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Abstract

The Domain Name System (DNS) plays a central role in the Internet. It
allows the translation of human-readable domain names to (alpha-) numeric
IP addresses in a fast and reliable manner. However, domain names not
only allow Internet users to access benign services on the Internet but are
used by hackers and other criminals as well, for example to host phishing
campaigns, to distribute malware, and to coordinate botnets.

Registry operators, which are managing top-level domains (TLD) like
.com, .met or .nl, disapprove theses kinds of usage of their domain names
because they could harm the reputation of their zone and would consequen-
tially lead to loss of income and an insecure Internet as a whole. Up to
today, only little research has been conducted with the intention to fight
malicious domains from the view of a TLD registry.

This master thesis focuses on the detection of malicious domain names
for the .nl country code TLD. Therefore, we analyse the characteristics of
known malicious .nl domains which have been used for phishing and by
botnets. We confirm findings from previous research in .com and .net and
evaluate novel characteristics including query patterns for domains in quar-
antine and recursive resolver relations. Based on this analysis, we have
developed a prototype of a detection system called SIDekICk. 1t is able to
detect newly registered phishing domains and other online scams as soon as
they propagate through the Internet with a false positive rate of 0,3 percent.
It relies solely on features that can be collected from the vantage point of
any TLD registry like DNS query patterns, geographic features of query-
ing resolvers, and domain registration information. A second component
of SIDekICk reports suspicious domain names that were formerly used for
benign purposes but might have been compromised to become part of a
malware infection chain or a phishing campaign. This component demon-
strates that DNS traffic analysis has the potential to detect compromised
domains as well and in this thesis, we suggest additional features to improve
the detection rate.
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Chapter 1

Introduction

Domain names provide a human readable representation of (alpha-) numeric
Internet addresses. The Domain Name System (DNS) allows the translation
of these domain names to corresponding [P-addresses and vice versa. It is
hierarchically structured such that every domain name is part of a top level
domain (TLD). These TLDs can be for generic purposes like .com and .net
or can be associated with a country like .uk, .de, or .nl, which are referred
to as country code TLDs (ccTLD). Each TLD is managed by a registry
operator which is responsible for registration and delegation and guaran-
tees its reachability. The registry operator for .nl is the Stichting Internet
Domainregistratie Nederland (SIDN). SIDN manages the registration of do-
main names under the .nl ccTLD and provides the infrastructure that allows
Internet users all over the world to translate these names to IP addresses in
a fast, secure, and reliable manner. However, domain names not only allow
Internet users to access benign services but are used by hackers and other
criminals as well.

For example, websites, which are reachable under a domain, can host
malicious code that infects the computers of its visitors and thereby per-
sonal information can be stolen or the infected machine can become part
of a botnet. Botnets themselves can use domain names to enable infected
clients to communicate with central command and control servers (C&C)
in order to coordinate attacks or to receive updated malware. Last, domain
names are part of phishing attacks were criminals impersonate legitimate
services like banking websites or websites of social networks to trick users
into entering their credentials. In the second quarter of 2014, Aaron and
Rasmussen (2015) observed over 95.321 unique domain names involved in
phishing campaigns and the website malwaredomains.com has listed 8.517
domains that were involved in the command and control of bots and in the
distribution of malware in July 2015. According to the security company
Kaspersky, distributed denial of service attacks executed by large botnets
can cause companies a damage of over 400.000 EUR (Kaspersky Lab, 2015).



Identifying and taking down domain names that are involved in these attacks
can reduce the damage.

SIDN and other registries rely on businesses, organisations and individ-
uals that have an interest in hosting websites and therefore registering do-
main names in their zones. Every registered domain is a continuous revenue
stream for the registry. A TLD that is mostly used for malicious purposes
is not attractive for registrants with legitimate businesses. Thus, a secure,
reliable, and trusted TLD attracts potentially more customers and increases
revenues that can be used to maintain and strengthen DNS and the Internet
as a whole. For this reason, SIDN runs several projects internally and in
collaboration with other partners to actively fight misuse of domain names.
This thesis is part of such an initiative.

A registry is in the unique position that it is able to observe DNS queries
for every domain name in its zone from all over the world. Query patterns
can indicate when a domain name is used for malicious activities and has the
advantage that it does not rely on the analysis of the content of a website
or the communication between a bot and a botnet server. Due to the large
amount of domain names, it is cumbersome to detect these malicious domain
names manually. Therefore, automatic methods have been proposed.

So far, only few attempts have been made to fight malicious domains on
TLD level (Hao et al., 2010, 2011; Antonakakis et al., 2011). This thesis
contributes to a more secure Internet by gaining insight into DNS activi-
ties of malicious domains from the vantage point of an ccTLD shortly after
registration and after infection. It assesses whether previously described
characteristics of malicious domains in other TLDs exist in .nl as well. Ad-
ditionally, novel ways to detect malicious domain names are proposed and
it is discussed if they are adequate for identifying previously unknown ma-
licious domain names. Based on this analysis a prototype called SIDekICk
(Susplcious Domaln Classification) is developed that can automatically de-
tect malicious domain names based on DNS queries and registration data,
collected at a TLD. We show that ccTLDs like SIDN are able to detect
domain names used for malicious purpose few days after their registration
with high precision. Also, we show how we can identify suspicious domain
names that might be compromised and could be part of malicious activities.
Thereby, domain names can be selected for further examination.

In the remaining part of this chapter, we explain the basic components
and mechanisms of DNS and how a TLD is operated. Chapter 2 describes
how DNS can be misused in order to steal data from infected machines,
coordinate botnets and to host phishing campaigns to steal credentials or
banking details. In Chapter 3, we present existing approaches to detect mali-
cious domain names, describe the characteristics of domain names that make
a detection possible, and list common techniques to classify domain names
automatically briefly. Chapter 4 provides an analysis of benign and malign
domain names in .nl. We describe the characteristics of known malicious



.nl domains and explain how they differ from benign domain names. Based
on these observations we define the focus of SIDekICk. SIDekICk primarily
has the goal to detect phishing domains. In Chapter 5 the architecture of
SIDekICk is described, including the data collection, filtering, classification,
and presentation components. The performance of SIDekICEk is evaluated
in Section 5.4. Finally, in the last chapter the results are summarised, an
outlook is given how the performance of SIDekICk can be improved, and we
discuss how SIDekICk can be part of a process to fight malicious activities
on the Internet.

1.1 The Domain Name System (DNS)

In order to understand how hackers misuse DNS for their purposes and how
these activities can be detected it is necessary to first understand the basic
mechanisms of the system.

DNS helps to resolve human-readable domain names like www.example
.org. into the actual IP-address of the server where the services are hosted -
and vice versa. Each element of a domain name separated by a dot is called
a label. Domain names are organised in a tree structure (see Figure 1.1)
where the label on the most right is the root node (represented by the dot
".7) (Mockapetris, 1987a). Below the root node is one of the publicly known
top-level domains (TLD) which can be country specific as well. In case of
the Netherlands it is the country-code top-level domain (ccTLD) .nl. which
is maintained by SIDN. Each label on the left of the top-level domain label
specifies a subdomain. Thus, .example is a subdomain of .org. and www is
a subdomain of .example.org.

// .\<\

@com @net @org @nl -&«— top-level

root node

domain
@ecxample -«— subdomain/
2nd level
owww «— subdomain/
3rd level

Figure 1.1: DNS tree



1.1.1 Address Resolution

In order to be able to resolve a domain name such as www.example.org., a
host must rely on services that provide the translation from a domain name
to an IP-address. This includes five steps as depicted in Figure 1.2:

1.

First, the host looks up locally if it already knows an IP-address that
corresponds with the searched domain name (Step 1). For this, the
host usually has an own cache in which it stores domain names that
have been resolved recently. If there is no entry for the requested
domain in the cache, then the host has to contact another entity. The
DNS functionality within the host are referred to as a stub-resolver.

If no corresponding entry in the cache of the stub-resolver has been
found, it has to contact a DNS resolver. The address of the DNS
resolver is often given by the Internet Service Provider (ISP) of the
host. This resolver is usually a recursive DNS (RDNS) resolver that
will take over the responsibility to resolve the domain name and will
return the IP address or an error message if the domain does not exist.
Similar to the stub resolver, the RDNS resolver has a cache as well.
It first checks if the domain has already been resolved and if not, it
continuous with Step 3. In case the domain is already in the cache,
the RDNS resolver will respond to the host with a non-authoritative
answer which includes the IP address.

The RDNS resolver will start by contacting one of the DNS root servers
in order to find out who is responsible for the .org. domain. The
root server will reply with the IP address of the TLD server which
is responsible for .org. (Step 3a). Top level domains are managed
by name servers that do not reply with an IP-address for the whole
domain but instead respond by sending the domain name of another
DNS server that is responsible for the ezample.org domain (Step 3b).
In order to avoid that every RDNS first queries a root server, caches
are here in place as well.

As soon as the recursive resolver has received the IP-address of the
next DNS server it sends out another query. If this DNS server is
responsible for the domain www.example.org., it will respond with the
IP address (Step 4). Because this DNS server is responsible for the
domain it is called an Authoritative Name Server (AuthNS) and it
replies with an authoritative answer. The RDNS then will know that
the answer was not cached but comes directly from the responsible
name server.

Last, the RDNS server sends the IP address of the requested domain
to the host and the host can connect to the Internet service (Step 5-6).
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Figure 1.2: DNS flow

Each DNS entry in a cache has a limited life-time called time-to-live
(TTL). The entry is deleted from the cache after the TTL has been expired
and after a new request the IP-address has to be resolved again. The TTL
is defined by the authoritative name server.

1.1.2 DNS Message Format

All DNS messages have the same format. It includes a header, a question,
an answer, an authoritative section, and a section for additional information
(Mockapetris, 1987b).

e Header: The header defines, which sections are present and whether it
is a DNS query or a response. An Authoritative Answer (AA) flag de-
fines if the answer comes from an AuthNS. A Response Code (RCODE)
3 can inform the requesting client that the requested domain does not
exist. This response is called NXDOMAIN.

e Question: The question section defines for which domain an answer is
requested.

o Answer, Authoritative, Additional Information: The answer, author-
itative, and additional information section all have the same format
called Resource Record Format (RR). The name field specifies which
section follows. A type field defines the resource record and a TTL
field specifies how long a record should be cached. Different types of
RRs are described below.



Many different RR types have been defined, however only a small number
are used in the wild. The following are the most relevant types for this paper:

o A and AAAA: The IPv4 or IPv6 address of a host.

e NS: Defines the address of a name server that might know the answer
to the requested domain name.

e CUNAME: The canonical name record is used as an alias for existing
domain names.

e MX: Host information for a mail exchange.
e PTR: Used for recursive DNS lookups.
e TXT: Can hold descriptive text. No semantics are defined.

If for example a RDNS server queries a ccTLD server for the domain
example.org, it will receive the address of the name server which is responsi-
ble for this domain (the AuthNS). Additionally, a section is attached where
already the TP address of the authoritative name server is added. This
additional section is called a ”glue record”.

1.1.3 Domain Registration

The Internet Corporation for Assigned Names and Numbers (ICANN) has
the oversight over domain names. ICANN delegates the right to use TLDs
and hands out domains to registry operators. For example, the top level do-
main .com is managed by VeriSign and the ccTLD .nl is managed by SIDN.
SIDN does not sell domain names directly to the end users but uses inter-
mediaries and provides a central register of the registered domain names. It
contains for each registered .nl domain the name of the owner of the domain
(the registrant), contact information, name-servers, a creation date, and in-
formation about the company that sold the domain name. This company is
called a registrar.

After a claim for a .nl domain name has expired, it is put into quaran-
tine for 40 days. During this time, only the former owner can reclaim the
domain name. After these 40 days, the domain name is again available for
registration for every interested buyer. Other registries have similar mecha-
nisms in place. This prevents for example that registrants accidentally lose
their domain names, when they forget to pay their bill at the registrar.

There are companies in the domain name eco-system that buy popular
domain names from registrars and resell them for a higher price. They
are called domainers and are specialised in registering domain names that
leave quarantine within seconds. Domainers play a role in the detection
of malicious domain names because they are responsible for certain query
patterns.



1.2 The Situation at SIDN

The SIDN is responsible for managing the ccTLD .nl. The c¢cTLD .nl is
the 5th largest ccTLD and the 10th largest TLD in the world (Verisign,
2014). In December 2014, over 5,5 million domains were registered in total
(SIDN, 2014b). Additionally, SIDN provides the registry service for the new
gTLD .amsterdam and the ccTLD of Aruba. SIDN runs authoritative name
servers to answer queries from all over the world, including four unicast and
multiple anycast servers. Over 15.000 queries are answered every second
(Hesselman et al., 2014). These queries are received from 3.211.225 DNS
resolvers, where the majority sends less than hundred queries every day
(Hesselman et al., 2014). In order to store and analyse the large amount of
requests, SIDN has introduced the ENhanced Top-level domain Resilience
through Advanced Data Analysis (ENTRADA) big data platform (Wullink,
2015). ENTRADA is embedded into a privacy framework that includes
legal, organisational and technical aspects to protect personal information
of the users behind the recursive resolvers. The framework specifies among
others the type of personal data which is processed by each project that
uses ENTRADA, the instances that have access to the data, and it allows
to filter out sensitive information such as IP addresses of certain sources or
to aggregate queries to remove personal details. So far, ENTRADA stores
query data of one name server in a Hadoop framework which then can be
accessed by researchers of SIDN. Further, SIDN manages a database where
information about each domain is stored. This database can be queried with
the WHOIS protocol.

SIDN does not sell .nl directly but provides intermediary registrars the
possibility to enrol as a reseller or use resellers themselves. Each registrar
pays fees for registry transactions and monthly fees to SIDN to be allowed to
sell .nl domains. For the .nl domain over 1.500 registrars from 27 different
countries are allowed to sell domain names. These include registrars from
the Cayman Islands and Singapore!.

The business model of SIDN relies on the high reputation of .nl domains
and their trustworthiness. Thus, it is in the interest of SIDN that the do-
mains are not misused by miscreants to run SPAM and phishing campaigns
or to host their botnet infrastructure. Therefore, SIDN has the goal to iden-
tify these malicious domains as soon as possible in order to take them down.
At the moment, there are no statistics about how many malicious domains
are registered under the .nl domain. Previous researchers of botnets and
malicious domains world wide have not listed .nl among the top 10 of in-
fected domains. It is considered as one of the ccTLD’s that have strong
security-related policies, next to countries like Iceland, Sweden, Japan and
Canada (Futai et al., 2013; Nazario and Holz, 2008). For example, SIDN

1
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does not allow refunding of registration costs in case a claim for a domain
is dropped few days after registration. Thereby, misuse by spammers and
phishers can be reduced (Wisniewski, 2009). Therefore, it would be ex-
pected that these ccTLD make it harder for hackers to register malicious
domains. However, Antonakakis et al. (2011) have developed a method to
detect malicious domains in the Canadian .ca domain and still found sev-
eral malicious domains, despite strong policies. Moreover, a quick look at
Domain Black Lists like www.malwaredomains.com already shows, that ma-
licious .nl domains exist as well. In order to get a clear understanding about
the existence of malicious domains in .nl, it is necessary to analyse the sit-
uation in more detail. Additionally, this will allow SIDN to estimate if the
the number of domain name abuse increases in the future and to implement
proactive countermeasures to fight this behaviour.



Chapter 2

The Misuse of Domain
Names

On one side, DNS makes it easier for a user to find resources on the Internet
and can increases their availability. On the other side, DNS can help mis-
creants to increase the availability of their services as well and allows them
to hide their activities. In this chapter, three typical malicious use-cases
of domain names and their characteristics are described. It is shown, that
domain names play a critical role in the life cycle of malicious activities on
the Internet. This serves as a motivation for SIDN to develop a system that
detects those domain names.

2.1 Exploit Kits

Exploit kits are toolkits that allow miscreants to infect a computer of a
victim easily (Grier et al., 2012). They bundle different exploits that target
for example vulnerabilities in web-browsers or browser plugins like Java and
Adobe Flash. These exploits are then used to load malware on the targeted
machine in order to steal passwords, deploy ransomware or to make the
machine a member of a botnet. Multiple domains can be involved in the
process from leading web-users to an attack page, infecting their machines,
to transferring stolen data back to the attacker.

Although exploit kits are not a new phenomenon, they have gained pop-
ularity in the recent years and are now among the most popular web-based
attacks (Chen and Li, 2015).

2.1.1 Exploit Kit Infection Chain

Usually, a machine is not infected directly but gets redirected through mul-
tiple websites and communicates with several servers (Grier et al., 2012).
These steps are depicted in Figure 2.1. At first, the user visits a website



that triggers the infection chain. This can occur for example by clicking on
a link in a SPAM mail or by visiting a benign website that hosts malicious
code directly or within an advertisement banner from a third party (Step 1).
This code initialises a number of redirects through multiple websites with
the intention to hide the location of the site that hosts the exploit kit (Step
2). The first websites are often compromised, the latter website is often a
dedicated website, registered and hosted by the attacker. The exploit kit
tries to identify the software and plugins that run on the victim’s computer
and tries to gain access to the machine by using exploits that it has in its
tool box. If the kit was able to gain access, malware can be loaded onto the
machine. It can fulfil different purposes such as stealing credentials or mak-
ing the computer part of a botnet (Step 8). Malware can be hosted on the
same server as the exploit kit or can be loaded from other machines in the
Internet. Depending on the used malware, the infected machine starts com-
municating with other servers to transfer stolen data or to receive further
command and control information.

init.nl redirect 2 | | infection.nl

— 1 —> - — 2 )—>» | (redirect1 -

Figure 2.1: Exploit kit infection chain

Normally, there are at least three different domains involved in the in-
fection chain. The initial domain can exist for several weeks, whereas the
domain that hosts the actual botnet has a lifetime of only a few hours.
During their research, Grier et al. (2012) have detected over 16.000 unique
domains that were used as initial redirection website and over 6.000 unique
domains that hosted the actual exploit kit. Furthermore, over 91.000 unique
URLSs were discovered. The median number of daily DNS queries for the
initial compromised domains was 30, which leads to the assumption that
especially websites were compromised that were used by private individuals
or small companies and were not well maintained.

2.1.2 Obfuscation and Extensions

In order to make it harder to detect and take down websites that are in-
volved in the delivery of exploit kits, developers of these kits implement
self-defensive techniques (Eshete and Venkatakrishnan, 2014). These in-
clude modifying and obfuscating the malware code to avoid detection based
on signatures and to make reverse engineering harder. Furthermore, they
deny access to search-engines crawlers for example through IP blocking or
by setting access permissions in the robot.txt file. Also, manual inspection
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of suspicious URLs is made more difficult by displaying an empty page or
by returning an 404 error after the infection was successful.

A technique that uses subdomains to obfuscate the infection chain be-
comes more popular among exploit kits developers. With domain shadow-
ing, a miscreant uses hijacked registrant accounts to create a large number
of subdomains under a benign domain name without the knowledge of the
owner of the website (Biasini and Esler, 2015). These subdomains are then
either used in the redirection chain or as a final exploitation site. Subdo-
mains used for redirection can be a string of random looking characters like
mdfct6lfr8hcepdbknyzizj or can contain English words like says.imperialsocks
.com. Subdomains used for infection are mainly composed of random char-
acters. Third and fourth level domains have been observed (Biasini, 2015).
The lifetime of the infected domain can be only a few minutes, which makes
blacklist attempts more difficult. Even in the case a domain is blacklisted,
it is very likely that the benign site which is hosted on the 2nd level is
blacklisted as well.

Malign subdomains of the same 2nd level domain share the same IP
address and in some cases, subdomains of different 2nd level domains were
directed to the same IP address.

2.2 Botnets

Botnets are a large group of infected computers, connected to the Internet.
Botnet software can be delivered through an exploit kit or through a dedi-
cated drive-by download, by tricking a user into installing a file, or through
other vulnerabilities in the operating system or the browser. This allows
the hacker to take over the control of the infected machine, which is called
a bot from then on. Botnets can include up to several hundred thousand
computers, distributed all over the world (Nazario, 2012).

These botnets are used for different malign purposes. From Distributed
Denial-of-Service (DDoS) attacks, launching big SPAM campaigns and phish-
ing to stealing data and carrying out click fraud - the possibilities for a owner
of a botnet are wide and lucrative. DNS has a specific role in order to main-
tain these botnets, but before its role is described in more detail, the basic
technical features of typical botnets are explained.

The hacker, who distributed the malware and has control over the bots
is further referred to as botmaster (Rodriguez-Goémez et al., 2013).

In order to control the bots, the botmaster must be able to send com-
mands to the infected machines. Botnets make use of different architectures
like Peer to Peer (P2P), a centralised client-server communication or a com-
bination of both (Rodriguez-Gémez et al., 2013). In this section, we only
focus on client-server communication where DNS plays an especially impor-
tant role.

11



In a centralised botnet that relies on HTTP the topology is similar to
a client-server infrastructure where the infected bots are the clients and a
central Command and Control (C&C) machine is the server. The C&C
server is responsible for communicating with bots and is under the control
of the botmaster. The bots use the Hypertext Transfer Protocol (HTTP) to
receive commands from the server. Therefore it queries the server frequently
for new commands (so called ”pull”-style (Gu et al., 2008b)).

At first, botmasters only used a small number of C&C servers to control
the bots, hardcoding the IP addresses into the malware. In order to increase
the availability of their botnets, botmasters started to use domain names to
address the servers and hiding the servers behind a second layer of proxies.

2.2.1 A Botnet Lifecycle

A bot goes through different stages during its lifetime: initial infection,
secondary injection, connection, malicious command and control, update and
maintenance (Feily et al., 2009).

Initial Infection First, the initial malware is downloaded to the computer
that should be infected. This can happen, for example by tricking the user
into downloading a malicious file or by using a vulnerability in the browser
or operating system.

Secondary Injection Second, the initial malware allows the attacker to
download the actual bot binary from a central FTP or HTTP server. After
the binary is downloaded it is installed on the computer.

Connection Third, the bot tries to establish a connection with the C&C
server to join the botnet. For example, bots of the ZeuS network connect to
a C&C server right after the host has been infected (Mahjoub et al., 2014).

Malicious Command and Control Depending on the malicious action
that should be carried out, the bot receives different commands. Popular at-
tacks include distributed denial of service (DDoS) attacks, SPAM, phishing
and click-fraud (Rodriguez-Gémez et al., 2013).

Update and Maintenance In order to prepare a bot for a new malicious
activity or to equip it with the latest evasion techniques, the bot has to
download and install the newest version of a bot-binary. Also, in some cases
it might be necessary to delete the bot from the infected machine remotely.
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2.2.2 Botnet Detection Evasion

It was a long way from the early days of simple, relatively small botnets to
the sophisticated and large botnets we find today. A ”cat and mouse game”
started where security researchers on one side try to find ways to identify
and take down botnets and hackers on the other side continuously develop
new ways to evade detection and increase availability and resilience of their
botnets.

In the beginning of the raise of centralised botnets, bots usually had the
IP address of the C&C server hard-coded into the binary of the malware
(Morales et al., 2009). This allowed researchers to identify these servers eas-
ily, for example by re-engineering the malware or by observing its communi-
cation behaviour. As soon as the central server is identified, communication
of the bots with the server can be blocked by a firewall, the traffic to this
address can be rerouted, or the server itself can be taken down from the
network.

As a reaction, botmasters searched for ways to increase the resilience of
their botnets. The basic approach is to provide multiple C&C servers. How-
ever, if again every address of those servers are hard-coded into the malware
then they are still easy to take down and managing the addresses is cumber-
some. Thus, hackers made use of DNS in order to increase redundancy of
their C&C servers, to hide the infrastructure of their botnet and to simplify
the management of their servers. Different approaches are explained below.

Domain Flux

Domain flux is a technique which makes use of a Domain Generation Al-
gorithm (DGA). This algorithm generates pseudo-random domain names,
depending on a given random seed (e.g. the current date) (Antonakakis
et al., 2012). Each bot is rolled out with a DGA. In order to contact a C&C
server, it generates a number of domains and tries to resolve each them with
until it receives a valid IP address from the DNS server. Before, hackers al-
ready have registered some of these domains and assigned their C&C servers
to them. For every attempt to resolve a domain name which is not regis-
tered, the queried DNS server replies with an NXDOMAIN response. Thus,
botnets which use a DGA usually generate many NXDOMAIN responses,
which can be used to identify bots (see Chapter 3).

If an IP address of a server is identified and taken down, the botmaster
just registers a new domain, generated by the DGA, and assigns a new C&C
server to this domain. Thus, domains generated with a DGA usually have
a rather short life-span (Bilge et al., 2011). Also, those domain names often
have different lexical characteristics than benign domain namse (Bilge et al.,
2011). Examples of botnets which use a DGA are Bobax, Torpig (Stone-
Gross et al., 2009) and the Conficker bots (Porras et al., 2009a; Porras, 2009).
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Variants of Conficker generate up to 50,000 domains every day (Porras et al.,
2009b). A recent version of the bot Rovnix generates domains that look like
benign domain names on first sight (Kruse, 2014). As shown in Table 2.1,
Rovnix domains are more similar to legitimate domain than domains used
by Conficker (Schiavoni et al., 2014). Also the Matsnu bot doesn’t generate
randomly-looking domains but relies on a dictionary of 1.300 words to create
domain names which look legitimate in order to trick known DGA detection
techniques (Mimoso, 2014).

Conficker Domain Name | jbkxbxublgn.biz
Rovnix Domain Name accordinglytathdivine.com

Table 2.1: Examples of domain names generated by different DGAs

Fast Flux Service Networks (FFSN)

The basic idea of Fast Flux Service Networks is to increase the availability of
botnets and to be thereby more resilient against take-downs of C&C servers.
In FFSNs, multiple IP addresses of different C&C servers are assigned to one
domain. If a bot queries a domain name, a DNS server replies with multiple
IP addresses (A-records) at once. Then, the bot selects randomly or by a
certain scheme (e.g. round robin) one of the IP addresses. If a bot queries the
same domain name few minutes later, the DNS server might respond with a
set of partially or completely different IP addresses. One domain can have
thousands of different IP addresses assigned to it over time (Riden, 2008).
Thus, the botnet stays operational even if multiple C&C servers are taken
down. The returned IP addresses do not belong to the actual C&C servers
but to an additional layer of bots - so called fluz-agents. These flux-agents
act as proxies for the actual C&C servers. This technique allows botmasters
to hide their C&C servers and increase the resilience of their botnets which
is not only useful for botnets but is used in phishing campaigns as well.
Research by (Holz et al., 2008) has identified over 600 flux-agents in one
botnet.

Today, two different implementations of FFSN can be found - Single Flux
and Double Fluz.

Single Flux In a Single Flux configuration, only the IP addresses of the
flux-agents change over time. The communication of a bot with a C&C
server is explained with the help of the fictive malicious domain cnc.bad-
domain.com as depicted in Figure 2.2:

First, the bot sends a DNS request to one of the the DNS root servers.
The root server will respond with an address of an NS which is responsible for
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the .com top-level domain. The NS will respond with the IP address of the
AuthNS which is responsible for the sub-domain bad-domain.com. Often,
multiple name-server are responsible for one domain (first steps omitted in
graphic). Then, the bot sends a DNS query to the name server and receives
a number of A-records of flux-agents (Step 7). The bot selects one of the
IP addresses to which it sends its request (Steps 2 and 3). From the view
of the bot, it communicates directly with the C&C server, but in reality
the flux-agent acts as a proxy and forwards the requests to the actual C&C

server (Riden, 2008).
S‘ {2
C&C Server

bad-domain.com
AuthNS

Infected Host

Figure 2.2: Single Flux flow

Double Flux Compared to a Single Flux configuration, not only the A-
records, but also the NS-records change over time. Using the example above,
the bot again queries a root server, followed by the NS of the .com domain.
The NS replies with a number of AuthNS responsible for bad-domain.com.
However, the returned names-servers are now already part of the FFSN.
In the configuration of a Double Flux botnet, even the IP addresses of the
name servers change frequently. The bot picks one of the name-servers and
sends a DNS request for cnc.bad-domain.com, receives multiple IP addresses
and picks one of them (step 7). The subsequent flow is the same as in single
Flux networks (Steps 2 and 3). Usually, name-servers and the flux-agents
run on the same computer (Riden, 2008).

This configuration give botmasters the advantage that flux-agents are
disposable and hide the actual C&C servers. Flux-agents do not have to be
as powerful machines as C&C servers and can therefore choose from a larger
pool of infected computers. Furthermore, botnet researchers can often only
observe the communication from the bot to the flux-agent which protects
the C&C server from being identified and taken down.
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Figure 2.3: Double Flux flow

Similarities to Benign Load-Balancing Techniques FFSNs have sim-
ilarities to legitimate techniques to improve reliability, availability and per-
formance for web services which makes it harder for researchers to distin-
guish them. Round-robin DNS (RRDNS) is a method that returns not
only one, but a list of A-records with every DNS response. The client then
chooses one of the returned IP-addresses. Often, A-records have a TTL of
less then 1.800 seconds (Holz et al., 2008).

Content Delivery Networks (CDN) are another possibility to perform
load-balancing and to increase responsiveness for web-services. Again, sev-
eral A-records are assigned for one domain name but in this case the DNS
server only returns the IP-address of the server that fits best to the requested
client. This is for example determined based on the location of the server
and the client or based on the load on the link which connects the server with
the client. The servers of CDNs are usually distributed all over the world
but also closely clustered in central geographic locations (Stalmans et al.,
2012). A-records of CDNs have a lower TTL than A-records of RRDNS
services (Holz et al., 2008).

FFSN Characteristics FFSNs often have characteristics that differ from
benign load-balancing techniques. First, botmaster usually cannot freely
choose which host to infect. Therefore, bots and flux-agents vary in geo-
graphical location, variety of Autonomous Systems (AS), number of pre-
fixes, IP diversity, and have variable and unpredictable up-times (Stalmans
et al., 2012; Huang et al., 2010; Martinez-Bea et al., 2013). Also, the number
of A-records for a fast-flux domain is often 5 or higher whereas legitimate
services do not exceed three records. The same is true for the number of
NS-records in case of a double flux infrastructure (Holz et al., 2008). Fur-
thermore, the total number of returned IP addresses for one domain over
time is very large and their TTL is comparably low. However this can be
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true for CDNs as well (Perdisci et al., 2009). Additionally, the hosts which
are part of a FFSN need to have a unique IP address that is globally ac-
cessible (Nazario and Holz, 2008). Passerini et al. (2008) further identified
two typical characteristics of FFSN-domains. First, benign domains usually
have a longer lifetime whereas the lifetime of FFSN-domains is on average
only five weeks. Second, FFSN-domains are usually registered at registrars
in countries with lax legislation against Internet crime.

DNS Blacklist Checking

Security researchers run several websites that list domain names which have
been categorised as malicious. Two examples are the websites
www.malwaredomains.com and www.malwaredomainlist.com. Both services
run own detection mechanisms as described in Chapter 3. These websites
should help for example administrators to filter out SPAM mails or to block
malicious content from entering their local networks. However, also bot-
masters have discovered the usefulness of those services and have instructed
their bots to query these services to check whether their phishing domains
and bots are blacklisted (Lee and Lee, 2014).

DNS Record Hacking

One approach that helps botmasters to prevent their malicious domains from
showing up on blacklists is to connect their domains to a legitimate domain.
In 2012, hackers used compromised accounts of the private domain registrar
godaddy.com to add additional subdomains to already registered, legitimate
hostnames. The hostname still directed to the original website whereas the
A-record of the subdomain pointed to a malicious website of the botmaster
(Howard, 2012). Thereby, they not only can avoid blacklisting but also can
imitate benign websites for SPAM and phishing. In case that malicious
activity from the domain is detected, it is likely that the complete domain
is blacklisted and thereby the benign domain is not reachable anymore as
well.

Fake DNS Queries

Because some detection mechanisms, which are described in Chapter 3, iden-
tify botnets based on communication patterns, botmasters now modified
their bots such that they send out legitimate DNS queries as well (Lee and
Lee, 2014). Also, they are trying to avoid synchronous DNS and C&C traffic
of their bots. Thereby, they can deceive detection mechanisms that rely on
detecting group activities of botnets (Choi et al., 2009).
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DNS Tunneling

As described by Dietrich et al. (2011), botmasters have misused the DNS
protocol to hide C&C traffic. DNS has the advantage that it is one of the
few protocols that is usually allowed to pass even very restrictive firewalls.
Furthermore, it makes it possible to hide botnet activities from detection
techniques that only focus on HTTP traffic. The Feederbot-network uses
the TXT RR to send encrypted messages from the bot to the C&C servers.

Because the DNS messages cannot be resolved by normal DNS resolvers,
Feederbot bypasses pre-configured DNS resolvers. However, in case this is
not successful the pre-configured DNS will fail to resolve the domain name
and will reply with a NXDOMAIN response.

Encryption

In order to bypass firewalls and to hide their activities, bots often encrypt
the communication between their peers and C&C servers (Zhao et al., 2013;
Rodriguez-Gémez et al., 2013). Encryption hinders botnet-researchers to
identify bots based on the packet content and forces them to develop content
agnostic detection techniques.

Polymorphism

Polymorphism describes the possibility of bots to change the source code of
their malware, while the functionality stays the same. Thereby, signature
based malware detection on a host becomes more difficult (Rodriguez-Gémez
et al., 2013).

2.3 Phishing

Phishing attacks have the goal to steal valuable information from their vic-
tims. These include credit card information and user credentials. Accord-
ing to the recent report by the Anti-Phishing Working Group, the most
targeted industry sector were eCommerce websites, followed by bank and
money transfer organisations (Aaron and Rasmussen, 2015). The 10 most
targeted organisations accounted for more than 75 % of the phishing attacks.
The number of phishing campaigns stayed constant compared to the first
half of 2014 but is at its highest number since 2009.

95.321 unique domains were involved in phishing campaigns in the sec-
ond half of 2014 and 70 % percent of those campaigns were hosted under
the TLDs .com, .tk, .pw, .cf and .net. In comparison, only 432 unique do-
mains in the .nl zone were involved. 28 % of the total number of involved
domains were registered only with a malicious purpose in mind. This means
that 72 % of the domains are owned by legitimate users whose server got
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compromised to host the phish. Most of the domains which were regis-
tered for malicious purposes were registered by Chinese phishers (84 %).
One third of these domains were registered at Chinese registrars and half
of the registrations were made at registrars in the USA. Only 1,9 % of the
registered phishing domains contained a brand-name or a misspelled brand
name. 6 % of phishing attacks were hosted on subdomains ran by one of
over 800 subdomain providers. These subdomains are often free of charge,
allow anonymous registration and many have lax takedown procedures. A
phishing website is on average reachable for almost 30 hours and half of the
websites have an uptime of over 10 hours.

Initiators of phishing campaigns use botnets to increase the resilience
against take-down attempts (Holz et al., 2008; Gu et al., 2008a). Therefore
they can share similar DNS characteristics as botnets.
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Chapter 3

Detecting Malicious Domain
Names

Because of the wide spread of botnets and phishing campaigns and their
harmful attacks, researchers are trying to find ways to detect them and to
take them down. They are analysing the initial infection and propagation
of bots by setting up honeynets in order to monitor their communication.
Phishing domains are detected through automatic mail filters, analysing the
email content or through browser toolbars (Fette et al., 2007).

Many researchers are focusing on the communication patterns of bots.
This includes the communication of bots with their peers, with a C&C
server or with an attacked target. One approach is to observe only the
frequency of bot communication, without taking the actual content of the
communication into account (AsSadhan et al., 2009; Gu et al., 2008a). Also,
the spatial attributes such as the location of bots is one common feature
(Stalmans et al., 2012; Gu et al., 2008b). Other researchers look into the
communication protocols and analyse the content or flow-patterns of the
transferred packets (e.g. Mazzariello (2008); Chen et al. (2010)).

The approach that is the most relevant for this paper is the communica-
tion of bots with other, not compromised services - especially DNS servers.
This section categorises detection techniques which are based on DNS char-
acteristics and extracts relevant features. Domains that are involved in bot-
nets share similar attributes with domains that are used in other malicious
activities such as phishing and scam (Hao et al., 2010). Thus, the described
techniques are not only relevant for detecting botnets but for discovering ma-
licious domains in general. Besides DNS traffic patterns, phishing domains
can be detected based on domain name features and domain registration
information as well (Fette et al., 2007).

DNS base detection techniques have in common that they all rely on the
observation of DNS request and response packets sent and received by clients
requesting the IP address of a malicious domain. The detection techniques
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differ among others in their feature selection and in their deployed location
in a network. We categorise DNS detection techniques as follows:

e Vantage Point: The location at which DNS traffic is observed has an
impact on the collected data and its features. Locations include hosts,
local RDNS and Internet gateways, RDNS server on ISP level and
name servers at TLD level.

e Feature Selection: Features describe typical characteristics that can
be used to identify bots and malicious domains. The following feature
sets have been used previously:

— Temporal Features

— Spatial Features

— DNS Record Features

— Domain Registration Features
— Domain Name Features

— Domain Content Features

e Data Mining Techniques: In order to detect malicious domains auto-
matically, different data mining and machine learning approaches have
been proposed.

3.1 Vantage Point

It is important to define where DNS traffic can be observed. Depending on
the location, different features can be observed.

First, DNS traffic can be collected at the lowest level of the DNS hier-
archy - at the host (Morales et al., 2009). Every single DNS request can
be analysed, without caches in between. Additionally, IRC, HTTP or P2P
communication can be observed as well. To achieve a holistic view of a bot-
net, observed information from many hosts has to be collected at a single
point.

Second, DNS traffic can be observed in a LAN, for example at a network
gateway or at a local RDNS server (Choi et al., 2009; Zhao et al., 2013; Gu
et al., 2008b; Jiang et al., 2010; Villamarin-Salomén and Brustoloni, 2008).
There, a larger number of DNS requests can be observed at one central
point. Observations at a local network gateway have further the advantage
that other bot traffic, which is not related to DNS, can be collected as well.

RDNS server are also widely deployed in networks of Internet Service
Providers (ISP). Thus, it makes sense to observe DNS traffic at this location
as well (see Lee and Lee (2014); Stalmans et al. (2012); Nagaraja et al.
(2010); Lee et al. (2010); Futai et al. (2013); Perdisci et al. (2009); Bilge
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et al. (2011); Antonakakis et al. (2010); Nazario and Holz (2008); Yarochkin
et al. (2013); Antonakakis et al. (2012)). ISPs have often a large number
of customers which send many DNS requests every second. For example
Perdisci et al. (2009) have observed 2.5 million queries at an ISP’s RDNS
server every day.

The location which is most relevant for this Master-thesis is an obser-
vation at the level of an authoritative name server (AuthNS). Compared
to the vantage points described above, AuthNSs have a global view on the
Internet. They not only collect DNS traffic from one host, one LAN or one
ISP, limited to a location or area, but can gather data about one domain
worldwide. Despite this advantage, this vantage point comes with some
drawbacks as well. First, the authority for one top level domain could make
it harder to detect botnets that rely on multiple top level domains. For
example, the Torpig botnet relies mainly on .com domains but uses .net
domains as a backup as well (Stone-Gross et al., 2009). Second, because of
the high position in the DNS hierarchy, DNS caching comes stronger into
effect (Antonakakis et al., 2011).

Besides vantage points within the DNS hierarchy, detection techniques
can be deployed at DNS related services as well. Ramachandran et al. (2006)
have proposed an observation of DNS Blacklist (DNSBL) traffic. Botnet
C&C servers and exploit kits query DNSBLs before an attack or a SPAM
campaign to determine which domains and bots are black listed. Phishing
domains can be detected at the receiving mail server or in the browser of a
user.

3.2 Feature Selection

Features describe characteristics of malicious domain names that are distinct
from benign domain names. Researchers have identified features based on
the DNS requests of a bot, on the DNS specific characteristics of a domain,
on the domain name itself as well as data from the WHOIS database. In
the following paragraphs, previously identified features are described.

Temporal Features Temporal features describe characteristics that are
related to the frequency of DNS requests, their distribution over time, and
their relationship to previous or following DNS requests. For example, Lee
and Lee (2014) have observed DNS requests of a host for a known malicious
domain in order to identify previously unknown malicious domain names.
They have analysed previous and following DNS requests by this host under
the assumption that an infected bot will query multiple malicious domains
over time. Also, by observing hosts with similar sequential DNS patterns,
they expect to detect unknown bots as well (see also Villamarin-Salomén
and Brustoloni (2009); Lee et al. (2010)). For this thesis, we usually cannot
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observe the queries of the hosts directly. Nevertheless, the same observations
can be made of recursive resolver queries to some extent as well .

The frequency and their daily similarity of DNS requests by bots has
been observed by Choi et al. (2009); Stone-Gross et al. (2009); Bilge et al.
(2011). For example, Stone-Gross et al. (2009) have observed that bots of
the Torpig botnet contact their C&C servers every 20 minutes. The DNS
request growth rate has been used by Perdisci et al. (2009) to identify DNS
requests for malicious domains and Hao et al. (2010) have discovered that the
number of DNS requests for malicious domains increase more rapidly after
registration for benign domains. Antonakakis et al. (2011) have monitored
DNS traffic at AuthNS level and have assumed that DNS requests for a
malicious domain from a popular RDNS server are more likely than from a
rather unpopular RDNS server.

The similarity of domain names that have been generated by a DGA is
measured by Schiavoni et al. (2014). They observe the IP-addresses that
have been assigned to two domains over time. In case two domains resolve
in certain period to the same IP addresses, both domains most likely belong
to the same botnet.

Li et al. (2013) have discovered that bots often query two DNS servers
at once. Often, hosts have two DNS servers entries for reliability reasons.
While benign hosts usually only query one DNS server at a time, bots seem
to query both DNS servers at once. It could be possible to observe this
feature at ccTLD level as well. When a bot queries two RDNS-servers at
once, both servers should query the ccTLD NS shortly after (under the
assumption that non of the them have cached the DNS entry).

Another feature that can be observed over time are failed DNS requests.
When a host queries a domain name that does not exist, an NXDOMAIN
domain response is sent from the NS to the host. FFSNs have a high number
of failed DNS lookups because of not-reliable flux-agents (Holz et al., 2008)
and bots that use DGAs to contact C&C servers query a high number of not
existing domains as well (Zhu et al., 2009). In case a DGA generates new
domains on 2nd domain level, then a RDNS queries the domain name every
time at the responsible AuthNS of the TLD. Therefore, domains generated
by DGAs can be detected on TLD level.

In general, temporal features have the disadvantage that they have to
be observed over time, for example over one day. Therefore detection mech-
anisms based on those features cannot discover malicious domains in real
time (Huang et al., 2010). Caching has an influence on the observation
of temporal attributes at an AuthINS. However, if a botnet spreads fast or
if a phishing campaign reaches many users, then many DNS queries from
RDNSs can be observed at an AuthNS as well.
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Spatial Features This set of features describes characteristics related to
the geographic distribution and the Autonomous Systems (AS) or the sub-
network of DNS requests. Spatial features can be observed at the source of
an DNS request or at the location of the server to which an A-record or an
NS-record is pointing.

Stalmans et al. (2012); Bilge et al. (2011) have assumed that benign
domains refer to servers within the same time zone whereas servers hosting
malign domains are distributed all over the world. Other researchers have
used the Autonomous System (AS) in which a server is hosted as an indicator
(Perdisci et al., 2009). These features can be observed on ccTLD as well
(Antonakakis et al., 2011). For example, Hao et al. (2010) have observed
that different malign domains are queried from the same AS. Furthermore,
they have shown that benign domains are queried over time by the same
set of resolvers whereas the sources of DNS requests for malign domains is
varying stronger.

DNS Record Features Here, features are listed that can be extracted
directly from the DNS records. One attribute of FFSN is that more A-
records are returned than for CDN or round-robin domains. According to
Holz et al. (2008), FFSN return five or more A-records whereas the average
of benign domains lays by only three. Also, the number of NS servers that
are responsible for a domain, their number of A-records, and their TTL are
significant (Futai et al., 2013). Furthermore, the TTL of malicious domains
is shorter than 150 seconds (Mahjoub et al., 2014; Perdisci et al., 2009). Bilge
et al. (2011) calculate further the average TTL of a domain, the number of
distinct TTL-values, and the number of changes in TTL for a domain.

Many of these features can additionally be observed over time and geo-
graphical distribution as well. For example the A records for a domain or an
NS are replaced frequently. This can be used to detect malicious domains
as well.

At an AuthNS of TLDs, only the number of NSs for a domain can be
observed and only if the NS is in the zone of the TLD, its IP address is
known by the AuthNS as well.

Domain Registration Features Features about the domain registration
can be gathered from a WHOIS database. Kheir et al. (2014) use the elapsed
time between the registration date, the creation date, the date of the last
modification and the remaining time before a domain expires to identify
malicious domains. Yarochkin et al. (2013) compare WHOIS registration
information (e.g. phone number, contact name, contact address) to identify
domains that belong to the same botnet. The age of a domain name is used
by Zhang et al. (2007) to discover newly registered phishing domains.
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Domain Name Features FEspecially domains that are generated by DGAs
have often unique characteristics that help researchers to identify them.
The number of alphabetical and numerical characters, their ratio, the total
length, and special character sequences have been used by Bilge et al. (2011);
Frosch et al. (2013); Antonakakis et al. (2010); Yarochkin et al. (2013). Schi-
avoni et al. (2014) have further measured how good a domain name can be
pronounced. Domains generated by a DGA usually are harder to pronounce
than benign domains. Zhang et al. (2007) check, if the URL contains special
characters like @’ or ’.” to identify phishing websites. Fette et al. (2007) use
the number of dots in an URL as an indicator to detect phishing domains.

Domain Content Features Additionally, Kheir et al. (2014) have anal-
ysed the content that is hosted on suspicious domains. They have looked
at the HTML code, robot.txt files, hosted images and number of CSS style-
sheets to distinguish between benign and malign domains. Furthermore,
they measured the popularity of a website counting the number of outbound
links to social networks, the number of inbound links from social networks,
and the domain’s Google pagerank. Analysis of web-content is used to de-
tect phishing domains as well (Zeydan et al., 2014). For example, the use of
well known images of brand-logos or the use of forms can indicate a phishing
attack (Zhang et al., 2007).

3.3 Data Mining Techniques

Different data-mining methods have been used in previous research. The
general goal is to feed observed DNS data to a classifier that determines,
based on features described above, whether the domain is used for malicious
purposes or not. Therefore, the classifier usually first has to be trained with
a dataset that includes information of already known benign and malign do-
mains. The precision of the classification algorithm can be defined based on
the number of correctly identified malicious domains (called True Positives
- TP) and the number of legitimate domains that erroneously have been
identified as malicious domains (called False Positive - FP). The higher TP
and the lower FP the better the algorithms works.

In this section, effective data-mining methods from previous research are
categorised and their use-cases are described. Most of the methods rely on
training data that provide a ground truth about the behaviour of malicious
and benign domain names. Hence, common training data-sets are listed as
well. This section helps us to select an adequate algorithm for SIDekICk.

Decision Trees A decision tree is a classification algorithm that extracts
features from a data set where each object in the set is represented as a
tuple. Futai et al. (2013) use the J48 algorithm to identify the features

25



in a training set consisting of domain samples of the Alexa 1.000' list and
domain black lists. Then, real-time data is fed to the classification algorithm
to detect unknown malicious domains. The J48 Decision Tree classifier
out-performs Support Vector Machines (SVM), Logistic Regression (LR),
Bayesian Network and Random Forest with a TP rate of 95,5 % and FP
of 0,03 % even with a low number of known FFSN domains in the training
set. These results can be confirmed by Perdisci et al. (2009) and Bilge
et al. (2011). They both have achieved a TP rate of over 99 % and a
FP rate of 0,3 %. Antonakakis et al. (2010) have used the Logit-Boost
strategy for their Decision Tree to achieve a TP-rate of 96,8 % and a FP-
rate of 0,38 %. Another variation of Decision Trees are random forests,
as used by Antonakakis et al. (2011). Random forests avoid over-fitting,
and increase the overall performance of the final model. Antonakakis et al.
(2011) have achieved a TP rate of 98,4 % and a FP rate of 0,3 %. They have
evaluated their results against Naive Bayes, k-nearest neighbour, SVMs,
neural networks and random committee classifiers.

Decision Trees have further the advantage that they are in general easy
to interpret by a human which makes the classification more comprehensible.

X-Means Clustering X-Means clustering is an extension of the K-Means
clustering algorithm. The K-Means algorithm does not rely on pre-classified
training data but tries to find partitions for data sets, depending on the
similarity of their features. The X-Means algorithm works as the K-Means
algorithm but after the algorithm is finished it tries to split the clusters in
two additional separate clusters. Thereby clusters are found more reliable
and faster (Pelleg et al., 2000). Antonakakis et al. (2010) have used the
X-Means algorithm to identify clusters during the training phase.

Spatial Correlation Research that uses geographical features to detect
malicious domains have used spatial auto correlation to analyse differences
in malign and benign DNS requests (Stalmans et al., 2012). Spatial auto
correlation measures the dependence of points in two-dimensional space.
The researchers used Moran’s coefficient to detect FFSNs with a TP-rate
of around 99 % and a FP-rate of 6 %. They used the 1.000 most popular
websites, based on the Alexa statistics, and domains from FFSN-trackers to
train the classifier.

Bayesian Network Classifier This classifier has been used by Huang
et al. (2010) to identify FFSN, based on the geographic distribution of the
infected hosts. The classifier has been trained with the K2 algorithm. Also,
Kheir et al. (2014) use this classifier to assess if domain are legitimately listed
on a DNS blacklist. They achieve a TP rate of 99,02 % and a FP rate of 0,98

1

www.alexa.com
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%. Bayesian Networks are graphical representations of interdependencies
between different probabilities where nodes represent random variables and
the edges represent assumptions about conditional dependencies (Murphy,
1998). The K2 algorithm makes heuristic searches to find the best structure
of the Bayesian network Cooper and Herskovits (1990).

Support Vector Machine (SVM) A SVM is a classifier which is first
trained with labelled data sets and then tries to separate these data sets
in an n-dimensional space with an n — 1 dimensional hyperplane. Each
object in a data set is mapped to a point in the space. The hyperplane then
separates these points as good as possible to achieve a clear classification
(Statsoft, 1995). Martinez-Bea et al. (2013) have built a real-time classifier
based on a SVM to detects FFSN with a TP-rate of 98,78 % and a FP-rate
of 1,22 %.

Naive Bayes Classifier Naive Bayes Classifiers are a very simplified clas-
sification technique based on Bayes’ theorem. It works under the assumption
that each feature is independently contributing to the final classification of
an object. Although the classifier oversimplifies real-world situations, it has
proven to generate valuable results in the past (Chaney and Blei, 2012).
Passerini et al. (2008) used the Naive Bayes Classifier to build their FFSN
detection system FluXOR.

k-Nearest Neighbour (kNIN) kNN is a supervised learning method that
works under the assumption that objects in a vector space are more similar
the closer they are together. It has been used by Frosch et al. (2013) to
detect malicious botnet domains. In order to compute the distance between
the objects, the Euclidean Distance has be used. They have achieved a
TP rate of 94 % and a FP rate of 1,54 %. Schiavoni et al. (2014) have
used the Mahalanobis distance to measure the distance between features of
a previous unseen domain name and the expected features of a set of benign
domains. The Mahalanobis distance takes correlation between the features
into account as well.

Hidden Markov Model (HMM) In order to detect domains that are
generated by a DGA, Antonakakis et al. (2012) use a HMM. A HMM is
a supervised learning classifier applied to sequence observations over time.
Each state is not directly visible, but only its output (Ramage, 2007). In
their paper, Antonakakis et al. (2012) use one DGA to train an HMM where
each DGA has its own HMM. If a new domain is detected, it is used as
an input to the HMMs and the HMMs will return with which probability
the domain is part of an DGA. The HMMs see the domains as string of
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characters where the character is an output at a certain state. The number
of hidden states has been set to the average length of the training set.

Graph Based Methods that try to identify malicious domains based on
sequential correlations construct graphs to build a representation of the
relationship of DNS queries. Lee and Lee (2014) construct a Domain Name
Travel Graph where each requested domain is represented by a node. Edges
between the nodes represent domain names that have been consequentially
queried by the same client. Then, the correlation between the domains is
determined by the Jaccard inder. The more clients queried domains in the
same order, the higher the correlation becomes between the domain. Edges
with a low correlation are removed. Thereby clusters of domain queries are
built. Whether a cluster represents malicious DNS activities is determined
with the help of a domain blacklist. A cluster represents malicious bot
activity if it contains a known malicious domain. Domains that have a
high correlation in the graph with this domain are then most likely malign
domains themselves. Lee and Lee (2014) have achieved a TP-rate of 99 %
and a FP-rate of 0,5 %.

Jiang et al. (2010) built DNS failure graphs, where the nodes are hosts
and domains. Each host that has at least one failed DNS query for a domain
is connected with this domain through an edge. The graph is clustered
into sub-graphs with the Non-negative matriz factorisation by using re-
engineered DGAs as training sets.

3.4 Training Data

Most techniques described above rely on supervised learning of the algo-
rithms. There, the algorithm needs data sets that are already classified as
benign or malign. Different data sets are used, depending on the vantage
point. The most common ones are listed below.

Benign Domains The most common way to get information about the
behaviour of benign domains is to rely on the provider of web traffic data
Aleza Internet? (Bilge et al., 2011; Frosch et al., 2013; Kheir et al., 2014).
It provides lists of the most popular websites worldwide, filtered by a region
or a country. Based on these lists and depending on the required features,
information, for example about their A-records, WHOIS information or the
location of their servers, can be retrieved. Besides using lists provided by
Alexa, Hao et al. (2010) have additionally created a set of supposedly benign
domains that do not get many daily queries. Therefore, they have selected
a sample of domains that have been queried more than 20 times on the first

2www.alexa.com
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and last day of a two month long period. Domains that were among the
most popular domains of Alexa or were listed on blacklists were discarded.

Malicious Domains A set of known malicious domains is necessary to
help the classification algorithm to learn the difference to benign domains
(Bilge et al., 2011; Futai et al., 2013; Kheir et al., 2014). There are already
many services which provide lists of malicious domains, including Spam-
house®, Malwarebytes*, Malwaredomains.com®, Malwaredomainlist.comS, the
Security Information Exchange”, Netcraft 8, virustotal © and Abuse.ch'©.
The latter provides a database that lists malicious domains used by the
botnets ZeuS, SpyEye, Palevo and Feodo.

These blacklists collect malicious domains from different sources. For
example Netcraft uses among others a browser toolbar to classify domain
names automatically. wvirustotal relies on multiple anti-virus engines and
website scanners to classify domain names. These scanners analyse for ex-
ample, whether malicious scripts are hosted on the website or malware is
delivered.

3www.spamhaus.org/dbl
“hosts-file.net
www.malwaredomains.com
www.malwaredomainlist.com
www.dnsdb.info
www.netcraft.com
www.virustotal.com
www.abuse.ch
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Chapter 4

Domain Names 1n .nl

The .nl zone is not known for many malicious domains. The Global Phishing
survey counted only 432 .nl domain names that were involved in phishing
campaigns in the second half of 2014 and the domain-blacklist, provided by
malwaredomains.com, has listed at the end of June 2015 only 40 unique .nl
domains that were recently involved in the distribution of malware (Aaron
and Rasmussen, 2015). 26 of those domains have already been listed in 2014
or earlier and 30 domains have been re-submitted to the blacklist at least
two times.

Because the majority of malicious domains are registered in .com, .net
or .tk, most of existing research focuses on these domains and little is known
about malicious domains in .nl. This chapter provides an overview of the
known malicious domains in .nl, which are listed by third parties or have
been discovered by researchers of SIDN Labs during previous projects and
manual observations. It describes the purpose of the malicious domains
and how many people are or have been affected by their malicious activity.
This knowledge is necessary to better estimate whether these domains give
a general picture of malicious activity in .nl and to make assumptions of the
expected DNS characteristics and behaviours. Additionally, it is important
to know, how malign domains differ from the majority of the .nl domains
that are used for legitimate purposes.

First, we describe our data set that is examined and which is partially
used to build a classifier for SIDekICk. It includes typical benign domains
in .nl followed by a summary of known malicious domain names. Then,
we describe metrics by which the domain names are compared. We select
features that have been discussed in existing research (see Chapter 3) and
propose new possible approaches to detect malicious domain names. We
focus on features that can be observed directly at a ccTLD registry. The last
section explains for each metric the difference between benign and malign
domains.
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4.1 Data Sets

4.1.1 Benign Domain Names in .nl

The set of benign domains contains the 1.000 most popular .nl domains
according to Alexa. Besides these domains, we have additionally added
domain names to the list that belong to the most popular web-hosting firms.
Many data centre providers are located in the Netherlands, especially in the
region around the city of Amsterdam which has attracted many web-hosting
services (Association, 2015). These hosting companies provide name servers
for the websites of their customers. As soon as users visit a site hosted
at one of the companies, their stub-resolver queries the webhoster’s name
server. Therefore, they need to resolve the domain name of the name server
and contact the servers of SIDN. Ergo, domain names of popular webhosters
receive a high number of queries as well and show up among the most queried
domain names. In total, we have created a set of 1.300 popular domain
names. In May 2015, these domains were responsible for 46,4 % of the total
number of queries and received on average 33.735,55 queries per day (14.607
median). On the other side, 98 % of the 5,3 million unique domain names
that have been queried in May 2015 have received less than 100 queries
per day on average. These domains are further referred to as the long tail.
Figure 4.1 depicts the distribution of the domains by the number of daily
queries. It can be seen that the majority of domains receive between 10 and
1000 queries. In order to get a sample of this long tail, Hao et al. (2010)
created a set of benign domains that did not show up in their set of popular
benign domains, not in their set of malign domains, and have been queried
more than 20 times at the start and end of a period of two months. For
.nl we created the same set (start date 2015-03-02, end date 2015-04-30)
but limited the size of the sample to 300. This was necessary because the
knowledge of malicious domains in .nl is limited and we had to validate the
benign domains manually. From this list 9 domains were removed because
they were not reachable anymore and 4 domains appeared on the blacklist
of virustotal and Sucuri'.

Additional to this set, 223 domains have been selected to represent be-
nign domain names that have been registered recently. These domains have
been registered at the 2015-04-07 and the 2015-04-08 and still received at
least 20 queries two months later. They account only for 3,9 % of the total
number of domains that have been registered on these days. 19 domains
lead to bogus webshops, redirected to obvious scams or were classified by
virustotal as malicious and were therefore removed from the set. On av-
erage 2.532 domain names have been registered in May 2015 daily. Newly
registered domains and domains from the long tail received on average 31
queries per day.

! https://sitecheck.sucuri.net/
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Figure 4.1: Histogram that represents the distribution of domain names by
their daily queries.

4.1.2 Known Malicious Domains
Botnets - controlled with .nl Domain Names

In this section, domains are analysed that have been or are still used for
the command and control of botnets. The Dutch company Quarantainenet
develops software to monitor local network traffic and has provided SIDN
with a list of domain names that have been categorised as malicious by
their detection software. This list contains 49 distinct domain names. 18
additional domains come from various other sources like the binary analysis
service totalhash?® or cybercrime-tracker.net and 15 domains are in the sink-
hole of SIDN Labs. Domains in the sinkhole have been discovered by staff
of SIDN or by other sources and have been registered by SIDN when the
former owner dropped the claim. Most of the domains receive requests from
clients that are still infected and try to contact their former C&C server.
In total, the data-set contains 82 (former) botnet domains of which only
8 have received more than 20 daily queries on average in June 2015. We
assume, that the other domains are very likely not active anymore. Below,
we describe the botnet types to which the domains belong and give a brief
overview about the activity of the domains since November 2014. Since this
date, the ENTRADA platform aggregates the number of queries for each
domain name daily such that the number of queries can be observed fast.

Figure 4.2 shows the distribution of known botnet domains. Over half
of the domains belong either to the ZeuS or to the Pushdo botnet. Four
domains in the sinkhole were identified as Andromeda domains and eight
are contacted by Backdoor-Flashback bots.

2totalhash.com
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Figure 4.2: Classes of known botnet domains

ZeuS This is a crimeware toolkit that was the number one botkit in 2010
with over 3,6 million infections in the US alone (Binsalleeh et al., 2010).
It gained popularity due its capability to easily steal banking account in-
formation and credit card numbers by logging keyboard inputs. Infected
clients communicate usually with three different URLs. One URL provides
the configuration file, another one links to the latest version of the ZeuS
binary and the last is used to upload the stolen information. These three
URLSs can be distributed over different domains. Kryptik is another variant
of the ZeuS malware.

Pushdo The Pushdo botnet was first discovered in 2007. It usually gets
shipped with the Cutwail module that is used to launch large SPAM cam-
paigns (Decker et al., 2009). A special feature of Pushdo is the DNS re-
solver that is built directly into the bot-software and which bypasses the
pre-configured DNS resolver of the infected client. Therefore, we see DNS-
queries of the infected clients directly at our name servers. Pushdo uses the
internal resolver to resolve IP addresses of targeted mail-servers and for con-
nectivity checks. According to Decker et al. (2009), Pushdo usually uses for
the communication with the C&C server hardcoded IP addresses. However,
we have still found domains associated with this bot in different datasets.
Very likely, other versions of the bot have changed their communication
behaviour towards domain names.

Andromeda Andromeda is a modular bot that can be used to load other
malicious software onto the infected system. It has been updated several
times and has been spread through links to malicious websites in emails and
through malicious attachments (Rascagnres, 2015). Version 2.9 of the bot
uses Google’s open DNS resolvers to perform lookups for the IP address of
C&C servers. The communication with the server is Base64 encoded and
encrypted with the RC4 cipher (Kimberly, 2014).
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Backdoor-Flashback This botnet is only targeting computers running
the operating system Mac OS X. It has infected over 650.000 machines in
2012 by pretending to be a Flash Player update (Soumenkov, 2012). Flash-
back installs a backdoor that enables the attacker to control the infected
machine.

Other Malware Two domains are used by the Pony botnet, which is de-
signed to misuse infected machines for example to mine the crypto-currency
Bitcoin (Brook, 2014). Five domains belong to the Torpig/Sinowal botnet,
which is mainly used to steal banking and credit card information. It is
distributed through the Meebot Rootkit. A Torpig bot contacts its C&C
server every 20 minutes to upload stolen information (Stone-Gross et al.,
2011). The other domains are used by more generic trojans that were not
assigned to known botnets.

The activity of the known botnet domains varies strongly. For this analysis,
it is examined in which week the domain was queried most often and then
the average number of queries is calculated. This number is compared to
the average number of queries between 2015-06-15 and 2015-06-21. Thereby
we can estimate, when the domain was most active and whether it is still
used recently.

11 domains never received more than 20 queries a day. It is assumed
that those domains were either active before November 2014 or were never
actively used for C&C but only showed up in an analysed malware binary. 7
domains were assigned to the Andromeda bot and 4 to the Torpig/Sinowal
bot. These domains are left out in the further examination.

14 domains received on average more than 1.000 queries per day during
their period of highest activities. 7 domains belong to the Pushdo botnet,
3 to the Andromeda botnet, and 1 to the ZeuS/Kryptik net. The most
queried domain belongs to the Andromeda botnet with over 100.000 queries.
18 domains got queried between 500 and 1.000 times. 8 domains of this set
belong to the Mac OS X trojan Backdoor.Flashback and 5 domains belong
to the ZeuS network. 18 domains received between 100 and 500 queries per
day and belong mostly to ZeuS (11 domains) and Pushdo (6 domains).

On their day of the query peak, Andromeda domains were queried by
over 4.300 unique sources, Pushdo domains by more than 1.000 and Back-
Door.Flashback by almost 1.000. For most domains caching and the use of
anycast at resolvers hinders us to pin down the actual number of infected
machines. Nevertheless, it can be seen that a significant number of clients
are still infected, despite the age of the botkits. The webserver in the sink-
hole allows us to count the actual number of unique IP addresses that try
connect to sinkholed domains. For the most popular Andromeda domain,
more than 476.509 unique IP addresses were counted in April 2015. The
number is still only a rough estimation due to dynamic IP addresses and
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Network Address Translation.

At least 25 domains have been registered for a malicious purpose. This
can be derived from the fact that most of these domains consist of a random
looking numbers and characters and that they are registered with bogus
information. 9 domains belong to Pushdo, 8 to Backdoor-Flashback and
5 to Andromeda. Every other domain is very likely owned by legitimate
registrants whose webserver has been compromised to serve in a botnet.

Phishing Campaigns

SIDN receives a continuous feed of .nl phishing domains from the company
Netcraft. For this thesis, all domains are considered that have been reported
from December 2014 on. In these 7 months, 1.923 unique domains have been
listed. The majority of phishing domains were registered more than one year
before they were actually used in a phishing campaign (82 %). Only 6 %
of the domains were used in a phishing campaign less than one week after
they have been registered. This leads us to the conclusion that the majority
of phishing campaigns are rather hosted on compromised websites than on
websites that are registered for malicious purposes. This number is even 10
points higher than the global share, as reported by Aaron and Rasmussen
(2015).
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Figure 4.3: Age of phishing domains at the day they got reported (in days).
The five bars on the right are grouped by age-intervals.

268 domains where used at least two times for phishing campaigns and 9
domains where used more than 5 times during the 7 month period. Among
those domains are blogspot.nl (56 times), azc.nl (9 times), r4u.nl and pg-
press.nl (both 6 times), which allow to host a website on a subdomain,
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often for free. Thus, these 2nd level domains did not provide the phish but
it was served on one of the subdomains created by a user of the subdomain
provider.

4.2 Comparative Metrics

The previous sections have shown that knowledge of malicious activities in
.nl is limited. Especially the set of known botnet domains is small, limited
to a few botnet classes and includes many old domain names. Nevertheless,
it is possible to use most of these domains to gain a better understanding
of their DNS and registration characteristics which can give us insight into
how they differ from legitimate domain names.

The characteristics of the described domain names are compared based
on the following metrics.

Geographic location of querying resolvers

Relationship between small resolvers and unknown malicious domains

Temporal characteristics of the number of queries

Resolver lookup similarity
e Domain name server characteristics

Subdomain characteristics

e Domain registration characteristics

They include characteristics that have been previously used to detect
malicious domain names on TLD level but also on lower vantage points in
the DNS hierarchy. Below, the metrics are explained in more detail.

Geographic Location of Querying Resolvers At the moment when a
DNS request is processed by the name sever at SIDN, the query and parts of
the response are stored in our database. Additionally, the source IP address
of the query is used to determine the country where the resolver is located.
The Maxmind? database is used to assign a country to an IP address. These
geo-locations databases have shown to be accurate enough to locate an IP
address on country level and can therefore be used as a reliable metric (Poese
et al., 2011).

The location of the resolver is not necessarily identical with the location
of the querying client. This is especially true for queries from the US.
Open Resolver Services like OpenDNS and Google Public DNS often set

3 https://www.maxmind.com
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up their resolvers in the US and therefore distort the results towards the
US. The ccTLD .nl is mainly focusing on the Dutch market. Therefore it
is expected that the majority of queries for .nl domains have their origin in
the Netherlands and bordering countries like Belgium and Germany.

Relationship Between Small Resolvers and Unknown Malicious
Domains Botnets like ZeuS and Exploit Kits use multiple domains to
communicate with their C&C server to download new malicious binaries
and to upload stolen information. Also, bots might first spread within their
own network infecting multiple machines behind a resolver. Therefore, it can
be assumed that a resolver that queries one malicious domain also queries
other malicious domains at the same time or in the future (Grier et al., 2012;
Lee and Lee, 2014).

Resolvers that serve thousands of clients can send queries for thousands
of different domain names every day which might make a detection of other
malicious domains harder. The approach of this metric is to observe queries
from resolvers with less than 250 daily requests and which have queried a
malicious domain on a certain day. Thereby, we expect to reduce the number
of unique domain names that need to be analysed.

Temporal Characteristics of Queries This metric measures the num-
ber of queries of benign and malign domain names over time. We compare
sudden increases in queries from one day to another and over a period of
several weeks. We differentiate between domain names that have been regis-
tered recently and domain names that have already a lifetime of more than
one week. Query growth has already been used by Perdisci et al. (2009) to
identify malicious domain names and Hao et al. (2010) showed that newly
registered malicious domain names receive more queries after registration
than benign.

Resolver Lookup Similarity As shown by Hao et al. (2010), malign
domains differ from benign domains in the stability of the set of resolvers
that query a domain name over time. Benign domains tend to be queried
from the same resolvers every day whereas malign domains are more often
queried from a changing set of resolvers. The similarity is measured by
comparing the sets of resolvers of two consecutive days (A and B) with the
formula of the Jaccard Distance which is defined as follows:

_l4nB
- |AUB]
Two sets contain exactly the same resolvers if the Jaccard Distance is

1 and two completely distinct sets have the value 0. To take into account
that an ISP might provide multiple resolvers for their customers, we group

J(A, B) (4.1)
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the resolver IP addresses by /24 (IPv4) and /52 (IPv6) subnets. The daily
similarity for benign domain names is calculated during the week from the
11. to the 17. May 2015.

Domain Name Server Characteristics FFSN change the IP address
of their domain names in a high frequency. AuthNSs of a TLD do not
know the A-record of a domain name but only respond with the domain
name of the name server which is responsible for the domain on a lower
level. Therefore, we cannot observe changing A records directly. However,
double-flux botnets not only change the A-records but also the IP address
of the corresponding name server (Riden, 2008). In case the name server is
within the .nl zone, SIDN keeps track of its IP address which is attached as
a glue record to the DNS response. Thereby, a recursive resolver does not
has to send another query to resolve the domain name of the name server.

The goal of this metric is to analyse if domains in .nl are misused for
double fluxing. This would be a sign that .nl is used by more sophistic
malware despite from what we have seen so far.

Subdomain Characteristics A large number of unique subdomains for a
single 2nd level domain can be a sign for a domain shadowing attack (Biasini
and Esler, 2015). In such an attack, we would expect a sudden increase in the
number of unique subdomains for a domain name from one day to another
as soon as an account of an registrant gets hacked. Furthermore, multiple
resolvers would query for the subdomain for a short period. Because of the
effect of caching, we would not see a query if a resolver queries a second
subdomain. The subdomains might have a different IP address than the
2nd level domain if the attacker uses a different server to host the malicious
content.

In order to be able to identify these domains, we count the number
of unique subdomains that have been observed on two consecutive days
for every .nl domain. Then, we examine domains that were queried for
10 times more unique subdomains than the previous day. Thereby, DNS
amplification attacks, which query for pseudo random subdomains in order
to target a name server, would be detected as well (SECUREG64, 2014).

Domain Registration Characteristics Domain registration details can
be used to identify domains that belong to the same botnet (Yarochkin et al.,
2013). SIDN has restricted the access to the WHOIS domain registration
data for the public and only shows information about the registry, the name
servers, and whether DNSSEC is enabled for the domain name. For this
project we have access to additional information like registrant, administra-
tive contact and technical contact.
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For newly registered domain names we compare the country of the reg-
istrant’s address, email provider and registrar. The report by Aaron and
Rasmussen (2015) showed that certain registrars are more popular among
phishers than others.

4.3 Comparison

This section describes characteristics of malicious and benign .nl domain
names using the metrics described above. We use the aforementioned mali-
cious domains and the sets of verified, benign domains. For the evaluation,
1.810 domains are in the benign set and 1.972 are in the set for malicious
domains. 49 domains of the malign set are related to botnet activities.

4.3.1 Geographic Location of Querying Resolvers

This section describes characteristics that are related to the origin of a query.
We show that malicious domain names are often queried from countries that
are not common for benign .nl domains.

Benign domains The set of benign domains is separated into two sets.
The first includes very popular domains from the Alexa 1.000 list and the
domains of big hosting companies. The second set includes domains that
represent the long tail of domains that receive only a few queries a day. It
consists of the long lived domains and the newly registered domains. This
separation is based on the assumption that popular domains and domains
from the long tail might have different characteristics. For example, name-
servers of Dutch hosting companies might be responsible for domains outside
of the .nl zone as well.

The ccTLD .nl is mainly focusing on the Dutch market. Therefore it
is expected that the majority of queries for .nl domains have their origin
in the Netherlands. This assumption is true for the second set of domain
names where the majority of queries come from the Netherlands and the
neighbouring countries Germany and Belgium (43,5 %, 7,4 % and 6,1 % of
total queries). The large number of queries from the US can be explained
with the aforementioned location of open resolvers (21,4 % of total queries).
The share of queries from the US is higher for the most popular domains
of .nl (26,5 % of total queries). They even exceed the queries from the
Netherlands (13,7 % of total queries). Also, it can be noticed that queries
from Russia and China have a relatively high share. Russia is the country
with the 3rd and China with the 5th most queries. They account for 7,4
% and 5 % of the total number of queries. The origin of DNS queries is
depicted in Figure 4.4. The size of the circles indicate the share of queries
coming from each country.
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Figure 4.4: Geographical distribution of queries for benign domains

Botnet Domains Figure 4.5 shows the origin of queries for the domains of
the ZeuS, Pushdo, Anromeda and Backdoor-Flashback botnet. The origins
of the queries is measured on the day on which the domains had the highest
number of queries and therefore were most active. It can be seen that each
type of botnet has infected clients from different countries. ZeuS and Pushdo
domains were queried often from the UK and Belgium. Additionally, Pushdo
has many infected clients in Turkey, Taiwan and China. The Andromeda
botnet receives the majority of queries from Turkey, Iran and India and the
Backdoor-Flashback botnet has many infected clients in the USA, Canada
and Russia.

Phishing Domains For the analysis of phishing domains, we measure
the geographic distribution of queries on the day on which the domain got
reported by Netcraft. Domains of subdomain providers are left out, because
they host also many legitimate content. Figure 4.6 depicts the observed
origin of the queries.

Phishing campaigns in .nl often target Dutch customers. For example,
they try to impersonate popular Dutch banks and are using domain names
like digipas-vervangen.nl or wuitgifte-raboscanner.nl. Therefore, we expect
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Figure 4.6: Geographical distribution of queries for phishing domains

that most visitors come from the Netherlands.

This assumption seems to be valid for some domains. The Netherlands
are the second most popular country of origin behind the US. However, the
total share is only 10.9 % (NL) and the rest of the queries are more equally
distributed among other countries all over the world. This leads to the
conclusion that phishing with .nl domains are not mainly targeting Dutch
customers.

Results The .nl domains target mainly Dutch Internet users. Therefore,
domains that get many queries from countries like Russia or China are rather
unusual and we have shown that especially botnet domain names get queried
from uncommon countries.
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4.3.2 Relationship Between Small Resolvers and Unknown
Malicious Domains

Observation of queries for one known malicious domain can reveal previously
unknown malicious domains as well.

As an example, we take a known domain of the ZeuS botnet and select
a random day at which the domain was part of malicious activity. Then,
we filter for every resolver that queried this domain and sent less than 250
queries that day in total. For each resolver, we look at the other domains
that have been queried. The most popular Alexa domains and domains from
webhosters are excluded.

This returns over 2.000 unique domain names but only 19 domain names
that were queried more than 9 times. Among these domains, 5 have been
classified later by wvirustotal as malicious. 3 of them were among the top 5
queried domains and 4 of these domains were not blacklisted at the date of
the observation by Quarantainenet. If the number of resolvers is not limited
by the number of queries, only 4 domains out of the first 19 domains have
been classified later by virustotal as malicious.

Repeating the same approach with a domain from the Pushdo botnet,
even 11 of the 20 most queried domains are classified as malicious. Without
the limitation of using small resolvers, only 4 domains are among the top 20
queried domains. Observations for the Backdoor-Flashback botnet reveal 5
of 20 malicious domains. This is noteworthy because in total only 8 differ-
ent domains of this botnet in .nl are known and shows that one infected
machine likely queries multiple domains. When queries from every resolver
are considered no known domain of the Backdoor-Flashback botnet appears
among the 20 most queried domains.

Additionally it can be observed that malicious domains from the ZeuS
and Pushdo observations overlap. Thus, this approach does not necessarily
only reveals domains that are part of the same botnet. It might be possible
that a client is infected with different malware or that the resolver is part of
a company network, where many clients with the same vulnerable software
are located.

These numbers show that focusing on small resolvers is a useful approach
to narrow down the number of suspicious domain names. A major limita-
tion is the fact that botnets and exploit kits not only rely on domains from
the same TLD. This is especially the case when the domains are compro-
mised and are not registered only for malicious purposes. Compromised
domains are usually chosen by the vulnerabilities of their web servers and
not necessarily by the TLD.
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4.3.3 Temporal Characteristics of Queries

In this section, we describe the temporal behaviour of benign and malign
domain names. This includes the difference in the number of queries between
two consecutive days and over a period of four weeks.

Benign Domains Benign domain names are separated into domains that
are popular domains, less popular domains and domains that got recently
registered. The queries of these domains are measured in May 2015. Addi-
tionally, the queries of the recently registered domains are analysed in the
month of their registration.

Queries for popular domains are rather stable. Only 39 of 1.017 domains
(3,8 %) have experienced a sudden query peak where the daily received
queries exceeded the queries of the previous days by a factor of 2. This
result is confirmed when looking at the number of queries of the first and
last seven days of the month. 85 domains (8,4 %) had in the last seven days
10 % more queries than the first days whereas 241 domains (23,7 %) received
less than 10 % less queries. The rest of the domains did not experience a
major growth or decrease in queries. Domain names that are from the long
tail experience a higher variance in daily queries. 168 of 508 domains (33,1
%) have experienced at least one peak in May 2015, 133 domains (26,2 %)
experienced a decrease in queries of at least 10 % and 207 domains (40,7
%) experienced a growth of 10 % or more. Figure 4.7 shows the number of
queries for three popular domains and three domains with few queries. On
the top graph, weekly query patterns can be seen clearly. On the graph on
the bottom, query patterns are not as regular.

Newly registered domains receive on average only a small number of
queries before the registration date. On the day of the registration, the
number of queries increases slightly to around 20. A few days later, more
queries are received and after around 10 days queries for most of the domains
become more stable (see Figure 4.8).

Before a domain gets registered, it is possible that it has been in quaran-
tine. Domains are in put into quarantine after a .nl domain name has been
cancelled. During this time, only the ’old’ registrant can buy the domain
name again. After 40 days, the domain name is again available for every
interest buyer. Figure 4.9 shows the average number of queries for domains
that have been registered on 8. June. We have divided the set of newly
registered domains into one set which contains domains that have been re-
leased from quarantine the same day and domains that have not been in
quarantine the days before. It can be observed that domains in quarantine
already receive queries before they get registered and experience a stronger
increase in queries after the registration than domains that have not been in
quarantine beforehand. After a few days, the number of queries decreases
again. One of the reasons for this behaviour can be so called domainer.
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Figure 4.7: Benign domains - Number of queries in May 2015

They buy popular domain names from a registrar for a fairly low price with
the expectation to resell the domain later to a considerably higher price. Af-
ter the domain has been bought by a domainer, they place a parking page
and offer the domain on their website for sale. This can cause the higher
number queries.

On the day of the registration, quarantined domains receive on average
9,04 queries (median 6) whereas previously free domains receive 2,05 queries
(median 1). In the first seven days after registration, quarantined domains
receive on average 9,49 queries (median 6) and free domains 3,14 (median
2).
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Figure 4.9: Number of queries for newly registered domains that have been
released from quarantine the day of the registration and newly registered
domains that have not been in quarantine beforehand. The red vertical
line marks the registration date and the date on which the domain left
quarantine.

Botnet Domains For each botnet type, we select domains that have expe-
rienced a significant query growth during our observation phase. We assume
that this growth indicates the time at which the domain was first used for
malicious purposes.

Domains of the ZeuS, the Pushdo and the Flashback-Backdoor botnet
experience a steep query growth when they first get used for malicious pur-
poses (see Figure 4.10). This growth can be seen from one day to another
and the number of queries are more than two-times higher than the day
before. After the first query peak, the number of queries does not grow
further, but either stays stable or decreases again almost to the number of
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queries before the infection. Domains of the Flashback botnet have almost
identical query patterns, whereas the domains of the ZeuS bot seem mostly
unrelated to each other.

The initial use of Andromeda domains and most of the Pushdo domains
cannot be observed due to our limited history data set.
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Figure 4.10: Number of queries for botnet domains

Phishing Domains Phishing domains are separated into domains that
are younger than one week and domains that are older. Domains that are
used in a phishing campaign within 7 days after their registration were most
likely registered for this malign purpose, whereas old domains were most
likely compromised domains.

For older domains, we observe the number of queries on the day they
got reported and compare it with the average number of queries the domain
received the week before. There, a significant increase can be observed. On
average, old phishing domains received 15,5 times more queries on the day
they got reported than on average one week before. Figure 4.11 shows the
number of queries of a sample set of hijacked phishing domains, 20 days
before and 10 after the reporting date. The reporting date is marked by
a vertical red line. For these domains, a high increase in queries can be
observed on the reporting date or the day before. A few days after the
phish got reported, the number of queries decrease again.

Figure 4.12 shows the average number of queries that new phishing do-
mains received 6 days before and 21 days after their registration. Compared
to new benign domains (see Figure 4.8 on page 45), the number of queries
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increases more rapidly and drops again after a few days, most likely be-
cause they have been listed on a blacklist or because the phisher ended the
campaign.
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Figure 4.12: New phishing domains - Average number of queries before and
after registration

A rapid growth in DNS queries might not only have malign reasons. Un-
popular domains might host content that suddenly goes viral and is spread
through social networks or a rather popular website moves to another do-
main which causes a steep increase in queries after registration. Also, mod-
ern browsers resolve domain names that they find in a website automatically
to improve performance (so called DNS prefetching). Even this behaviour
might cause peaks in traffic (Lloyd, 2015).
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Results It can be observed that domain names change their traffic pat-
terns as soon as they are used for malicious purposes (see Figure 4.13). In
the month before the botnet domains become most active 78 % experience
an increase in queries of more than 10 %. Also, 81,4 % of the malicious
domains have experienced a rapid increase in queries during this time. Fur-
thermore, we showed how non-malicious events, like leaving the quarantine,
can cause significant changes in query volume as well.

Benign (Popular)
mmm Benign (Long Tail)
mmm  Botnet

D 3,8%
At least one.peak 33,1%
occured during
one month
81,4 %

]

8,4 %
Increase in
queries in 40,7 %
one month > 10 %

78 %

Figure 4.13: Comparison between benign and botnet domains based on
query peaks and query growth.

4.3.4 Resolver Lookup Similarity

For the similarity of resolver lookups, newly registered domains are examined
2 days before and 4 days after registration. For each known botnet domain,
the day with the highest number of queries is selected. Then, the daily
resolver similarity is calculated 2 days before and 4 days after the peak
occurred. Phishing domains that have been hijacked are analysed 2 days
before they were reported by Netcraft and 4 days after. For newly registered
phishing domains the registration date is selected instead of the reporting
date.

Table 4.1 shows the average and median Jaccard Similarity for each set
of domains. Furthermore, the average standard deviation indicates how
similar the Jaccard Similarity is between the domains in a set. The last
column shows the average difference between the highest Jaccard Similarity
and the lowest Jaccard Similarity. A high value indicates that, on some



Mean | Median | Std. | Avg. Dif. Min/Max
Popular Domains 0,238 0,282 | 0,154 0,046
Unpopular Domains | 0,23 0,219 | 0,129 0,207
New Domains 0,133 | 0,088 | 0,167 0,256
New Domains Phish | 0,245 0,327 | 0,135 0,478
Phishing Domains 0,243 0,232 | 0,106 0,311
Botnet Domains 0,282 | 0,268 | 0,189 0,184

Table 4.1: Jaccard Similarity of Querying Resolvers

consecutive days, same resolvers query for the domain name but on other
days very different resolvers send queries.

Figure 4.14 shows the variability of the Jaccard Similarity of popular,
unpopular, botnet and phishing domains. This variability is depicted by
the cumulative distribution of the variance of each domain. The steeper the
curve, the more often are domains queried from a constant set of resolvers.
This result coincides with the results by Hao et al. (2010). Popular benign
domains are queried from a stable set of resolvers most often, followed by
benign unpopular domains. The query sources of malicious domains are
more inconstant. If a botnet is not growing further, domains for C&C receive
queries of a stable set of infected clients. This can explain the difference
between phishing domains and botnet domains.
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Figure 4.14: Cumulative distribution of the variance of the Jaccard Similar-
ity for benign, botnet and phishing domains.

This confirms results from previous research in the gTLDs .com and .net.

Benign domain names are queries from a more consistent set of resolvers than
malign domain names.
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4.3.5 Domain Name Server Characteristics

We have observed the name server changes over the period of one month.
We have selected domains that changed their name servers every 24 hours
or less. Although we were able to observe domain names that had a new
name server entry every 60 minutes, a closer examination revealed that these
domains belonged to the same name servers of a web hosting company which
shared 6 different IP addresses and rotated through them over time. Other
domains changed name servers only for one minute which might indicate a
mis-configuration.

These observations lead us to the conclusion that double flux networks
are not prevalent in .nl. However, this might change again in the future and
should be observed further.

4.3.6 Subdomain Characteristics

The most used subdomains in .nl include www., nsi, ns2..., mail., dmarc.
and smip. Also, many subdomains include strings like ldap or kerberos
that indicate the usage of special access and authentication protocols on a
website.

We inspected domains that received queries for significant more unique
subdomains from one day to another. There, often the subdomains included
strings like dmarc or ldap, but occasionally subdomains like opypgdl., lxw-
wobifchgd. or nfufqfrvg. appeared. These look similar to domains that have
been observed during domain shadowing attacks and have been queried on
multiple days.

We have implemented a script to automatically observe domain names
which have been queried for suspicious looking subdomains before. The
script continuously keeps track of every incoming query for this domain.
As soon as a new subdomain is queried, the script automatically resolves
the subdomain in order to check if the subdomain has a valid IP address
and whether it is different from the IP address of the 2nd level domain.
During an observation of one week, none of the observed subdomains were
successfully resolved.

This leads us to the conclusion that the observed domains were not part
of a domain shadowing campaign. However, observing an increase in unique
subdomains can be a good first step on the way to detect these attack
methods.

4.3.7 Domain Registration Characteristics

We have examined the registration information of 65 newly registered phish-
ing domains and 220 new benign domains. We have analysed the names of
the registrants, the country of their addresses, their phone numbers, email
address and registrars at which the domain has been bought. As it can be
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seen in Figure 4.15, benign and phishing domains were mostly registered
with information from the Netherlands. The country codes of the phone
numbers correspond with the country of the address. 2 phone numbers have
been used to register more than one phishing domain.

Phishing domains were more than twice as often registered with free-
email addresses like outlook.com, hotmail.com, mail.com and gmail.com as
benign domains and one phishing domain has been registered at shark-
lasers.com that offers disposable email addresses. 1 address was used for
more than one phishing domain registration.

Registrations for benign domains are spread over a large variety of reg-
istrars whereas 48 % of the phishing domains are registered at the same
Dutch registrar. Only 9 % of the phishing domains have been registered
at a registrar outside of the Netherlands. Even supposedly benign domain
have been registered with obvious fake phone numbers like +81.0125456789
(3 %).

The fact that many phishing domains are registered at one specific regis-
trar sticks out and is a distinctive feature of malicious domains. Also, using
a private email address might indicate that the domain name is registered
for benign purposes. By using Dutch names and addresses for registration,
phishers blend into the expected patterns of benign registrant of .nl domain
names.

4.4 Remarks and Summary of Findings

We have shown that malicious .nl domain names have different characteris-
tics than benign domain names. A sudden increase of queries and abnormal
geographic query patterns are a common feature of phishing and botnet do-
mains and these observations coincide with findings in previous research. A
novel characteristic has been observed for domains that have been released
from quarantine. They receive a higher number of queries than other newly
registered domains which can be useful to distinguish new benign domains
from new phishing and botnet domains.

The geographic attributes of benign .nl domain names have the unique
characteristic that they get the majority of queries from the Netherlands
and the US. Therefore, the geographical origin of DNS queries is a stronger
distinctive feature in .nl than for generic TLDs like .com or .net. Further, we
have demonstrated that newly registered phishing domains mostly have reg-
istration information that are similar to benign domains. Phishers use often
Dutch names and addresses which shows that they adapt their behaviour to
the misused TLD.

In addition, we were able to rule out certain malicious activities that
do not need be taken into account in SIDekICk for now. First, double
flux botnets in .nl can be neglected with a high certainty and second, no
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shadowing attacks have been observed so far.
These findings will be used in the next chapter to select adequate features
to build an effective classifier for malicious domains.
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mmm Phishing
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Registrations from ’
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Registrations with 33 %
free email
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Number of domains per registrar

Benign Phishing
(220 domains / 67 registrars) (65 domains / 10 registrars)

Figure 4.15: Characteristics of domain registration information of benign
and phishing domains.
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Chapter 5

Detecting Malicious Domains
in .nl with SIDekICk

Detecting malicious domains from the perspective of a TLD operator was
so far mainly conducted by researchers that focused on the TLDs .com and
.net. Hao et al. (2010) measured at AuthNSs how DNS lookup patterns for
malign domains differ from benign domains. A year later, the same authors
narrowed down their research to detect malicious domains that got newly
registered and included the ccTLD .ca as well (Hao et al., 2011).

The TLDs .com and .net differ a lot from the ccTLD .nl. In 2014, 115,6
million .com and 15 million .net domain names were registered (Verisign,
2015) compared to 5,5 million registered .nl domain names. This also affects
the number of domains which are used for malicious purposes. Aaron and
Rasmussen (2015) counted over 60.000 domains used in phishing campaigns
in .com and .net in the second half of 2014 whereas only around 400 where
reported for .nl. Furthermore, domains in .nl mainly focus on a Dutch
audience, whereas .com and .net are generic TLDs with visitors from all over
the world. Therefore, it might not be possible to apply the same detection
methods to .nl as for the other TLDs.

5.1 Goals and Challenges

In the previous chapter, we have shown which characteristics are typical for
malicious domains and how they differ from benign domain names. Phish-
ing domains are a more common phenomenon than botnet domains in .nl
This allows us to make more general assumptions about the characteristics
of phishing domains than botnet and other malicious domain names. The
small number of known botnet domains would make it hard to build a solid
data set that can be used as a ground truth in order to detect botnet do-
mains automatically and makes the validation of botnet domain detection
algorithm difficult. Therefore, the goal of SIDekICk is mainly to detect
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phishing domains on a daily basis. There, we have a comparably large num-
ber of known phishing domains and also, new phishing domains are reported
on daily basis.

Phishing domains are either registered especially for the campaign or are
compromised web servers reachable with a previously benign domain name.
Therefore, SIDekICk should be separated into two main components. The
first has the goal to detect newly registered domains, the second to detect
domains that got recently compromised and are now used for the purpose
of phishing. As output, both components list the domains that have been
classified as phishing. On this basis, we can verify whether a tool can be built
that distinguishes benign and malign domains from the view of a ccTLD.
Because phishing campaigns can share characteristics with botnet domains
and domains of exploit kits, it can be expected that some of those domain
names can be detected as well.

Newly registered phishing domains have rather distinct query patterns
and are often queried from unusual countries. Also, the number of daily
registered domains is only around 2.500 domains which limits the set of
domains that need to be analysed. In comparison, in May 2015 the name
server of SIDN received queries for over 7,5 million unique, existing and
non-existing domains per day. Also, the ENTRADA platform collects only
data from one name server for now. SIDN has deployed 4 unicast name
servers and a set of anycast servers. As a consequence, only around 15 %
of the total number of queries can be analysed, which has an effect on the
origin of DNS queries as well. Our data set is further limited by the fact
that query data is only accessible until May 2014. In case a domain was
used for malicious purposes before that date, no observations of DNS query
before and after the infection can be made.

5.2 SIDekICEk Overview

In order to identify phishing domains, we divide SIDekICk into two compo-
nents. The first component has the goal to identify domain names that have
been recently registered to be part in a phishing campaign and is further
referred to SIDekICk-New. The second component analyses the continuous
query stream for every domain and tries to identify patterns that indicate
that a domain has been recently compromised and is now used for a phishing
campaign. It is referred to as SIDekICk-Comp. Besides the different goals,
the schema of reading data, processing data and generating an output is
similar (see Figure 5.1).

SIDekICk works in epochs of one day. At the end of each day, both
components collect the domains that need to be analysed. SIDekICk-Comp
selects every domain from the Hadoop database that got queried at least 50
times and SIDekICk-New first selects the domains that have been registered
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on the selected day (Step 1). Then, for each domain the features, which
are needed to determine whether a domain is used for malicious activities
or not, are collected (Step 2). Both components apply individual filters to
exclude domains that have a low chance to be malicious (Step 3). Then, the
remaining domains are fed into the classifier modules (Step 4). SIDekICk-
New and SIDekICk-Comp rely on different underlying classifications models.
In the last step, the domains that have been classified are reported (Step 5).
SIDekICk-New additionally reports domain registration information that
should allow a human to detect false positives easier.

SiDekICk-New SIDekICk-Comp
each day
NEW REGISTERED GET DOMAINS QUERIED DOMAINS
DOMAINS
from Registration DB from HADOOP/Impala
GET FEATURES e
QUERY GROWTH TOTAL QUERIES PEAKS QUERY COUNTRIES
©
PRE-FILTERING
(4]
DECISION TREE CLASSIFICATION DECISION TREE
(5]
AUGMENTING REPORTING

Figure 5.1: Schematic structure of SIDekICk

SIDekICk-Comp only verifies the domains that have been queried on a
single day. SIDekICk-New follows an iterative approach for every newly
registered domain (see Figure 5.2). At the end of an epoch, it collects the
domains that have been registered on the current day, the day before and
two days before. Domains are not necessarily used in a phishing campaign
the same day they get registered. Therefore, SIDekICk-New observes newly
registered days consecutively on the day of the registration and the following
two days after. Because of different characteristics, different classifiers are
used for domains that are one or two days old (Step 3).

95



each day D D D
CLASSIFICATION
GET NEW [odey GET Today DAY0 Today REPORTING
REGISTERED FEATURES
DOMAINS Today -1 Today -1 g;’iSjIFICATION Today -1
Today -2 Today -2 CLASSIFICATION | 7oday -2
(1) 2] DAY -2 (3] (4]

Figure 5.2: Schematic structure of the SIDekICk module to detect newly
registered domains.

5.3 SIDekICEk System Implementation

As part of this thesis, a prototype of SIDekICk is developed. SIDekICEk
is implemented in Python 2.7.8 using the underlying machine learning li-
brary scikit-learn 0.15.2'. Data is accessed from different sources. Most
of the data related to DNS queries is stored in Hadoop clusters and is ac-
cessed through the Cloudera Impala® parallel processing SQL query engine.
Impyla® is used to query data directly from python. Domain registration
data is stored in the internal Oracle SQL Database. It includes for example
information about registrants, registrars and name servers and is queried
with the Python extension module cz_Oracle*. The queried data is stored
into labelled data structures provided by the Pandas® library that allows to
manipulate and analyse large data sets easily.

The following sections first describe which features for SIDekICk are se-
lected, which data sets are used to train the classifiers and how they are
calculated, followed by a description of the parameters of the classifiers.
Finally we describe briefly how domains, which have been classified as ma-
licious, are augmented with additionally information that should support a
user to reduce the false positive rate. In case the implementation differs, we
first describe the details of SIDekICk-New and then of SIDekICk-Comp.

5.3.1 Feature Selection

Features describe characteristics of domains with which a classifier can iden-
tify whether a domain is used for phishing or not. In Chapter 4 we have
described how the characteristics of phishing domains differ from the charac-
teristics of benign domains. Based on this domain knowledge, four features
have been selected. This section describes the selected features in more
detail and explains how the features are calculated such that they can be
processed by machine learning algorithms.

! nttp://scikit-learn.org/stable/

2 https://github.com/cloudera/impala
3 https://github.com/cloudera/impyla
4 http://cx-oracle.sourceforge.net/
® https://github.com/pydata/pandas
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Selected Features

For classification, SIDekICk stores each domain that needs to be analysed
into a Pandas data frame, which is a table-like structure and is kept in
memory. Each domain is represented by a row, using the domain name as
an index. Features are stored in separate columns.

Geographic Deviation The location of a resolver that queries a domain
name has shown to be a good indicator whether a domain name is used
for malicious purposes or not. The goal of this feature is to compare the
origin of queries of a suspicious domain with the geographic origin we would
usually expect for .nl domain names. Calculating the geographic deviation
of a domain name from the expected geographic distribution of DNS queries
includes the following 5 steps:

1. Based on the Alexa 1.000 and Webhoster-Domains, we calculate how
many queries in percent for each country and domain name have been
observed in April 2015. For example, in April 2015 ns.nl received
35,8 % of the queries from the US, 19,8 % of the queries from the
Netherlands and 5,3 % of the queries from Germany.

2. Then, we calculate for each country the mean share y and standard
deviation o.

3. For each new domain that is going to get classified, the observed geo-
graphical origin of the queries is collected for the day of classification
and the share v for each country is calculated.

4. Next, the share of each country v is compared with the expected share
1. An unexpected high deviation is observed when v > p + 3 % o or
Yy<p—3%o0.

5. The number of countries that have an unexpected high deviation di-
vided by the total number of observed countries defines the numeric
value of the geographic deviation. It can be between 0 and 1 where 0
means no deviation from the expected countries.

Steps 1 and 2 are calculated once, steps 3 to 5 are repeated for every
domain name that needs to be classified. Because especially unpopular
domains in .nl often get queries only from the Netherlands and the US,
higher shares of these countries are not taken into account.

Query Count The query count is the most basic feature. It reflects the
number of queries that have been received from the SIDN name server for
a domain name within an epoch and is an integer value. The epoch in
SIDekICE for this feature is one day.
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Query Peak A query peak (or rather rapid query growth) can occur, when
a domain is first used for malicious purpose. Because phishing campaigns
send mails that contain a link to a domain to thousands of recipients within
a short time period, a rapid increase in queries is expected. Query peak is
boolean feature.

1. For each domain, the number of queries on the day of the classification
and the day before are fetched.

2. Then, it is calculated if the number of queries of the current day are
two times higher than the day before.

3. If this is the case, the feature query peak is set to 1 else to 0.

Query Growth The query growth has the goal to measure, whether a
domain name is experiencing an increase in queries in the last three weeks.
It is represented by a positive floating point number.

1. For each domain, the number of daily queries of the last three weeks
is fetched.

2. Then, the average number of queries for the first 7 days and the last 7
days of this time period is calculated. By considering 7 days we expect
to take weekly query variations into account.

3. Finally, the average number of queries of the last 7 days is divided by
the average number of queries of the first 7 days. The result shows,
if there has been an increase or decrease in queries over the last three
weeks.

This number can be used as an confirmation whether a measured query
peak was actually an unexpected event. For example, some benign domains
might receive a rapid increase every third day. These domains would not
have a significant query growth. In comparison, a malicious domain that
gets newly infected is expected to receive a query peak and also a significant
increase in total queries compared to three weeks earlier.

Discarded Features

Aside the selected features, we do not consider the domain relationship
between malicious domains because the main focus of SIDekICk lays on
phishing campaigns. Phishing campaigns mostly do not rely on a distributed
architecture as some exploit kits and botnets do and therefore, no benefits
for detecting unknown phishing domains are expected.

Furthermore, the resolver similarity is not taken into account as well.
Calculating the resolver similarity for several thousand domains is time con-
suming. The SIDekICk prototype is running on a virtual machine with four
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2 GHz cores and 16 GB RAM and analysing the resolver similarity of 300.000
domain names for a period of seven days would take around 8 hours. Also,
Hao et al. (2010) have identified a correlation between strong variations in
querying resolvers and a rapid increase in queries from one day to another.
Because the Query Peak feature already covers this characteristic, analysing
the resolver similarity would be redundant.

Domain registration information are not taken into account during clas-
sification but are used in SIDekICk-New to support a user in verifying the
results of the classifier. Also, the quarantine-release-date for a domain is not
part of the feature set but is used as a filter that is applied after classification
to reduce the number of false positives.

5.3.2 Selecting Domains for Training and Verification

Training and verification data is necessary to provide a ground truth for the
classifiers and to measure the performance of the models. This data must
include domains that are known to be malicious and domains that are known
to serve a benign purpose. Each domain in the training set is labelled as
phishing or benign. Because the focus of the two SIDekICk modules differs,
different training sets must be used.

SIDekICk-New 70,5 % of the newly registered phishing domains are ac-
tive at the same day of registration or one or two days after. Therefore,
we have decided to build a classifier that is mainly trained to detect do-
mains maximum two days after registration. Because the number of queries
increases with each day, we have decided to train a separate classifier for
day 0, day 1 and 2 after registration. Thus, the phishing domains are split
into three sets, depending on which day they have been active. Some do-
mains have already been discovered by Netcraft before they have received
significant queries. This might have been possible when phishing domain
names contained brand names or words that have been used in other phish-
ing campaigns before. For this reason, we have selected phishing domains
that received at least 20 queries. Thereby we expected to include only do-
mains in our training set from which meaningful features can be extracted.
The final training set for phishing domains contains on registration day 36
domains and for the two following days 40 domains. For each of the do-
mains in the sets, features are collected starting on the day the domain got
reported by Netcraft.

The training set for benign domains contains the domains that have been
registered on 2015-04-07 and 2015-04-08, received more than 19 queries two
months later, did not show up on blacklists and were furthermore manually
validated. It contains 222 domains. For each of the domains, features have
been collected starting on the day of registration and the two following days.
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SIDekICk-Comp The second module focuses on long lived domains that
have been compromised and misused for phishing. The training set of com-
promised phishing domains contains over 1.800 domain names.

Because the majority of domain names in .nl receive only a small number
of queries we do not use the Alexa 1.000 domains and hosting domains
as training data but rather use them as a filter in the second step of the
classification process. Instead, the set of benign domains contains a sample
of old domains that have received at least 20 queries on the start and end-
date of a period of two months. These domains are not part of the Alexa
and hosting set and do not appear on blacklists. Additionally, the newly
registered domains of SIDekICk-New are used as well. In total, 510 benign
domains of the long tail are used as training data. Features of those domains
are collected starting from 2015-04-30.

5.3.3 Building the Classifier

The classifier is the core module of SIDekICk. 1t relies on an algorithm that
uses the selected features and labled training data to build a model with
which previously unknown domain names can be classified. Both compo-
nents of SIDekICk rely on Decision Trees. Decision Trees have proven to
be effective in previous research (see Section 3.3), do not rely on normalised
features and their results can be interpreted easily in form of a plotted tree.
We compare the results of the Decision Tree with the results of a Support
Vector Machine (SVM). SVMs have shown to achieve a good separation
of data points and have performed well with small training sets like ours
(Martinez-Bea et al., 2013; Davuth and Sung-Ryul, 2013). Both algorithms
are already implemented in the scikit-learn library. The Decision Tree is
based on the CART (Classification and Regression Trees)® implementation
and the SVM uses the implementation by Guyon et al. (1993).

Both algorithms first have to be trained. Therefore, they provide a
function that is expecting a two-dimensional array of training data and an
array of labels as input and returns a model with which unknown domains
can be classified. In the two-dimensional array, each row is a domain name
and each column is a feature. The second array is a list of labels that
assigns each domain either a 0, if the domain is benign, or a 1, if the domain
is a phishing domain. A classifier function uses the created model and a
one-dimensional array of the features of one domain name as an input and
returns either a 0 or a 1 depending on the classification.

Both algorithms have different parameters to influence the classification
of domain names. We have followed the recommendations of the scikit-
learn documentation to improve the algorithms in order to achieve the most
optimal results (Scikit-learn, 2015a,b).

S http://scikit-learn.org/stable/modules/tree. html#tree-algorithms
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In the following two sections, we first explain models for detecting newly
registered domains followed by the models for detecting compromised do-
mains.

SIDekICk-New

The set of known new benign domains is separated into a set of 166 training
and 55 verification domains (25 % verification data). The set of known new
phishing domains is split into 24 training and 12 verification domains for the
registration day and 27 training and 13 verification domains for the first and
second day after registration (33,3 % verification data). The performance of
the classifiers is measured with the help of the false positive and true positive
rate. The false positive rate defines the share of domains that erroneously
have been classified as malicious, the true positive rate defines the share of
domains that have been correctly classified as malicious.

During the training phase, we have weighted the samples such that there
was a five times higher chance that a domain is classified as a phish. Also,
the decision tree algorithm did not create new child nodes if less than five
domains of the training set would have ended up in this node 7. Thereby,
over-fitting was reduced and the best performance has been achieved (see
Table 5.1).

The outcomes of the training phase are two very simple Decision Trees
(see Figure 5.3) where the Decision Tree for the first and second day of the
registration works best for both days. The tree is read from the top to the
bottom. For each classified domain, first the top condition is tested. If the
condition is fulfilled, the domain moves to the node of the left branch, if
not, then the domain moves to the right branch. The domain is classified
as soon it reaches a leaf node.

It can be seen that for the day of the registration, only the query growth
and the geographic deviation is considered. For the first and second day,
only the number of queries and the occasion of a query peak play a significant
role. The training function selects the most adequate features on its own.

We have built a classifier based on Support Vector Machines to assess
the results of the Decision Tree. Due to our unbalanced training set, we
automatically balanced the training data before training the classifier®.

It can be seen in Table 5.1 that Decision Trees perform slightly better
than the SVM. Therefore, we decided to use the Decision Tree classifier in
the final prototype of SIDekICk-New. In Chapter 5.4 the classifier is then
evaluated over a period of one month.

"class DecisionTreeClassifier constructor parameter min_samples_leaf =5
8class SVC constructor parameter class_weight = auto
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Figure 5.3: Newly registered domains - Decision Trees

SIDekICk-Comp

In order to reduce the false-positive rate, the training sets for the Decision
Tree and the SVM are pre-selected. Both rely on the same set of benign do-
main names, split 3 : 1 into training and verification set (382 domains to 127
domains). The Decision Tree only uses known malicious domains for train-
ing that experienced a growth bigger than 2, a geographic deviation bigger
than 0,2 and had a peak on the query date (67 domains for training and
33 domains for verification). The SVM is using a training set of malicious
domains that had a query growth bigger than 1 and a geographic deviation
bigger than 0,1 (294 domains training to 147 domains verification).

The benign domains of the training set of the Decision Tree are weighted
5 times more than malign domain names and the minimum samples in a leave
is set to 5. Using these parameters, a tree with the depth of 3 is created
(see Figure 5.4). The tree takes the query growth, the geographic deviation
and the occurrence of a peak into account.

The SVM weighs benign domains in the training set twice as much as
malicious domains. Thereby the number of false positives can be reduced.
Table 5.2 shows the performance of both classifiers. The Decision Tree
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False Positives | True Positives
Algorithm | Tree SVM | Tree SVM
Day 0 1,75 % | 3.6 % | 90,0 % | 83,3 %
Day 1 1,75 % | 1,8 % | 90,9 % | 84,6 %
Day 2 1,72% | 72 % | 90,0 % | 84,6 %

Table 5.1: Newly registered domains - Classification evaluation
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Figure 5.4: Old domains - Decision Tree

and is therefore the choice for the final prototype.

False Positives

True Positives

Algorithm

Tree

SVM

Tree

SVM

Classification

3,1 %

15,0 %

90,1 %

70,5 %

Table 5.2: Old domains - Classification evaluation

5.3.4 Reporting the Results

In the last step of the SIDekICk classification process, the domains that have
been classified as phishing are reported. So far, no user interface is provided
by SIDekICEk and only the classified domain names are listed by the python
script. For each domain that has been classified as malicious by SIDekICk-
New additional registration information are displayed. These include the
name, address, phone number and email address of the registrant, as well
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as the used registrar and whether the domain is reachable at the moment.
These information have shown to be helpful during evaluation to identify
false positives. For example, domains that have been registered with the
name of a popular domainer are very likely false positives.

5.4 Evaluation

In this section, we evaluate the modules SIDekICk-New and SIDekICk-
Comp over a longer period using formerly unknown and unclassified do-
mains. SIDekICk-New performs very well. Every domain that was later
reported by Netcraft got detected and the false positive rate is 0,3 %.

The performance of the SIDekICk-Comp module is harder to evaluate.
Within one week, we detected over 14.000 domains that might be suspicious
but we miss efficient tools to evaluate them. Domains that were reported
by Netcraft were classified as malicious only in few cases and often the total
number of supposedly malicious domain was too high to be realistic.

5.4.1 SIDekICk-New

Process SIDekICk-New has been evaluated over a period of 31 days from
2015-06-08 until 2015-07-08. In this period, 61.100 domain names were
registered in .nl, with a daily average of registrations of 1.970,97 domain
names. In the same time, Netcraft reported 10 domain names as phishs
that have been misused within 2 days after the registration.

At each day, we first fetched every domain name that has been registered
on the same day, the day before and two days before and stored them in a
temporary list. Then, for each list we collected the features of the domain
name on the day of the classification. Collecting the features for the domain
names takes less than three minutes. Depending on the age of the domain
name, we applied the different classifiers to identify newly registered phishing
domains. We describe this process with an example for the date 2015-06-14:

1. Collect domains that have been registered on 2015-06-14, 2015-06-13
and 2015-06-12.

2. Get features for each of the domains on 2015-06-14.

3. Apply the decision tree for the registration day on domains from 2015-
06-14 and the decision tree for one and two day old domains on 2015-
06-13 and 2015-06-12.

Often, we have seen that domain names which had less than 20 queries
were not malicious even though they have been classified as such. Therefore,
we apply a filter before step 3, where every domain name that has less than
20 queries is neglected.
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False Positive Rate
Standard | Optimised | Improvement
Day 0 0,055 % | 0,048 % 12,7 %

Day 1 0,181 % | 0,152 % 16,0 %
Day 2 0,114 % | 0,104 % 8,8 %
Average | 0,117 % | 0,101 % 12,5 %

Table 5.3: SIDekICk-New - False positive rate for the standard and opti-
mised classifier

Results In the evaluation period, every domain reported by Netcraft has
been detected. 9 domains have been detected on the day of the report and
one domain has been detected one day earlier. Additionally, 13 phishing
domains have been detected that have not been found by Netcraft. Besides
phishing domains, the classifier also found domains that, were used for bogus
webshops in order to sell fake sport shoes or domains forwarded to scam-
ming websites were paid surveys and other online scams were promoted. In
total, 33 malicious domains were reported with an average of 1,06 domains
per day and 0,35 domains per classification. The fact that we found twice
as many phishing domains than reported by Netcraft indicates that there
might be even more domains left undetected. Especially phishing campaigns
that target a very specific and small group of users might not be detected
by SIDekICk-New because of their low number of queries. However, 75
% of the global phishing campaigns are targeting one of 10 very popular
Internet-services like PayPal. These phishing campaigns reach many users
and therefore are most likely detected by our classifier. Thus, we assume
that even in the worst case scenario the false negative rate is below 25 %.

On the other side, 235 domain names were detected that were very likely
false positives. For every classification of a domain set, 2,35 domain names
were falsely detected as malicious. The total false positive rate is 0,34 %
(235 of 69.067 domain names). The false positive rate differs among the
days of classification (see Table 5.3). The decision tree for the day of the
registration has the lowest number of false positives, the tree for the first
day the highest number.

Optimisation During the evaluation, we observed that some domains
that erroneously have been classified as malicious left quarantine recently.
Therefore, we assume that these domains were registered by domainers
which caused an increase in queries. We introduced another filter after
step 3 and excluded every domain that has left quarantine in the last two
days. Thereby, only 200 domains were mistakenly classified as phishs and
we were able to reduce the total FP rate by 14,9 % to now 0,29 % (200 of
69.067 domain names).
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5.4.2 SIDekICk-Comp

Process The second modules is evaluated for a period of 7 days from 2015-
06-08 to 2015-06-14. In this time, Netcraft reported 96 phishing domain
names that have been older than 7 days.

At the end of a day, we collect the features for every domain name that
received more than 50 queries. This takes around 60 minutes for 200.000
domain names. After the features are collected, the classifier is iterating
through every domain name and returns the result of the classification. This
takes around 3 minutes for 200.000 domain names (0,9 ms per domain name).

Results FEvaluating the results of SIDekICk-Comp is difficult. In total
14.242 unique domains have been classified as malicious. However, when
comparing the domain names that have been classified as malicious with
the domains that have been reported by Netcraft, only 10 of 96 have been
reported correctly (10,4 %). Netcraft only focuses on phishing domains but
because also compromised domains used by exploit kits share similar char-
acteristics, we assume that among the classified domain names also domain
names of these kind are listed. In order to get a better understanding of the
set of supposedly malicious domains, we analysed the most queried domains
with virustotal. As a result 50 of 14.242 domains (0,35 %) were reported
by at least one of the scanners used by wirustotal. From their experience
with false positives, Cermék et al. (2014) defined that at least four scanners
of virustotal must detect a domain name before they consider a domain as
malicious. We considered this threshold to achieve a mores rigorous eval-
uation such that only 8 of 14.242 (0,06 %) are certainly malicious domain
names. We had to focus on the 500 most queried domains because of rate
limitations of the virustotal API.

An overview of the results can be seen in Table 5.4. It shows the number
of analysed domain names, the number of domains that have been reported
by Netcraft that day, the number of domains that have been classified as
benign and as malicious. Also, it is listed how many of the reported domains
by Netcraft appeared among the domains that were classified as phishing.
The last column shows the number of domains that have been classified by
virustotal as malicious as well.

Even if we consider a high number of domain names that are infected
but are not reported, the classifier still has reported very likely many false
positives. We looked at some of the reported domains manually and have
seen for example websites of a local Dutch shop for pedicure with over 200
queries per day and many queries from Peru and Mexico. This behaviour
looks very suspicious but is not enough to determine whether the domain is
actually malicious or not. To validate this assumption it would be necessary
to find for example the hidden URL that hosts the malicious code. This
cannot be observed from the vantage point of an TLD registry.
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Date | Analysed | Rep. | Benign Mal. (reported) | virustotal (>3)
06-08 | 332.121 | 16 331.630 | 491 (2) 10 (2)

06-09 | 243.930 | 20 243.875 | 55 (0) 0

06-10 | 247212 | 11 | 236.530 | 10.682 (0) 6 (1)

06-11 | 261.193 | 10 | 259.797 | 1.396 (3) 10 (2)

06-12 | 218.684 | 18 | 217.566 | 1.118 (0) 7(2)

06-13 | 207.427 | 15 | 207.126 | 301 (1) 8 (0)

06-14 | 207.821 16 207.622 199 (4) 9 (1)

Total | 1.718.388 | 96 | 1.704.143 | 14.242 (10) 50 (8)

Table 5.4: SIDekICk-Comp - Detection of potential malicious domains

In total, 41 unique domains have been listed by wvirustotal. Figure 5.5
shows the shares of the most common countries for domains that have been
classified as malicious by SIDekICk-Comp and by virustotal. It can be seen,
that both sets of domains have a geographic distribution that varies from
what we observe for benign domains from our training set. Most of the
queries from the first set come from Spain (13,95 %) and most of the queries
from the second set come from China (18,7 %). Both sets share a high query
growth and a medium number of queries (see Figure 5.6). The number of
queries varies stronger for domains that have been classified by SIDekICk-
Comp than for domains classified by wvirustotal.
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Figure 5.5: SIDekICk-Comp - Shares of the geographic location of query-
ing resolvers for domains that have been classified by SIDekICk-Comp and
domains that have been detected by wvirustotal.

The similarity between the domains classified by wvirustotal and the do-

mains classified by SIDekICk-Comp shows that we have selected the right
features to detect old, compromised domains but we still miss features to
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narrow down the results and to decrease the high number of false positives.

In the next chapter we summarise our findings in this thesis and discus
what would be necessary in order to make SIDekICEk part of an initiative to
actively fight malicious domain names in .nl and other zones.
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Figure 5.6: SIDekICk-Comp - Attributes of the domains classified as mali-
cious and domains classified by virustotal as boxplots (without outliers).
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Chapter 6

Conclusion

In this thesis we focused on malicious domain names in the .nl ccTLD.
We provided a characterisation of known malicious .nl domain names based
on previous research and confirmed that behaviour of malicious domains in
gTLDs like .com and .net can be observed for .nl as well. Beyond this, we
explained how domains that are leaving quarantine can have characteristics
that can be similar to newly registered malicious domains and how the
observation of small resolvers can be used to detect previously unknown
botnet domains. The characteristics of quarantined domains were used in
combination with features of DNS query frequency and geographic location
of querying resolvers to develop a prototype called SIDekICk, which is able
to detect newly registered malicious domains with a high precision and a
low false positive rate. A second module of SIDekICk lists domains that
are potentially compromised based on the daily analysis of every .nl domain
name that has been resolved. We have shown that, although the classifier
uses features that are characteristic for malicious domains, more features
are needed in order to improve its precision.

6.1 Limitations

The developed prototype still has a few limitations and is relying on certain
variables that have an impact on its performance.

First, although the false positive rate of SIDekICk-New is below one
percent, on average 6 domain names are still falsely classified as malicious
per day. If the phish is hosted on the main site, then these domains can be
verified manually. However, if the phish is hidden in a sub-directory, manual
inspection becomes more difficult. In SIDekICEk-Comp, the false positive
rate is high and in our training period over 2.000 domains were classified
as malicious per day on average. This makes a manual classification not
efficient such that further improvements of the classifier are necessary.

The precision of the classifiers relies on the accuracy of the features that
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are collected for each domain name. If the geographic location of multiple
IP addresses of large resolvers are not determined correctly, then SIDekICEk
might classify some domains erroneously as malicious.

The limited data set from only one name server might have an impact
on the precision of the classifier as well. Assuming that a large ISP sends
usually queries to one of the name servers which are not monitored by EN-
TRADA, but suddenly sends most of the DNS queries to the server whose
queries are monitored, then domains will receive rapidly more queries, and
therefore have high growth and high peak. This again might cause a wrong
classification.

Culprits can avoid detection if they mainly target Dutch users, such that
the geographic deviation stays low. If they would be able to avoid a rapid
increase of queries we probably would not detect their domains as well.

6.2 Future Work

In order to cope with the previously mentioned limitations and to verify the
results, several improvements can be applied in the future.

One way to improve precision of the classifiers could be to analyse the
web-server software and content management system (CMS) of a suspicious
domain. Wisniewski (2015) has discovered in his research that many com-
promised domains run old vulnerable versions of CMSs like Wordpress or
Joomla. Also, so far the geographic deviation is only measured on daily
basis. Observing changes in the location of the resolvers and taking the
CMS into account might be helpful indicators whether a domain name is
compromised.

In order to validate if a suspicious domain is actually used for malicious
purposes, it can be sometimes possible to find the botnet C&C administra-
tion panel or the website with the malicious script on the website. Sood
(2014) is using search engines like Google to find suspicious URLs for do-
main names. Automatising this might be challenging because of API rate
limiting and the variety of URL patterns. Additionally, search engines might
be useful to reduce the number of false positives. During this project, we
often searched manually for a domain name on web-search engines in or-
der to collect more information about a suspicious domain name. There,
we sometimes observed that the search returned a high number of results
within the last days. This was often a sign that the domain was benign and
the increase of queries and high geographic deviation was rather caused by
popular content on the website than malicious activities. Hence, counting
the number of recent search-engine results could be a way to reduce the
false positive rate. Again, rate limiting and limits of the search engine’s
API might cause difficulties.

So far, SIDekICk operates on a daily basis. By reducing the observation
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epochs to half a day or a few hours, malicious domains could be detected
even earlier which would be a bigger advantage over services like Netcraft.

For further validation of SIDekICk it would be of interest to apply it
in other ccTLDs as well. Thereby, we would be able to evaluate if we can
generalise our findings. Also, a cooperation with IT-security firms could
allow us to validate our suspicions for some domain names.

Finally, it is one thing to detect malicious domains, but another to actu-
ally stop the malicious activities. This requires an organisational approach
which is sketched out in the next section.

6.3 Post Malicious Domain Name Detection

Detecting a malicious domain name is only one step towards the ultimate
goal of stopping the malign activity, identifying the responsible culprit and
taking actions that such a misuse cannot happen again easily. Therefore,
this section describes measures that can be taken by registries as soon as
a domain name has been classified as malicious. Additionally, we describe
how to proceed in case the registry has a suspicion that a domain name is
involved in malicious activities but cannot verify this suspicion on its own.

6.3.1 Following the Chain of Responsibility

In case a third party has a complaint about content that is hosted on a .nl
domain, SIDN has published a general chain of responsibility that describes
which entity has to be contacted in order to take down the controversial
content!:

1. The provider of the content

2. The provider of the website (registrant)

3. The firm that hosts the website

4. The provider of the internet access (registrar)

5. The registry (SIDN)

In case SIDN itself detects a malicious domain name, the same chain can
be followed. However, we need to differentiate between a domain name that
has been registered by a culprit directly and a domain name that is infected
such that it takes part in malicious activities.

! www.sidn. nl/a/nl-domain-name/complaining-about-the-content-of-a-website
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Newly Registered Domains If a domain name is registered for mali-
cious purposes, then there are very likely no or false contact information
provided on the website and domain registration information of the regis-
trant are possibly fake as well. Therefore, the first two steps of the chain of
responsibility can be skipped directly. As long as the web content is hosted
at legitimate web hosting firms, the server or web-space is probably bought
with fraudulent information as well. Thus, these firms have an interest in
cancelling the contract for this domain as soon as possible, because there is
a high chance that they might not get paid for their service and although
they are not legally responsible for the content hosted on their servers most
of the time (Stop Badware, 2011). If the domain is hosted at a so called
bullet proof hoster, the hoster will very likely not respond to complaints.
The domain name itself is probably registered with fake information as well
which is an incentive for registrars to cancel the registration. Finally, SIDN
has still the possibility to remove the domain from their zone file and thereby
increase the barrier for accessing the website through DNS. SIDN has strict
notice and take down (NTD) procedures and considers the take down of a
domain name as “a last resort” in the fight against abuse (SIDN, 2014a).

Compromised Domains If malicious content is hosted on a compro-
mised website, contact details of the registrant are usually correct, such
that the website owner can be contacted directly. If the registrant has the
technical knowledge to clean up the site from the malicious content, then
the problem should be solved. Moore and Clayton (2009b) have shown that
contacting the administrator of a website can be an efficient measure to take
down phishing content. In case the registrant does not have the technical
knowledge or does not respond to the complaint, then the hosting company
can be contacted. A survey among people whose website got compromised
showed that occasionally hosting companies actively or after notification re-
move malicious content from the compromised server (Stop Badware, 2012).
If web hosting companies are notified about malicious content on one of their
customer’s websites, then 50 % of the firms do not react at all. In case they
do respond, they reply withing 48 hours (Canali et al., 2013). For exam-
ple, they suspend the account of the customer with the consequence that the
benign service running on the server is interrupted as well or remove the ma-
licious files. The notification of the authors included the URL that referred
to the malicious content. If a complaint at the web hosting company is not
successful, a registrar might take actions. However, suspending the account
of the registrant has the consequence that benign content is not reachable
as well. NTD carried out by SIDN is only an option in very serious cases.

72



6.3.2 Alternative Approaches

If we would try to take down a domain detected by SIDekICEk, then we would
face several issues while following the chain of responsibilities.

First, following this process is rather time consuming. If we detect a
newly registered phishing domain, then we need to act within hours to ef-
fectively reduce the impact of the campaign (Aaron and Rasmussen, 2015).
Second, we cannot block compromised domains that have been classified
by SIDekICk-Comp due to the high false positive rate and the high chance
that benign content might be blocked. Third, even if we would be almost
certain that a domain is compromised, we often cannot provide the actual
URL to the malicious content such that the informed web hosting company
is probably less likely to react to the request. Finally, even if we would be
able to successfully take down malicious content on a compromised website,
the chance that a website gets reinfected is still around 20% (Moore and
Clayton, 2009a).

The first issue can be solved rather easily. Submitting the detected
phishing website manually to the Netcraft feed or to the Google Safe Brows-
ing initiative? is an efficient way to reach a broad user base on the Internet.
Many modern browsers rely on these services and block the content automat-
ically as soon as the domain is listed. Taking down suspected compromised
websites is a greater challenge, especially if we are not sure if the domain is
actually infected.

One solution is to improve the precision of the classifier as described in
Section 6.2. Another one is to rely on third parties to examine the suspicious
domains further. For example, registries could collaborate with developers
of intrusion detection systems and firewalls or anti-virus vendors. If for
example a firewall detects traffic which is directed to one of the suspicious
domains, then a rule could be triggered that puts files, which are downloaded
from this domain, first into quarantine for further examination. Anti-virus
vendors could use the list of suspicious domains as another indicator whether
a client is infected. Also, ISPs could observe the traffic to these suspicious
domains. If many clients request a previously unknown URL, then malicious
content might be hosted on this site. In this approach, the privacy of the
customers of the ISPs needs to be taken into account.

So far, SIDN does not have guidelines how to proceed with domains
that have been detected by the research and operations teams but decide
individually if and which actions should be taken.

2 https://www.google.com/safebrowsing/report_phish/
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6.4 Epilogue

Fighting malicious domain names is a community effort. We have shown
that registries can contribute to this effort due to their broad and holistic
view over their zone. We can expect that the impact of malicious domain
names can be reduced if every registry would be able to actively fight abuse
in their zones . However, DNS is a complex system. It involves many actors
and stakeholders and only by involving as many of them in this fight a more
secure Internet can be achieved in the end.
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