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Abstract 
Accurate measurement of the biological markers of the aging process could provide an “aging clock” measuring predicted                 
longevity and allow for the quantification of the effects of specific lifestyle choices on healthy aging. Using modern machine                   
learning techniques, we demonstrate that chronological age can be predicted accurately from (a) the expression level of human                  
genes in capillary blood, and (b) the expression level of microbial genes in stool samples. The latter uses the largest existing                     
metatranscriptomic dataset, stool samples from 90,303 individuals, and is the highest-performing gut microbiome-based aging              
model reported to date. Our analysis suggests associations between biological age and lifestyle/health factors, e.g., people on a                  
paleo diet or with IBS tend to be biologically older, and people on a vegetarian diet tend to be biologically younger. We delineate                       
the key pathways of systems-level biological decline based on the age-specific features of our model; targeting these mechanisms                  
can aid in development of new anti-aging therapeutic strategies. 
 

Introduction 
Biological age refers to biological markers of the aging         
process, and may be accelerated or slowed in some         
individuals relative to their chronological age. Recent       
research has proposed computational aging clocks based on        
various biomarkers including metabolites, blood cell count       
and other routine lab tests (Earls et al., 2019; Momoshina,          
Kochetov et al. 2018), DNA methylation (Fraga & Esteller,         
2007; Horvath & Raj 2018; Bell et al. 2019), gene          
expression in tissue (Momoshina, Volosnikova et al. 2018)        
or blood (Harries et al., 2011; Lin et al., 2019), taxonomic           
composition of the gut microbiome (Galkin et al., 2020),         
among others. Aging clocks propose to use a signal derived          
from these biomarkers as a health-related metric for aging.         
In this paper we present two biological age metrics, one          
derived from the metatranscriptome of the gut microbiome,        
and one from the transcriptome of capillary blood. These         
two metrics together arguably capture the most       
comprehensive view of human biology.  
 
Molecular markers from both microbial and human cells        
have been used to develop aging clocks. The composition         
and function of the gut microbiome changes with age, and          

may modulate healthy aging through multiple mechanisms.       
The increased dysbiosis associated with age can lead to         
innate proinflammatory immune responses, and the small       
molecules secreted by the gut microbiome affect host        
metabolism and signalling pathways that vary with age (see         
review in Kim & Jazwinski, 2018, i.a.). There is evidence          
that these microbiome changes over time are directly        
implicated in human healthspan. Maffei et al. (2017) show         
that certain properties of the gut microbiome, notably        
taxonomic diversity, are more predictive of a frailty index         
measuring mortality risk than is chronological age. Similarly        
on the human side, several molecular markers may modulate         
healthy aging. Perhaps the strongest aging clocks proposed        
so far have relied on biomarkers related to the epigenome          
such as DNA methylation. While these can act as an          
estimator of the biological age, they are not comprehensive         
and they have limited ability to pinpoint the regulators of the           
biological clock. Both the gut microbiome and the human         
molecular mechanisms are known to participate in       
widespread epigenetic interactions (see survey in Watson &        
Søreide, 2017), so a biological clock based on both of these           
functions can potentially inform specific therapeutic avenues       
to slow down aging. These may include personalized diets,         
supplements (vitamins, minerals, prebiotics, probiotics, food      
extracts, etc.), pharmaceuticals, phages, immunotherapies     
(vaccines, antibodies), etc. 
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While there are many ways to define biological age and          
operationalize the development of an aging clock (Jia et al.,          
2017), a common approach is to fit a machine-learned model          
to predict the chronological age of the human subject from          
the biomarker. This model’s predictions will deviate from        
chronological age to some extent: for example, if the         
subject’s biomarker profile is more similar to biomarker        
profiles of older people than to their peers, the model will           
overpredict age. The model’s predictions can be interpreted        
as a biological age in the sense that they approximate the age            
of a typical subject with the given biomarker profile. In this           
paper we show that the gut microbiome metatranscriptome        
as well as the blood transcriptome display strong        
associations with age to allow the creation of an aging clock. 

Methods 
Study cohorts . Table 1 gives an overview of the stool          1

microbiome and blood transcriptome cohorts used in this        
study.  

● The stool microbiome cohorts consist of samples       
obtained from unique customers of Viome’s Gut       
Intelligence product. These samples were divided      
into a discovery cohort of 78,637 samples, and a         
validation cohort of 11,666 samples.  

● The Galkin et al. matched microbiome cohorts are        
intended to allow comparison of this model to the         
one presented in that work, and were constructed by         
randomly choosing one Viome customer from our       
validation set with the same age as each person in          
the Galkin et al. datasets. One person in the         
matched CV cohort could not be paired with a         
unique sample in our data, so our cohort has 1164          
samples rather than Galkin et al.’s 1165. For the         
HC cohort we additionally matched on sex, which        
was impossible in the larger CV cohort. 

● The human blood transcriptome cohort consists of       
samples obtained from 1494 unique customers of       
Viome’s Health intelligence product and associated      
research studies.  

 

1 All participants consented to participation, and the study protocol          
was approved by a federally-accredited Institutional Review Board        
(IRB). All data was de-identified for the purpose of the analyses           
reported here.  

Sample processing and bioinformatics. Stool samples      
were collected, preserved and processed using the       
metatranscriptomic method described in Hatch (2019).      
Paired-end reads were mapped to genomes (Breitwieser et        
al., 2017) and to a catalog of microbial genes with KEGG           
ortholog (KO) annotations (Kanehisa & Goto, 2000), and        
quantified using the expectation-maximization algorithm     
(Dempster, et al. 1977). This yields two views of the relative           
activity of each gut microbiome sample, one taxonomic and         
one functional. The taxonomic view aggregates reads to the         
species level, while the functional view aggregates the same         
reads to KOs. 
 
Blood samples were collected, preserved and processed       
using the whole blood transcriptomic method described in        
Toma et al. This method is selective for polyadenylated         
RNA. Paired-end reads were mapped to the human genome.         
Gene expression levels were computed by aggregating       
transcripts per million estimates per gene using an approach         
based on Salmon version 1.1.0 (Patro et al., 2017), as          
described in (Toma et al. 2020). 
 
Machine learning. The microbiome data was transformed       
using the centered log ratio transformation (CLR)       
(Aitchison, 1986) after imputation of zero values using        
multiplicative replacement (Martín-Fernández et al., 2003).      
The human gene expression data was transformed using a         
Yeo-Johnson power transformation.  
 
Machine-learned models for both stool microbiome and       
blood transcriptome are Elastic Nets (EN: linear regression        
with tunable L1 and L2 regularization). We also tried other          
approaches including deep neural networks (DNN), random       
forest, Adaboost and a combination of metric learning and         
k-nearest neighbors. As results were similar across all        
approaches, we report the simplest and most interpretable        
model class.  
 
For the stool microbiome model, hyperparameter      
optimization was done using a 5-fold cross-validation on the         
discovery cohort. A final model using the optimal        
hyperparameter setting was then trained on the full        
discovery cohort and applied to the validation cohort to test          
generalization. Hyperparameter settings were scored using      
R2 and the selected model was evaluated using Mean         
Absolute Error (MAE) and R 2. 
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Table 1: Model performance by cohort. 

 Stool microbiome Human blood 
transcriptome 

 Microbiome 
discovery cohort 
 (cross-validated) 

Microbiome 
Validation cohort 

(prospective) 

Matched cohort 
with CV in 
Galkin et al. 

Matched cohort 
with HC in 
Galkin et al. 

Blood 
transcriptome 

discovery cohort 
(cross-validated) 

Cohort size 78,637 11,666 1164 252 1494 

Sex (% female) 64.10 65.37 64.95 48.41                     61.29 

Age (y) mean s.d.±  46.79 15.9±  43.22 15.75±  49.00 15.35±  48.06 11.36±  47.24 14.22±  

Baseline MAE 12.98 12.90 13.03 9.36 11.75 

Prediction R2 0.42 0.00±   0.46 0.46 0.31 0.53   0.02±  

Prediction MAE 9.49 0.02±  9.21 9.14 7.64 7.63 0.25±  

 
For the human blood transcriptome model, model evaluation        
was performed using a nested CV due to the smaller dataset           
size. An inner 3-fold CV was used for hyperparameter         
selection while an outer 5-fold CV was used for model          
evaluation. Hyperparameter settings in each were scored       
using R2  and evaluated using MAE and R 2. 
 
Baseline MAE was computed as MAE from the median age          
of the cohort. The discovery cohort was used to tune model           
hyperparameters using cross validation, then a final model        
was trained on the full discovery cohort. The final model          
was applied to the validation cohort (drawn from the same          
population but not used in training), cohorts matched to two          
validation datasets (CV and HC) analyzed in Galkin et al.          
(2020), and additional cohorts described in Cohort       
Comparisons below. 
 
Cohort comparisons. As an additional exploration of our        
stool microbiome model, we compare the biological age        
predicted for a number of specific subsets of the full          
microbiome dataset (discovery plus validation)     
corresponding to populations of interest. In each case we         
select all available samples from the population of interest         
(e.g. vegetarians), and create an appropriate control cohort        
(e.g. omnivores) where each member of the control cohort is          
matched on age to one member of the reference cohort. We           
perform a paired sample t-test to determine whether there is          

a significant difference in biological age between the        
cohorts. The cohorts consist of: people reporting the special         
diets vegan, vegetarian, organic, paleo, ketogenic      
(contrasted with people following no special diet); people        
with self-reported IBS and Diabetes (contrasted with people        
reporting no health issues); and heavy drinkers (contrasted        
with non-drinkers), where heavy drinkers were defined       
following Mayo Clinic guidelines as consuming 15 or more         
drinks per week for males and 8 or more for females. 
 
Viome Functional Categories (VFCs). We have built an        
annotation system that integrates both species level       
taxonomic activity and the functional expression profiles       
from KOs into higher order biological themes, called        
`Viome Functional Categories (VFC)’. VFCs are      
expert-curated themes that account for pathway      
directionality of feature association (activation /suppression,      
production/degradation, protective/harmful) and provide    
mechanistic insights into aging. Microbial taxonomic and       
gene expression features are grouped into 11 biological        
themes covering 32 VFCs. Human gene expression features        
are grouped into 26 themes covering 65 VFCs. For example,          
the theme “ProInflammatory Activities in Aging” consists of        
8 different VFCs. Within this theme, the “Ammonia        
Production Pathways” VFC contains 3 KOs, all with a         
positive association with aging in the model. More details         
are provided in the Supplementary Materials. 
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(a)  

(b) 
 

(c) 

 
(d) 

 
(e) 

Figure 1. Descriptive statistics for the microbiome discovery cohort of Table 1.  (a) age distribution (b) richness and 
shannon diversity of active microbial richness by decade (c) richness and Pielou’s evenness index for active functions (d-e) 
mean CLR transformed expression levels of species/KOs by age for most variable species/KOs grouped by genus/VFC.  

 

Results 
Figure 1 presents descriptive statistics of the discovery        
cohort. Ages of sample donors range from <1 years to 104           
years, with 2686 donors below 18 years of age (included          
with parental consent). Study participants come from over        
60 countries (86% US, 8% Canada, 3% Australia, 1.5% EU,          
1% UK, rest from other countries). We do not observe any           
differences in taxonomic richness by age (Fig 1b-c); nor do          
we find differences in taxonomic diversity or active function         
richness. None of these four measures were found to         
increase predictive accuracy when included in our models.        
Fig 1d-e shows the taxa at the species level and KOs that            

vary the most with age. To identify these, we calculated the           
mean CLR for each feature in each decade of age in 70% of             
the discovery cohort, and chose those with the highest         
variance across ages. Then we plotted the trend in mean          
CLR by decade in the remaining 30% of the data, grouped           
by Viome Functional Category (VFC). Notably, all of the         
KOs with the highest positive association with age are part          
of Methanogenesis Pathways resulting in production of       
methane gas. 
 
Our biological age model’s performance is presented in        
Table 1. For the independent validation cohort, the model         
predicts chronological age above the baseline MAE of the         
datasets, and accounts for around 46% of the variance in age           
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by R2, the standard metric of quality of fit in regression           
tasks. Our biological age model’s predictions and most        
important predictors are shown in Figure 2. Figure 2b         
shows the features with highest absolute coefficients (above        
0.3 for taxa and 0.15 for KOs) grouped by Viome Functional           
Categories (VFCs) and further grouped into themes (see        
Supplementary Materials).  
Table 1 presents performance of the model under 5-fold         
cross validation. The model accounts for around 53% of         
variance in ages in the dataset. Figure 3 presents the          
predictions of our aging model based on human blood         
transcriptome.  
 
Cohort comparisons. To explore the biological age of        
specific populations of interest, we present summaries of        

paired sample t-tests in Figure 4a, which depicts the         
difference in mean biological ages for specific cohort        
comparisons of interest, together with p-values from       
corresponding t-tests. Figure 4b shows the difference in        
chronological age for these same populations within the        
discovery cohort. We note that the model picks up several          
interesting differences between these populations and their       
age-matched controls. Vegetarians and vegans both tend to        
have a lower biological age than omnivores, while those         
following the ketogenic or paleo diets are biologically older         
than omnivores. Heavy drinkers are biologically older than        
non-drinkers. People with diabetes or IBS appear older than         
healthy controls. Some of these results may reflect chance         
patterns in the training data, as discussed below. 

 

 
(a)  

(b) 

Figure 2. Biological aging model using the microbiome discovery cohort of Table 1. (a) Predicted vs. actual age in held-out 
validation data (for clarity, only a random subset of points is shown) (b) Coefficients for the microbial taxonomic features 
(circles) and KO features (triangles) grouped into curated Viome Functional Categories (VFCs) 

 

Discussion 
Model performance. The models presented here are       
capable of predicting chronological age above the baseline        
MAE of the datasets, and account for around 46% (stool)          
and 53% (blood) of the variance in age by R2. We note that             
some discrepancy between predicted and actual age is        
expected in a useful biological age candidate. If age was          
perfectly predicted, it would indicate either that the aspects         
of health captured by the biomarker decline in lockstep with          

chronological age, or that the biomarker is statistically        
associated with properties that vary systematically with age        
but are irrelevant to health.  
 
We present an in-depth comparison of our microbiome        
model work with the gut metagenomic aging clock reported         
by Galkin et al. (2020). Galkin et al. report MAE of 10.60            
and R2 of 0.21 (vs our 9.49 and .42) in a dataset with a              
baseline MAE of 13.03 (vs our 12.98). In a secondary          
validation exercise, their model obtains MAE of 6.81 and R2          
of 0.134 when applied to a separate dataset (HC) with a           
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lower baseline MAE of 9.27 . Since metatranscriptomic data        2

is unavailable for that cohort, we created an additional         
validation cohort with exactly the same age distribution        
shown in Table 1. In this cohort, our model attains MAE of            
7.64 (vs their 6.81) and R2 of .31 (vs their .13). R2 is the              
standard metric used for quality of fit in a regression task,           
and these numbers suggest that our metatranscriptomic       
model provides a better overall fit to this distribution of          
ages. 
 
Interestingly, Galkin et al. report that an Elastic Net model          
was unable to extract significant signal from the data, and          
achieved their best performance using a deep neural net         
(DNN). In contrast, we found similar performance across        
model types, including when using a neural network        
architecture modeled after the one they report. Using a linear          
model is advantageous in terms of interpretability and        
actionability: the influence of each biological feature on the         
model’s age prediction is transparent, making it       
straightforward to determine a set of candidate targets to act          
on. 
 
Although we report separate models for the microbiome and         
human gene cases, these models could be combined to give          
a single prediction. One straightforward way to do this         
would be to weight the predictions of each by the models’           
precision. In future work we hope to collect a large dataset           
with both stool microbiome and human gene expression data         
collected simultaneously for the same users, which will        
allow us to fit a single joint model. 
 
The resolution of the data supplied by our clinical grade and           
fully-automated lab analysis method allows identification of       
microorganisms at the strain level, although for this analysis         
we aggregate data to the species level. This contrasts with          
16S gene sequencing, which does not discriminate between        
species within most genera. This additional resolution       
appears to be important to capture age-related variation. In         
several cases, some species of a genus are associated with          
older age, and others associated with younger age (shown in          
Figure S1 of supplementary materials). 
 

2 Galkin et al. also report MAE of 5.91 for this dataset but note that               
the data contains multiple samples from many of the subjects, and           
after merging duplicates into averaged samples, performance falls        
to 6.85. As performance on averaged samples is not representative          
of performance on individual samples, we report metrics for the          
Galkin et al. model after randomly excluding all but one sample           
from each donor. The metrics we report here are calculated from           
the predictions for individual samples shared as part of that paper’s           
supplementary data.  

Contrary to much published literature (de la Cuesta-Zuluaga        
et al., 2019; Hopkins et al., 2002; Mariat et al., 2009; Koenig            
et al., 2011; Yatsunenko et al., 2012), chronological age was          
not associated with significant changes in alpha diversity        
(richness or evenness) of taxa or KOs across decades (Figure          
3b and Figure 3c) despite significant changes in individual         
taxa and KOs over time (Figure 3d and Figure 3e). This           
difference may be due to our RNA-based approach, whereas         
previous studies have used DNA-based approaches      
(amplicon or metagenomics). It is intriguing that the        
richness of active gene expression captured in this        
RNA-based data remains steady throughout life. It is        
possible that changes in taxonomic diversity observed in        
DNA-based approaches might help to retain a certain level         
of functional stability (Kang et al., 2015) obtained early in          
life.  
 
Cohort comparisons. Figure 4a shows that populations       
following certain lifestyle choices or suffering from specific        
conditions are systematically assigned a different biological       
age from their age-matched controls. For instance, those on         
plant-based diets appear younger (see review in Medawar et         
al., 2019). On the other hand, heavy alcohol drinkers and          
IBS and diabetes sufferers appear older. Those on a         
ketogenic or paleo diet tend to have a higher biological age           
than controls. For some of these cohorts (e.g. drinking,         
diabetes) the age difference in the training data has the same           
sign as the predicted age (Figure 4b). In these cases it is            
unclear whether the model has identified aspects of the         
microbiome that reflect general aging that are modulated in         
the groups of interest. However for other cohorts (i.e.         
vegetarians, paleo, IBS) the opposite pattern is seen, which         
shows that the microbiome features associated with these        
populations include features associated with aging in the        
general population. Overall, these results are consistent with        
an interpretation of our biological age metric as reflecting an          
accumulation of lifestyle choices and disease status that        
contribute to healthy aging. 
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(a) 

 
(b) 

Figure 3. Biological aging model using the human blood transcriptome discovery cohort of Table 1.  (a) Actual vs. 
Predicted  (b) Top coefficients grouped by Viome Functional Categories (VFCs) 

 
 

 
(a) 

 
(b) 

Figure 4. Cohort comparisons. (a) Mean and standard error of biological age differences between cohorts and age-matched 
controls where  p -values < 0.1 from paired t-tests.  (b) Mean and standard error of chronological age differences between 
cohorts and controls in the discovery cohort. 
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Molecular feature interpretation. The VFC are expert       
curated functional themes that provide mechanistic insights       
into the aging process from the features predictive of the          
biological age model. For instance, the Pro-Inflammatory       
Activities in Aging theme captures several VFCs like Oral         
Pathobionts, Ammonia Production Pathways and     
Methanogenesis Pathways that could lead to increased       
systemic inflammation and aging. The presence and activity        
of oral taxa in the gut is an established marker of           
hypochlorhydria (low stomach acid), which is known to        
develop with age as stomach acid levels and digestive         
efficiency progressively decline (Martinsen et al., 2005;       
Banoo et al., 2016; D’Souza, 2007). One of the common          
outcomes of low stomach acid is small intestinal bacterial         
overgrowth (SIBO), which allows overproduction of gases       
by oral and opportunistic microbes that should not have         
passed through the stomach environment, causing bloating       
and discomfort. SIBO can have several forms, depending on         
which gases are being mainly generated. A       
methane-dominant SIBO is characterized by excessive      
methanogenesis, which is also a significant pathway theme        
increasing with age. Methane is produced by Archaea, which         
has been reported to increase with age either due to relative           
decrease of other commensals or due to other factors         
allowing more methanogens to thrive in the gut. The         
increased ammonia and methane production contribute to       
dysbiosis, dysmotility, and pro-inflammatory effects that can       
be disruptive to the gut lining (Ni et al 2017). It is worthy to              
highlight that both KO and Taxa features of our model          
collectively contribute to microbial Proinflammatory     
Activities in Aging. On the other hand, Cell Protective         
Activities in Aging theme captures Anti-Inflammatory and       
Antioxidant Production Pathways, such as Glutathione      
Production Pathways, which are known to be diminished        
with aging (Homma et al 2015). Other than microbial         
Proinflammatory Activities, the model also predicts an       
association of Human Inflammatory Pathways with aging.       
Our model predicts increased demands on activity of        
pathways involved in B-cell differentiation, T-cell      
proliferation, T-cell differentiation, Eosinophil Migration,     
Cytokine Secretion, which can be viewed as the human         
response to activation of TLR4 and other signaling pathways         
with aging from microbial or environmental origins. To        
mitigate proinflammatory challenges, activation of innate      
immune response must be a precise and well-timed interplay         
between various immune cells on a molecular level        
(Takatsu, 1997). While some of the proinflammatory       
activities increase with age, however, many of the crucial         
T-cell response elements actually decrease in expression,       

which can result in insufficient ability of the immune system          
to respond to the sources of inflammation with age. 
 
The Microbial Activities in Healthy Aging theme captures        
VFCs like Vaginal Commensal Microbes, Butyrate and       
Short-Chain Fatty Acid (SCFA) Production and Oral       
Commensal and Plaque Microbes that the model finds to be          
negatively associated with aging. The Cellular Pathways       
Downregulated in Aging theme captures other pathways that        
decrease with aging like Vitamin B12 production and Amino         
acid metabolism that are important for maintaining the gut         
diversity and homeostasis. Increased gut dysbiosis mediated       
by senescence-associated inflammatory conditions also     
results in the decreased microbial metabolite production       
(Gargari et al 2018). Stress Response Pathways also        
generally decline and become less efficient with age, while         
sources of Cellular Stress increase. (Edwards, 2011;       
Calderwood, 2009).  
 
The role of gut microbiome in neuro-generative processes is         
increasingly evident, and the perturbation of the microbiome        
and microbial products has been demonstrated to affect        
behavior (Hsaio et al 2013) through the well-known        
gut-brain axis (Dumitrescu et al 2018). In the Neuronal         
Activities in Aging theme, the VFCs Glutamate and Gamma         
Amino Butyric Acid (GABA) Pathways, Serotonin      
Metabolism Pathways and Pro-apoptotic Pathways in      
neuronal cells show association with aging from the model         
in line with current knowledge of Neuroinflammation and        
cognitive aging. The inhibitory motor function mediated by        
GABA has also shown to be gradually declining with         
advancing age (Pauwels et al 2018), and serotonin loss leads          
to behavioral changes commonly observed in the elderly        
population (Meltzer et al 1998). 
 
Additional supporting evidence for the declined      
neurotransmission and neuronal development with aging      
comes from the model’s predictive human gene expression        
features, which play a role in Neurotransmission Pathways,        
Neurodegeneration Pathways, and inverse relationship with      
Neuronal Growth and Development with aging themes. 
 
Collectively, there are several integrative themes suggested       
by the significant KOs, Taxa, and human gene expression         
features of the model revealing a mechanistic systems        
biology viewpoint on aging. Some of the features have         
already been shown to play a role in age-related decline. For           
example, even though there may be a proinflammatory        
mechanism triggering certain immune responses from the       
gut microbiome, various other factors suggest inefficient or        
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imprecise immune responses that may be needed to mitigate         
the sources of inflammation due to underactive T-Cell        
attachment to target cells. T-Cell populations may not only         
decline with age, but have also been suggested to change          
functional as they acquire more senescent-like      
characteristics (Quinn et al 2018). The mechanisms of        
T-Cell functional changes with age together with senescence        
are well-represented in the features of our model that belong          
to these themes. Various pro-neoplastic and      
proinflammatory themes are accompanied by stress      
response, senescence, epigenetic changes, and diminished      
T-Cell and other lymphocyte functions, which imply       
insufficient ability to maintain cellular health and immune        
surveillance needed to mitigate and clear any pathogens,        
cancer cells, or proinflammatory debris with age. This, in         
turn, can contribute to neuronal proinflammatory processes,       
which, together with the microbiome component, can       
promote low-grade neuroinflammation, progressive damage,     
and subsequent cognitive decline with age. 
 
Some prior work has attempted to validate the relevance of          
biological age metrics to health by relating them to measures          
of health or mortality (e.g. Holly et al., 2013; Earls et al.,            
2019), and we are investigating a similar approach in         
ongoing work. We note that biological age may in general          
serve as a proxy for longevity or healthspan. Additionally,         
our results uncover novel machine-learned associations      
between age and specific metatranscriptomic features that       
could guide the design of nutritional interventions to reduce         
biological age and increase the human healthspan (see e.g.         
Sae-Lee et al., 2018; Ghosh et al., 2019). We will continue           
to evaluate and improve the models as we obtain more data. 

Conclusions 
A major contribution of this paper is the development and          
validation of two models for biological age. Our stool         
metatranscriptome model uses what is to date the largest         
published cohort of stool microbiome samples, 90,303 in        
total. Although our human transcriptome model is based on         
a smaller dataset, it performs very well. Both models are          
capable of predicting chronological age well above the        
baseline MAE of the datasets, and account for 46% and 53%           
of the variance in age by R2 respectively. Using this standard           
metric for quality of fit in a regression task, the performance           
of our stool metatranscriptomic aging model is the best of          
any published stool microbiome aging clock, and our blood         
transcriptome-based model is the best for any models        
developed using large (N>1000) datasets, to our knowledge.  

 
Another contribution of this paper is the biological age         
characterization of populations following specific dietary      
and lifestyle choices. While not all of these initial results are           
readily interpretable, the trends in some populations indicate        
a relationship between health and biological age - for         
example, those on a vegetarian diet appear younger, while         
those on a paleo diet or suffering from IBS appear older.           
These results are consistent with an interpretation of our         
biological age metric as reflecting an accumulation of        
lifestyle choices and disease status, and suggest that the         
microbiome features associated with these populations      
include features associated with aging in the general        
population. 
 
Moreover, pathway analysis of the features and       
interpretation of functional themes suggests mechanistic      
insights predictive of aging, and further connects age-related        
microbial activities with human cellular expression patterns       
on a molecular level. This predictive signature not only         
offers additional clues to the role of immune function in          
progressive systems-level decline, but also provides      
possibilities for future nutritional or pharmacological      
anti-aging interventions.  
 
This is the first report of using functional (i.e. gene          
expression) microbiome features and combining them with       
human gene expression data to build an accurate aging         
model. These microbial and human gene expression features        
open up the possibility to slow down human aging with          
specific therapeutic modalities that include natural (diet,       
supplements, lifestyle) and pharmaceutical (small molecules,      
phages, probiotic engineering, immunotherapies)    
approaches. 
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Supplementary materials 

 

Figure S1. For the predictive model with microbiome        
discovery cohort, species features grouped into genus       
level, with absolute coefficients > 0.3 

 

Viome Functional Categories (VFC)  
We have built an annotation system that integrates both         
taxonomic abundances and the functional expression profiles       
from KOs into higher order biological themes that are         
relevant for aging. A similar system has been built for          
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human gene expression profiles. We call these biological        
themes Viome Functional Categories (VFC). The VFCs are        
highly curated themes that attempt to provide mechanistic        
insights into the aging process from the features predictive         
of the biological age model. We report a total of 32 VFCs            
grouped into 11 broad biological themes. The VFCs and the          
themes are as discussed below. 
 
1. ProInflammatory Activities in Aging: 
The ProInflammatory Activities in Aging theme provides       
evidence of a modified microbial synergy and dysbiosis of         
the gut bacterial involvement in the aging process. The term          
“Inflamm-aging” has been used to describe the       
proinflammatory environment that exists in older adults       
characterized by high concentrations of proinflammatory      
cytokines and impaired immune responses to pathogens and        
vaccines (Franceschi et al 2000). This theme captures some         
of the microbial contributions to aging related inflammation.        
Proinflammatory and opportunistic microbes such as      
Streptococcus sp., Propionibacterium sp., Rothia sp. and       
their associated functional components involved in increased       
virulence, such as the iron transport protein A (Carton et al           
2006) and fatty acid double bond hydratase (Volkov et al          
2010) may contribute to process of inflammation and aging         
(Nagata et al 2000, Maraki et al 2014). 
 
Studies have reported an increased muscle and blood        
ammonia content with age, implicating the possibility of        
elevated purine nucleotide deamination during senescence      
(Mohan et al 1987). In addition, the microbial ammonia         
production pathway could contribute to increased ammonia       
levels in the aged population thereby increasing       
inflammation. Three KOs involved in ammonia production       
are predictive of age in the model. 
 
2. Antibiotic Resistance and MultiDrug Tolerance      
Inducing Pathways: 
Infectious diseases remain a serious problem for older        
people and the frequent prescribing of antibiotics led to the          
emergence of highly resistant pathogens among geriatric       
patients, such as methicillin-resistant Staphylococcus aureus,      
penicillin-resistant Streptococcus pneumoniae,   
vancomycin-resistant enterococci, and   
multiple-drug-resistant gram-negative bacilli (Yoshikawa    
2002). Two antibiotic resistance and multidrug tolerance       
associated KOs are found to be associated with increased         
age. 
 
3. Microbial Pathways Down regulated in Aging 

One KO each from Stress Response Pathway (HSP20),        
Vitamin B12 Production Pathway, Hydroxyproline and      
Proline Catabolism Pathway and two KOs from Cell cycle         
and DNA Repair Pathways are found to be associated with          
younger age. Three other KOs from Cell cycle and DNA          
Repair Pathways show an association with older age. 
 
4. Cell Protective Activities in Aging 
The enzymatic and non-enzymatic cellular antioxidants such       
as superoxide dismutases, catalases, glutathione system,      
thioredoxin system, peroxidase systems, flavohemoglobins     
and nitrate or nitrite reductases coordinate the balance        
between the production and degradation of Reactive Oxygen        
Species (ROS) and Reactive Nitrogen Species (RNS)       
(Staerck et al 2017). Decreased GSH levels are associated         
with aging as well as in neurodegenerative disorders        
(Homma et al 2015). The model identifies a KO belonging          
to the GSH production pathway to be predictive of younger          
age. Two other KOs involved in anti-inflammatory and        
antioxidant functions (such as peroxiredoxin and superoxide       
dismutase) are also predictive of younger age. 
  
5. Microbial Activities in Healthy Aging 
It is well known that gut commensals have significant         
influence on the host nutrition and metabolism by producing         
microbial metabolites like SCFAs, vitamins and cofactors       
that are readily absorbed from the intestinal epithelium and         
are also essential for healthy gut lining. The preservation of          
host-microbes homeostasis can counteract inflammaging,     
intestinal permeability and decline in bone and cognitive        
health (Biagi et al 2016). These microbial metabolites        
contribute to healthy aging and human longevity by        
maintaining gut diversity and homeostasis. Increased gut       
dysbiosis mediated by senescence-associated inflammatory     
disorders results in the decreased microbial metabolite       
production (Gargari et al 2018). This phenomenon has been         
captured in the features from the predictive model where         
SCFA producers such as Clostridiales sp. and Ruminococcus        
sp., Coprococcus sp., and Eubacterium sp. are predictive of         
younger age. Two vaginal commensal Lactobacilli and       
Atopobium, the beneficial bacteria detected in the vaginal        
microbiome of reproductive age women (Ravel et al 2001) is          
found in the feature to be predictive of younger age. Thus,           
reduced microbiome-related metabolic capacity in old age,       
such as lower levels of short-chain fatty acids (SCFAs), may          
also be associated with aging-related maladies such as        
irregular bowel transit, weight loss, cognitive decline,       
hypertension, vitamin D deficiency, diabetes, arthritis      
(Zapata et al 2015). 
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However, it is interesting to see that Ruminococcaceae sp.,         
Ruminococcus sp., Roseburia sp., Intestinimonas sp.,      
Pseudoflavonifractor sp., Subdoligranulum sp.,    
Butyricicoccus sp., some of the well-known butyrate and        
SCFA producers are also predictive of older age. The         
presence of Ruminococcus, Bifidobacteria and     
Lachnospiraceae has been shown to increase in the elderly         
and associated with aging (Biagi et al 2016, Claesson et al           
2012, Zapata et al 2015). 
 
6. Neurological Activities in Aging 
The role of gut microbiome in neuro-generative processes is         
increasingly evident and the perturbation of the microbiome        
and microbial products have been demonstrated to affect        
behavior (Hsaio et al 2013) through the gut-brain axis         
(Dumitrescu et al 2018). Studies have reported differences in         
short-chain fatty acids synthesis, tryptophan metabolism,      
and synthesis/degradation of neurotransmitters to be      
associated with neurological and social problems (Zhu et al         
2020). Abnormalities of neurotransmitter systems, especially      
the aberrations of neuronal signaling involving dopamine,       
glutamate, and γ-aminobutyric acid (GABA) are among the        
pathways known to be dysregulated in diseases like        
Schizophrenia (Zhu et al 2020). 
  
KO and taxa features involved in neurotransmitters and        
neuronal signaling are also predictive of old age. For         
instance, two KOs involved in the glutamate and GABA         
production have a negative association with aging. Along        
with neurotransmitters, KOs involved in neurosteroid      
production pathways in the brain and the brain lipid         
metabolism resulting in the accumulation of propionic acid        
have also been negatively associated with age. One        
Streptococcus sp. identified by the model has previously        
been implicated in social behavior deficits, by altering        
neurotransmitter levels in peripheral tissues in recipient mice        
(Zhu et al 2020). This taxon feature is found to be positively            
associated with age. 

Similarly, based on the human gene expression, we report         
65VFCs that could be grouped into 26 aging relevant         
functional themes. Among the model’s most predictive       
features are genes belonging to the following categories:        
Proinflammatory Pathways, Neurological Aging Pathways,     
Epigenetic Regulation Pathways, and Cell Apoptosis      
Pathways.  

7. Human Inflammatory Pathways and Aging:  
A balanced proinflammatory and anti-inflammatory     
mechanism is the key for good immune health. An increased          

production of proinflammatory cytokine production leading      
to chronic proinflammatory environment is characteristic of       
aging and Immunosenescence. IL-18 is a proinflammatory       
cytokine, known to enhance TH1 and TH2 differentiation        
and immune response via stat/IFNgamma pathway      
activation (Dinarello, C.A., 1998). PTGER2 upon activation       
significantly enhances inflammation by inducing the      
expression of proinflammatory factors, such as interleukin       
(IL)-1β and IL-6 in tumor cells (Sun X., 2018). Aging could           
also be characterized by the decline in immune responses         
(Fuentes E., 2017). Notably, our model identifies an        
association between older age and immune suppressors such        
as TCR pathway inhibitors and immune checkpoint markers        
(Manieri, N.A, 2016, Vazquez-Cintron,E.J., 2012,     
Monti-Rocha, R., 2019). Several signaling pathways which       
are involved in T-cell proliferation and maturation is also         
associated with aging phenotype (Lyons, G.E., 2006, Zhang,        
N. 2011). 
 
8. Epigenetic Regulation and Aging: 
The model identifies pathways involved in Epigenetic       
Modification (Pal, S., 2016, Sun, L., 2018). Significant        
changes in chromatin and DNA organization with aging        
have been previously reported (Pagiatakis, C.,2019). The       
model identifies an association between age and Chromatin        
Assembly Pathways, Chromatin Remodeling Pathways, and      
DNA Methylation Pathways. 
 
9. Neurological Aging Pathways and Aging: 
Aging is characterized by neurodegeneration and gradual       
decline in cognitive functions. Our model detects association        
of several pathways involved in neurological aging, such as         
Neuroprotective Pathways, Neurodegeneration Pathways,    
Neurotransmission Pathways with aging. Interestingly many      
of the predicted features have also been previously reported         
to be associated with Alzheimer’s phenotype (Duron E,        
2012, Bossù P, 2007, Reitz C, 2013). 
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