers
during walk between
carpark and terminal | No specific decision threshold | Reduced
passenger
experience | No
interdependencies
identified | Car park to terminal | Head of
Planning and
Transport | No | 2 | 2 | 4 | 3 | 3 | 9 | 3 | 3 | 9 | Covered walkway/ buses
from car parks
People mover from train
station | Watching Brief | | CCR35 | Storms | Increased occurrence of 'force majeure' enabling contractors to cease work without contractual penalty | No specific decision threshold | Financial risk and delay in project completion | No
interdependencies
identified | Sitewide | Procurement | No | 2 | 2 | 4 | 3 | 2 | 6 | 3 | 2 | 6 | Current procurement processes | Watching Brief | | CCR36 | Storms | Increased risk of
schedule interruption
from stormy
conditions, including
increased risk of
foreign object debris
(FOD) creation and
cross-winds | No specific decision threshold | Reduced aircraft
movements;
operational
disruption | Other airports - diverts | All aircraft
on airfield/
in airspace
controlled
by BAL
ATC | Head of Air
Navigation
Services | Yes | 3 | 3 | 9 | 3 | 3 | 9 | 3 | 4 | 12 | High wind procedures and cross wind procedures enacted at defined criteria (dependant on aircraft type) | Investigate CCAA06 - consider the need for equipment and/or data that will provide improved real time information on wind, wind shear and monitoring for storms. Investigate CCAA14 - Review FOD procedure during storms | | CCR37 | Storms | Increased building induced turbulence in high winds, exacerbated through emerging ICAO policy to reduce restrictions on development adjacent to runways. | No specific decision threshold | Operational
disruption | Local Planning
Authorities | Airfield | Head of
Airfield
Operations | No | 2 | 2 | 4 | 2 | 2 | 4 | 2 | 3 | 6 | Assessed as part of any new building development | Watching Brief | | CCR38 | Wind | Increased longevity of wing tip vortex effect due to general becalming of surface wind speeds. Wing tip vortex is particularly problematic for small aircraft taking off/arriving in quick succession after large aircraft. | No specific decision threshold | Damage to
residential
structure; H&S
incident; financial
cost to repair
structures
Reduced runway
capacity,
reduction in load
for larger aircraft | No
interdependencies
identified | Controlled
airspace
Vortex
protection
scheme
boundary | Head of
Sustainability | Yes | 1 | 2 | 2 | 2 | 2 | 4 | 3 | 2 | 6 | Vortex protection scheme
ATC procedures for vortex
spacing (as per regulations) | Watching Brief |